Bab II Tinjauan Teoritis
BAB II
TINJAUAN TEORITIS
2.1
Pendahuluan Antena mikrostrip terdiri dari tiga elemen dasar, seperti yang ditunjukan
pada gambar 1, elemen pertama adalah patch yang berfungsi untuk meradiasikan gelombang elektromagnetik ke udara, elemen kedua adalah substrat yang berfungsi sebagai media penyalur gelombang elektromagnetik dari catuan menuju
daerah dibawah patch dan elemen ketiga adalah ground plane yang berfungsi sebagai reflektor yang memantulkan sinyal yang tidak diinginkan.[8]
Gambar 1. Antena Mikrostrip[8]
Elemen peradiasi atau yang disebut patch mempunyai bentuk tertentu seperti yang ditunjukan pada gambar 2.
Gambar 2. Bentuk-Bentuk Patch[3]
Antena mikrostrip memiliki beberapa keunggulan bila dibandingkan dengan
antena
lainnya.
Keunggulan-keunggulan dari
antena
mikrostrip
diantaranya:[7]
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
4
Bab II Tinjauan Teoritis
a. Ringan dan memiliki penampang yang tipis.
b. Biaya pabrikasi yang murah karena menggunakan PCB.
c. Dapat menghasilkan polarisasi linear maupun lingkaran.
Selain memiliki keunggulan-keunggulan di atas, antena mikrostrip juga
memiliki beberapa kelemahan yang diantaranya:[7] a. Bandwidth yang kecil.
b. Gain yang rendah.
c. Membutuhkan substrat bekualitas baik (mahal). d. Efisiensi rendah.
2.2
Tinjauan Pustaka Proyek akhir ini merupakan pengembangan dari proyek akhir sebelumnya.
Berikut adalah beberapa proyek akhir sebelumnya yang berkaitan dengan tugas akhir antena mikrostrip susun patch segitiga sama sisi dengan distribusi arus dolph chebyshev: 1. Rumi Adzri’aatin, Ez. 2010. Realisasi Antena Susun Mikrostrip Empat Persegi Panjang dengan Distribusi Arus Dolph Chebyshev. Laporan Tugas Akhir yang merealisasikan antena susun mikrostrip dengan patch persegi panjang menggunakan teknik pencatuan microstrip line tanpa inset feed. 2. Nuraeni, Tri Aulia. 2011. Design dan Implementasi Antena Susun Mikrostrip Empat Persegi Panjang dengan Distribusi Arus Dolph Chebyshev. Laporan Tugas Akhir yang merealisasikan antena susun mikrostrip dengan patch persegi panjang menggunakan teknik pencatuan microstrip line dengan inset feed. 3. Damayanto, Reza. 2011. Realisasi Antena Mikrostrip Patch Segitiga Untuk Aplikasi Wimax. Laporan Tugas Akhir yang merealisasikan antena dengan patch segitiga tunggal.
2.3
Teori Antena Mikrostrip Segitiga
2.3.1 Patch Segitiga Salah satu bentuk patch antena mikrostrip adalah segitiga. Prinsip sistem koordinat yang digunakan pada bentuk segitiga tidak jauh berbeda dengan sistem
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
5
Bab II Tinjauan Teoritis
koordinat pada persegi empat. Perbedaannya terletak pada penentuan ketiga titik
acuan koordinat segitiga tidak sama dengan persegi empat, sehingga perolehan
medan dekat, medan jauh dan karakteristik antena mengalami perubahan. Bentuk ini memiliki keunggulan dibandingkan dengan bentuk segi empat, yaitu luas yang dibutuhkan oleh bentuk segitiga untuk menghasilkan karakteristik radiasi yang
sama lebih kecil dibandingkan luas yang dibutuhkan oleh bentuk segi empat. Hal ini sangat menguntungkan di dalam fabrikasi antena. Berikut ini struktur antena mikrostrip patch segitiga yang ditunjukan pada gambar 3.[6]
Gambar 3. Struktur Antena Mikrostrip Patch Segitiga
Pada perancangan dimensi patch dari sebuah antena, patch sebagai beban saluran transmisi harus tetap menghasilkan impedansi yang sesuai dengan impedansi karakteristik, dengan impedansi beban yang sesuai (matching), maka antena akan bekerja pada frekuensi resonansi (fr).[6]
2.3.2 Dimensi Antena Mikrostrip Patch Segitiga Untuk sebuah rancangan patch antena segitiga sama sisi dapat dilakukan dengan analisa perhitungan untuk panjang setiap sisi didasarkan frekuensi resonansi yang digunakan dan konstanta dielektrik bahan yang digunakan. Nilai frekuensi resonansi suatu peradiasi segitiga sama sisi yang dikopel pada mode TMmn dinyatakan dengan persamaan sebagai berikut:[5] ......................................................... (1) Dimana:
fr
: Frekuensi resonansi
c
: Kecepatan cahaya (3 x 108 m/s)
µ0 : Permeability pada ruang vakum
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
6
Bab II Tinjauan Teoritis
εr
: Konstanta relatif dielektrikum bahan (substrat)
µeff : Effektif permitivity bahan dielektrikum a
: Panjang sisi segitiga
Subskrip mn ini mengacu pada mode TMmn, pada aplikasi dominan mode
TM10, maka dari persamaan (1) diperoleh persamaan berikut: ................................................................................................... (2)
Jadi panjang sisi segitiga sama sisi adalah:
.................................................................................................... (3)
Saat dilakukan perancangan panjang sisi segitiga dari hasil perhitungan harus dikurangi agar tercapai nilai effective. Pengurangan nilai panjang sisi lebih dikarenakan adanya efek fringing field (efek tepi) antara patch dengan ground plane, fenomena efek tepi dari suatu antena mikrostrip dimana elemen peradiasi seolah-olah menjadi lebih lebar dibandingkan dengan aslinya, sehingga menyebabkan ukuran panjang segitiga sama sisi dengan rumus diatas tidak sepenuhnya benar. Hal ini dapat diatasi dengan menggunakan persamaan yang didapat oleh Helszein dan James: .................................................................................. (4)
Dimana aeff adalah sisi efektif dari suatu antena segitiga setelah dikurangi untuk mengkompensasi pengaruh efek tepi ini.[5]
2.4
Microstrip Transmission Line
2.4.1 Saluran Mikrostrip Konstruksi dari mikrostrip terdiri dari konduktor strip (line) dan sebuah konduktor bidang tanah yang dipisahkan oleh medium dielektrik dengan konstanta dielektrik (
. Di atas strip adalah udara sehingga bila tanpa shielding
sebagian medan elektromagnetik akan meradiasi, dan sebagian lagi ada yang masuk kembali ke dalam substrat dielektrik. Jadi, terdapat dua dielektrik yang
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
7
Bab II Tinjauan Teoritis
melingkupi strip yaitu udara dengan konstanta dielektrik satu dan substrat dengan
konstanta dielektrik (
1. Dengan demikian saluran mikrostrip, secara
keseluruhan, dapat kita pandang sebagai sebuah saluran dengan dielektrik homogen yang lebih besar dari satu tetapi lebih kecil dari
. Konstanta dielektrik
ini disebut konstanta dielektrik efektif (effective dielectric constant).[10]
Gambar 4. Pola Medan Listrik pada Saluran Mikrostrip
Kita dapat mengetahui nilai konstanta dielektrik efektif (
dengan menggunakan
persamaan dibawah ini:
.................... (5)
Untuk keperluan perancangan, bila diketahui impedansi karakteristik Z0 dan konstanta dielektrik
, lebar strip dapat dicari dengan persamaan:
.. (6)
dengan : ................................................................... (7) ...................................................................................................... (8)
2.4.2 Dimensi Saluran Transmisi Mikrostrip Panjang dan lebar saluran pencatu akan memengaruhi nilai return loss, VSWR, dan bandwidth antena. Persamaan untuk menghitung saluran pencatu adalah:[9]
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
8
Bab II Tinjauan Teoritis
1. Sebelumnya kita harus mengetahui nilai impedansi karakteristik saluran (Z0). r
merupakan nilai permitivitas bahan dielektrik yang digunakan. ε
.............................................................. (9)
................................................................................................(10)
2. Lebar saluran (W) dapat dicari dengan cara sebagai berikut:
.................................................................................................................(11)
3. Menghitung konstanta dielektrik effective (
)
..............(12)
4. Menghitung panjang saluran (L) Menggunakan saluran istimewa ..................................................................................................(13) Maka panjang salurannya ..........................................................................................................(14)
2.5
Quarter Wave Transformer Untuk menyesuaikan impedansi ZL riil ke Z0 (riil) dapat dilakukan dengan
menggunakan transformator /4, saluran dengan impedansi karakteristik Z0,1 dan panjangnya seperempat panjang gelombang pada frekuensi rancangan. Gambar 5 memperlihatkan sebuah beban ZL yang dihubungkan ke saluran utama melalui transformator /4.[10] /4
Z0
Z0,1
ZL
Gambar 5. Penyesuai Transformator /4
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
9
Bab II Tinjauan Teoritis
Impedansi masukan pada transformator, Zin = Z0, karena sesuai. Untuk saluran
/4, impedansi masukan ini adalah
Z in
Z 02,1 ZL
Z0 ,
Z 0,1 Z 0 Z L ............................................................(15)
karena Z0,1 riil, maka ZL harus riil. Bila frekuensi perancangan adalah f0, maka
persamaan (15) hanya berlaku untuk frekuensi tersebut. Untuk frekuensi lain, panjang transformator tidak lagi seperempat panjang gelombang, karenanya impedansi pada masukan transformator tidak lagi sama dengan Z0. Dengan
demikian beban tidak lagi sesuai dengan saluran. Tapi ada batas VSWR maksimum sehingga kita masih dapat menerima ketidak sesuaian, atau kita masih
menganggapnya sesuai. Biasanya nilai VSWR ini adalah 1,5 yang memberikan nilai koefisien pantul = 0,2. Dengan nilai koefisien pantul ini, persentasi daya yang diserap transformator adalah 1 2 = 96% dan yang dipantulkan 4%.
2.6
Teori Susunan Antena Pada dasarnya penyusunan antena atau lebih sering disebut array memiliki
dua tujuan yaitu: [2] a) Beam forming (mendapatkan diagram arah dengan pola tertentu) b) Beam steering (mendapatkan diagram arah dengan pengendalian arah tertentu) Dibawah ini merupakan gambar susunan dua sumber isotropis :
Gambar 6. Susunan Dua Sumber Isotropis
Keterangan : a) Dua sumber isotropis dipisahkan oleh jarak d. b) Titik observasi adalah ke arah sudut Φ dari sumbu horizontal (sumbu x).
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
10
Bab II Tinjauan Teoritis
c) Garis orientasi dari sumber-sumber isotropis menuju titik observasi
dianggap sejajar karena d (jarak antarsumber isotropis) << daripada jarak antena menuju titik observasi.
2.6.1 Susunan Linear n Sumber Titik Isotropis Berdasarkan Distribusi
Arus Untuk memperbesar direktifitas antena, sejumlah radiator mikrostrip (patch) dapat disusun dalam bentuk array. Elemen – elemen dapat dicatu oleh saluran tunggal atau ganda. Berdasarkan distribusi arus, maka teknik pencatuan
antena dibagi menjadi tiga bagian, yaitu secara uniform, binomial, dan dolph
chebyshev. [2]
2.6.1.1 Teori Susunan Uniform Dengan menggunakan prinsip-prinsip yang sudah dipahami sebelumnya, untuk menurunkan persamaan medan total yang dihasilkan oleh susunan sejumlah n antena isotropis. Seperti gambar 7.[2]
Referensi titik 1 (dengan dinormalisasikan terhadap Eo) 1 e j e
Etn
Etn e j e j e
j 2
j 2
e
... e j 3
j n1
... e
j n1
_________________________ -
Etn 1 e j 1 e jn
Gambar 7. Distribusi Arus Uniform
jn
1 e jn e 2 Didapatkan E t j 1 e j e 2
jn jn 2 e e 2 e j 2 e j 2
............................................(16)
Sehingga medan total ternormalisasi untuk referensi pada titik 1 :
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
11
Bab II Tinjauan Teoritis
Etn
sin n 2 untuk n 1 dan 2 cos 2 .......................(17) sin 2
Dimana d adalah jarak spasi antar antena, dan δ adalah beda fasa antar catuan arus yang berdekatan.
Untuk persamaan medan total ternormalisasi dengan referensi titik tengah, dimana diagram fasa persamaan berikut berupa step function yang diberikan dari polaritas (+/-) harga Etn.
sin n 2 Etn sin 2 ...............................................................................................(18)
Medan maksimum : Terjadi jika suku penyebut sama dengan atau mendekati nol. Sin
= 0 atau = 0, = 0. Jika tidak pernah mencapai 2 2
harga nol maka medan maksimum terjadi jika mencapai harga minimum.
Medan minimum : Terjadi jika suku pembilang sama dengan nol. Sin n = 0 2 atau n
= ±kπ (k= 0,1,2,….dst). 2
Array factor adalah normalisasi medan total susunan antena terhadap nilai maksimum dari medan total susunan tersebut.
Array faktor AF E N
Et E maks
sin n sin n 2 dan E tercapai pada φ = 0, maka E 2 n Jika Etn max tmaks lim 0 sin sin 2 2
EN
Et , Etmaks
sin n 1 2 Array faktor E N n sin 2 ...............................................(19)
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
12
Bab II Tinjauan Teoritis
Sedangkan faktor susunan (untuk sejumlah sumber) dapat digambarkan sebagai
fungsi φ. Jika φ merupakan fungsi , maka nilai dari faktor susunan dan pola
medan akan dapat langsung diketahui dari gambar 8 dengan gain susunan: Jika daya W masuk pada satu antena, maka |E| = Eo ........................................(20) Jika daya W masuk pada n antena, maka E '
Et max = n |E’| = n
n
........................................(21)
E0 = E0 n ..................................................................(22) n
penguatan medan, GF =
E0
E0 n n ..............................................................(23) E0
penguatan daya, G = (GF)2 = n .......................................................................(24)
Gambar 8. Grafik Faktor Susunan dan Pola Medan
2.6.1.2 Teori Susunan Binomial Distribusi arus binomial sering disebut sebagai distribusi John Stone. Dari tiga distribusi arus yang ada, amplituda binomial memiliki half power beamwidth yang paling tinggi. Binomial array biasanya memiliki side lobe paling kecil, diikuti dolph chebyshev dan uniform. Binomial array dengan jarak elemen ≤ λ/2 tidak memiliki side lobe. [8] Jumlah array genap dari elemen isotropis = 2M (M merupakan integer) yang ditempatkan simetris pada sumbu z. Antar elemen dipisahkan oleh d, dan elemen-elemen M ditempatkan pada masing-masing sisi yang asli. Begitu pula untuk jumlah array ganjil dari elemen isotropis = 2M+1. Array factor seperti telah disebutkan sebelumnya, merupakan normalisasi medan total susunan antena
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
13
Bab II Tinjauan Teoritis
terhadap nilai maksimum dari medan total susunan tersebut memiliki nilai yang
berbeda untuk jumlah elemen genap dan ganjil.[2]
Jumlah elemen genap
.......................................(25) Jumlah elemen ganjil ..................................(26)
2.6.1.2.1 Koefisen Eksitasi
Untuk menentukan koefisien - koefisien eksitasi dari binomial array J.S
Stone memberikan fungsi
yang ditulis seri, menggunakan perluasan
binomial sebagai berikut : +. . . ..... (27) Koefisien-koefisien positif dari perluasan seri untuk nilai m yang berbeda sesuai dengan prinsip segitiga Pascal adalah sebagai berikut:[2]
Gambar 9. Prinsip Segitiga Pascal
Dalam segitiga Pascal diatas, jika m merupakan jumlah elemen array, lalu perluasan koefisien menjelaskan amplitude relatif elemen-elemen. Koefisienkoefisien ditentukan dari sebuah perluasan seri binomial, karena itu sampai sekarang disebut binomial array.[8]
2.6.1.2.2 Prosedur Desain Binomial Array Untuk metoda binomial, juga untuk metode non-uniform array lainnya satu syarat adalah amplituda koefisien eksitasi untuk jumlah elemen. Telah dinyatakan bahwa binomial array tidak menunjukkan minor lobe jika jarak antar elemen ≤ λ/2. Karena didesain menggunakan jarak elemen λ/2 dengan tidak
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
14
Bab II Tinjauan Teoritis
adanya minor lobe pendekatan half power beamwidth dan maksimum direktifitas
dari d= λ/2 hanya dapat diperoleh dalam batas jumlah elemen dan panjang array,
yang diberikan:[8]
.........................................................(28)
........................................................................(29)
.......................................................................................(30)
...................................................................(31)
Persamaan diatas dapat digunakan untuk mendesain binomial array dengan half
power beamwidth dan direktifitas yang kita inginkan. Kerugian dari binomial
array adalah variasi lebar antara amplituda dari elemen array yang berbeda, terutama untuk array dengan jumlah yang banyak. Hal ini menunjukkan efisiensi yang sangat rendah dan membuat metode ini tidak begitu diinginkan dalam praktek. 2.6.1.3 Teori Susunan Dolph Chebyshev Distribusi arus dolph chebyshev digunakan untuk mendapatkan kriteria optimum dari pola pancar antena susunan. Kriteria optimum terdiri dari dua macam, yaitu:[2] a) Jika lebar berkas main lobe ditentukan, maka perbandingan mayor terhadap minor lobe akan (menuju) maksimum. b) Jika perbandingan antara mayor terhadap minor lobe ditentukan, maka lebar berkas main lobe akan (menuju) minimum. Dalam distribusi arus dolph chebyshev, diasumsikan syarat sebagai berikut: a) Antena isotropis dengan distribusi amplitude arus simetris b) Beda fasa antar catuan elemen isotropis berdekatan = 0 (δ=0) c) Jarak spasi antar elemen isotropis seragam (d seragam), sehingga selisih fasa kuat medan penerima dari elemen berdekatan pada titik observasi yang jauh adalah : ………………………………………………...(32)
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
15
Bab II Tinjauan Teoritis
Gambar 10. Selisih Fasa Kuat Medan
Penurunan medan total susunan dilakukan dengan cara referensi titik tengah
susunan. Didapatkan medan total untuk n-genap sebagai berikut:
.............................(33)
.............................................................(34)
dimana,
ne
= jumlah elemen (genap)
N
= ne/2
K
= 0, 1, 2, …(N-1)
Gambar 11. Medan Total untuk N-Genap
Sedangkan untuk n-ganjil medan totalnya adalah sebagai berikut: ................(35) ...................................................................(36) dimana, no = jumlah elemen (ganjil) N = (no – 1)/2 k = 0, 1, 2, …N
Gambar 12. Medan Total Untuk N-Ganjil
Dua persamaan di atas, persamaan, dapat dipandang sebagai suatu Deret Fourier dengan suku terbatas. Sepasang suku menyatakan kontribusi dari “sepasang” sumber atau dari sumber tengah. Dan dapat dianggap sebagai penjumlahan konstanta DC, fundamental, dan harmonik-harmonik. Misalkan, banyaknya elemen yang digunakan adalah 9 dengan d = λ/2. Maka:
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
16
Bab II Tinjauan Teoritis
………………………………………………... ......(37)
dan konstanta Ak diasumsikan 2A0 = A1 = A2 = A3 = A4 …………………………………….…… ......(38)
dengan = 9 dan d = λ/2 maka :
…………………………………………….…. .......(39)
Gambar 13. Distribusi Non-Uniform Optimum (Dolph chebyshev)
Tabel 1. Keterangan Gambar 13
k=0
k=1
k=2
k=3
k=4
DC
Fundamental
Harmonik#2
Harmonik#3
Harmonik#4
Dalam distribusi arus optimum (dolph chebyshev) nilai konstantakonstanta Ak adalah sesuatu yang ditentukan dengan perhitungan yang akan dilakukan, untuk mendapatkan pola pancar optimum. Optimum ditinjau dari sisi perbandingan mayor terhadap minor lobe-nya atau lebar berkas main lobe.
2.6.1.3.1 Polynom Chebyshev Teorema de Moivre:[2] ……………………….…. .....(40) Sehingga : ………………………………….……… .....(41) Persamaan di atas dapat dinyatakan sebagai Deret Binomial sebagai berikut : ..........(42) kemudian disubstitusi dengan : ………………………………………………….…… ......(43)
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
17
Bab II Tinjauan Teoritis
Maka akan dihasilkan deret Polynom Dolph Chebyshev untuk Nilai m = 1 s/d 5
dengan x = cos φ/2, sebagai berikut Gambar 14. Grafik untuk Polynom-Polynom Chebyshev
Gambar 15. Grafik Polynom Chebyshev untuk Nilai m = 1 s/d 5
Polinom memiliki sifat sebagai berikut: a. Semua Tm (x) melewati (1,1) b. Jika -1 < x < 1 maka -1 < Tm (x) < 1 c. Semua akar Tm (x) ada diantara -1 dan 1 atau -1 <x0 <1 d. Semua harga ekstrim adalah ±1 2.6.1.3.2 Pemahaman Grafik Polynom Pada gambar di bawah ini, dimisalkan R adalah perbandingan antara main lobe maksimum dengan minor lobe minimum.[2]
Gambar 16. Contoh Grafik Polynom
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
18
Bab II Tinjauan Teoritis
A merupakan Tn-1(x) yaitu menggambarkan diagram arah medan untuk
sejumlah n elemen En. B merupakan titik (x0 , R), pada kurva menggambarkan
harga main lobe maksimum. C merupakan akar-akar polynom yang menunjukkan harga-harga NOL diagram medan. D menunjukkan FNBW (First Null Beamwidth) pada titik (x = x1’).
Dalam distribusi arus optimum (Dolph Chebyshev) artinya adalah metoda Dolph Chebyshev dipakai untuk mendapatkan susunan optimum dengan menggunakan Polynom Chebyshev. Jika direncanakan susunan antena terdiri dari n sumber, maka diagram arah medan susunan merupakan suku banyak orde (n-1).
Suku banyak ini yang kemudian diekivalensikan dengan polynom Chebyshev orde
(n-1) Tn-1(x).
2.6.1.3.3 Prosedur Desain Dolph Chebyshev Array Untuk menggunakan Dolph Chebyschev ini sebaiknya sesuai dengan prosedur perencanaan sebagai berikut:[2] a. Untuk susunan n – sumber, pilih polynom orde (n – 1)Tn-1(x) b. Selesaikan Tn-1(x0) = R untuk mendapatkan harga x0. Unt uk m = n – 1, dapat dihitung sebagai berikut: ...........................................(44) c. Penyekalaan. Jika R>1, maka x0>1 juga. Padahal nilai x adalah berkisar (-1 ≤ x ≤ 1). Sebab x = cos (φ/2), maka lakukan perubahan skala dari x w. .................................................................................(45) d. Persamaan medan medan total n – sumber. Untuk n ganjil dan n genap berbeda. Lihatlah persamaan [34] dan [36] diatas. Persamaan dapat dinyatakan dalam w. e. Penyetaraan. En (w) disetarakan dengan Tn – 1(x) dengan .......................................................................(46) f. Maka akan diperoleh harga-harga : A0, A1, A2, A3,…
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
19
Bab II Tinjauan Teoritis
2.6.1.3.4 Diagram Arah
Untuk mendapatkan diagram arah kuat medan, dapat ditabelkan lalu
diplot, untuk nilai – nilai variable = θ, x, En.[2]
........................................................................................(47)
dan .................................................................................................(48)
Tabel 2. Tabel Diagram Arah Kuat Medan
Variabel Θ ψ/2 W X
Range -(π/2) 0 -(π/2) -(dr/2) 0 -(dr/2) Cos (dr/2) 1 Cos (dr/2) x0 Cos (dr/2) x0 x0 Cos (dr/2)
Gambar 17. Diagram Arah Kuat Medan
2.6.2 Perbandingan Susunan Uniform, Binomial dan Dolph Chebyshev Tabel 3. Perbandingan Tiga Jenis Distribusi Arus: Uniform, Binomial, dan Dolph Chebyshev[8]
No.
Parameter
Uniform
Binomial
Dolph Chebyshev
1 2 3
Coverage Gain Main lobe
Sempit Tinggi Sempit
Sempit Tinggi Sempit
4
Side Lobe
Ada
5
Back Lobe Formula perbandingan
Ada Sama untuk semua sisi
Luas Rendah Lebar Tidak (1/4 atau ½ ) Tidak Ada Berdasarkan formula segitiga Pascal
6
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
Ada Ada Berdasarkan perhitungan Polynom
20
Bab II Tinjauan Teoritis
2.7
Teori Penambahan Celah Udara
Kerugian utama dari antena mikrostrip adalah bandwidth yang sempit.
Salah satu cara paling umum untuk meningkatkan bandwidth yaitu dengan menambah ketebalan substrat. Namun, penggunaan substrat tebal ditemukan menjadi kontraproduktif karena tampilan gelombang permukaan. Dimana
gelombang ini dapat mengurangi efisiensi antena dan menghasilkan kopling palsu, yang membuat kesulitan dalam mendesain antena.[4] Penggunaan substrat yang tebal dapat dikombinasikan dengan bahan yang memiliki permitivitas sangat rendah, dengan tujuan untuk mencegah munculnya
gelombang permukaan sekaligus meningkatkan efisiensi antena dan memperluas
bandwidth frekuensi. Idealnya, substrat dielektrik dari antena mikrostrip harus udara. Bahan terbaik berikutnya adalah busa keras. Sehingga gelombang permukaan tidak signifikan pada substrat busa. Busa ini tersedia dalam variasi permitivitas relatif yang mana mulai 1,03 sampai 1,1. Dengan bahan yang kaku dan murah sehingga dapat digunakan untuk mewujudkan antena biaya rendah untuk aplikasi konsumen.[4] Pada gambar 18 merupakan contoh struktur antena mikrostrip dengan tujuan untuk menaikan bandwidth sehingga digunakan celah udara dengan ketebalan tertentu.
Gambar 18. Struktur Antena Mikrostrip dengan Celah Udara[1]
Sebagai contoh terdapat sebuah konfigurasi antena mikrostrip yang telah dipilih sehingga beresonansi sekitar 900 MHz dengan menggunakan substrat udara. Geometri dari antena yaitu panjang dari patch persegi panjang adalah 160 mm dan lebarnya 120 mm. Ukuran groundplane adalah 320 mm x 280 mm dan menggunakan ketebalan substrat udara antena adalah 5 mm. Setelah dilakukan simulasi maka gambar 19 merupakan hasil simulasi return loss.
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
21
Bab II Tinjauan Teoritis
Gambar 19. Return Loss Antena
Dimana antena beresonansi pada frekuensi 882 MHz, bandwidth pada return loss
10 dB yaitu 11,66 MHz dan persentase bandwidth 1,32%. Gain adalah 9,2 dBi dan efisiensi antena adalah sekitar 93%.[4] Seperti yang diharapkan, bandwidth secara signifikan meningkat dengan ketebalan substrat. Untuk menunjukkan keunggulan substrat udara, dan dibandingkan dengan dua bahan substrat lainnya maka telah dihitung dan hasilnya akan ditampilkan pada gambar 20. Yang mana substrat pertama adalah Duroid 5880, yang memiliki konstanta dielektrik 2,2 dan loss tangen dari 0,002. Substrat kedua adalah FR-4 Epoxy, yang memiliki konstanta dielektrik 4,6 dan loss tangen dari 0,02.
Gambar 20. Perbandingan Ketebalan Celah Udara
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
22
Bab II Tinjauan Teoritis
Pada gambar 20 terlihat bahwa semakin tebal penggunaan celah udara maka
bandwidth semakin tinggi selain itu apabila kita membandingkan antara substrat
udara, substrat Duroid dan substrat FR-4 Epoxy maka dari gambar tersebut diperoleh analisa bahwa penggunaan substrat Duroid dan FR-4 Epoxy dengan tebal 5 mm menghasilkan bandwidth yang lebih kecil dari pada menggunakan
substrat udara, hal ini dikarenakan memiliki loss tangen yang mempengaruhi nilai efisiensi antena dengan kata lain efisiensi antena yang menggunakan Duroid dan FR-4 Epoxy jauh lebih rendah dari antena yang menggunakan substrat udara.[4]
Fitra Mareta, 091331046 Laporan Proyek Akhir Tahun 2012
23