APLIKASI SISTEM PAKAR DETEKSI DINI PADA PENYAKIT TUBERKULOSIS WENNY WIDIASTUTI, DINI DESTIANI, DHAMI JOHAR DAMIRI JURNAL ALGORITMA SEKOLAH TINGGI TEKNOLOGI GARUT TAHUN 2012 IBNU NUR HIDAYAT ( 1441177004025)
ABSTRACT Tanda Gejala ? - Pasien TB tidak tahu - Pemeriksaan Masif
Penyuluhan
SISTEM PAKAR TBC
LATAR BELAKANG DAN TUJUAN TBC (Tuberkulosis )➔ kuman TB (Mycobacterium Tuberculosis) TB ➔ Menyerang siapa saja (usia 15-50 tahun) dan anak-anak Pasien TB dilakukan secara pasif dengang promosi aktif oleh petugas kesehatan ➔ “Dibuatkan Sitem Pakar yang mendeteksi dini Penyakit TBC”
DATA YANG DIGUNAKAN Data Penelitian diambil dari Puskesmas Cibutu, dengan melakukan pengamatan saat pemeriksaan “ Hanya dilakukan pemeriksaan fisik” Dari pemeriksaan diambil data dari tanda gejala, meliputi: 1. Batuk terus menerus dan berdahak selama 3 ( tiga) minggu atau lebih. 2. Dahak bercampur darah. 3. Batuk darah. 4. Sesak nafas dan rasa nyeri dada. 5. Badan lemah 6. Nafsu makan menurun 7. Berat badan turun 8. Rasa kurang enak badan (malaise) 9. Demam meriang lebih dari sebulan.
METODE Dalam pengembangan sistem pakar, akan digunakan pendekatan konvensional dengan metode Expert System Development Life Cycle (ESDLC), dengan tahapan:
HASIL DAN PEMBAHASAN Dari representasi pengetahuan dibuat dalam pohon keputusan: Selanjutnya dibuatkan sistem pakarnya dari interaksi user dan sistem digambarkan dalam ERD
Dengan Struktur sistemnya, sebagai berikut:
KESIMPULAN Dari sistem yang telah dibangun ini, dapat disimpulkan: 1. Dengan dibuatnya aplikasi sistem pakar deteksi dini pada penyakit TBC dapat membantu Dokter TBC dalam melakukan deteksi dini dan penyuluhan di lapangan semakin mudah dilakukan. 2. Melalui aplikasi ini, pengguna dapat melakukan konsultasi dengan sistem layaknya berkonsultasi dengan seorang pakar untuk mendeteksi gejala yang terjadi pada pengguna serta menemukan solusi atas permasalahan yang dihadapi.
SISTEM PAKAR DIAGNOSA DINI PENYAKIT KANDUNGAN MENGGUNAKAN METODE FUZZY AGUS IRAWAN DAN EDI FAIZAL. STMIK EL RAHMA YOGYAKARTA PRESENTED BY ELISA FITRIANI KHOIRUNNISA (1441177004281)
LATAR BELAKANG ◼
Dari dulu hingga sekarang begitu banyak masalah dalam kesehatan yang timbul pada wanita, khususnya pada bagian rahim. Rahim merupakan suatu organ muscular berbentuk seperti pir yang terletak diantara kandung kencing dan rektum yang berfungsi sebagai pengeluaran darah haid dengan ditandai adanya perubahan dan pelepasan dari endometrium.
◼
Pengetahuan tentang gejala dan jenis penyakit rahim itu sendiri teryata masih belum banyak diketahui oleh kaum wanita. Wanita yang mengalami gangguan atau kelainan pada area rahim ia akan mendatangi dokter spesialis untuk berkonsultasi, namun pada kenyataannya tidak semua orang dapat melakukannya. Hal ini dapat dikarenakan factor perekonomian yang kurang mencukupi ataupun karena tuntutan kesibukan, terdapat pula kelemahan seperti jam kerja praktek dokter yang terbatas.
◼
Permasalahan yang di tangani oleh seorang sistem pakar bukan hanya mengandalkan algoritma,namun terkadang juga permasalahan yang sulit di pahami. Permasalahan tersebut dapat di atasi oleh seorang pakar dengan pengetahuan dan pengalamannya.Oleh karena itu sistem pakar di bangun bukan berdasarkan algoritma tertentu, tetapi berdasarkan basis pengetahuan dan aturan.
DATA YANG DIGUNAKAN G : Gejala
G5 :Kembung, bengkak, adanya tekanan pada perut
B : Bobot nilai
G6 :Pendarahan pasca monopouse
N : Nilai No
G7 :Tidak napsu makan, Penurunan Berat badan secara progasi
Y : Nilai Yes
G8 :Sakit kepala dan sering lelah
P1 : Penyakit Kista Indung Telur (Ovarium Cyst)
G9 :Keputihan patogonis
P2 : Penyakit Kanker Indung Telur (Kanker Ovarium)
G10 :Sakit pada area kewanitaan
P3 : Penyakit Kanker leher rahim (Kanker Serviks)
G11 :Pendarahan vagina saat/setelah berhubungan intim
P4 : Penyakit Myoma Uteri
G12 :Bengkak pada kaki
P5 : Penyakit Kanker Rahim (Kanker Uterus = Carcinoma Uteri)
G13 :Pendarahan selama haid ataupun diluar masa haid
G1 :Kramperut bawah atau nyeri panggul
G14 :Rasa nyeri pada kandung kemih atau organ panggul lainya
G2 :Menstruasi tidak teratur abnormal,rapat secara periode
G15 :Pada bagian bawah perut rahim terasa kenyal
G3 :Sakit atau tekanan pada saat berkemih
G16 :Nyeri pada area pelvic
G4 :Rasa nyeri, keluarnya flek darah dari vagina
METODE ◼
DIAGNOSIS
Dasar therapy modern adalah diagnosis.Konsep diagnosis adalah penentuan jenis penyakit kemudian melakukan penyembuhan penyakit tersebut.Prosedur untuk mendapatkan informasi yang dibutuhkan guna menegakan sautu diagnosis sangat berhubungan dengan keberhasilan suatu diagnosis. Untuk sampai kepada diagnosis yang tepat diperlukan ilmu pengetahuan penyakit serta gejala-gejalanya, ketrampilan untuk melakukan cara menguji yang tepat dan seni menyatakan impresi, fakta dan pengalaman ke dalam pengertian.Sehubungan dengan banyak penyakit yang memepunyai gejala yang sama, seorang klinis harus teliti dalam menentukan ketepatan diagnosis. ◼
FUZZY
Fuzyy dalam bahasa inggris berarti tidak tentu, kabur atau tidak jelas. Logika fuzyy merupakan salah satu komponen pembetuk soft computing. Logika fuzzy pertama kali diperkenalkan oleh Prof. Lotfi A. Zaedah pada tahun 1965. Dalam banyak hal, logika fuzzy digunakan sebagai suatu cara untuk memetakan permasalahan dari input menuju output yang diharapkan.
◼ MAMDANI Metode mamdani sering juga dikenal dengan metode Max-Min. Metode ini diperkenalkan oleh EbrahimMamdani pada tahun 1975. Untuk mendapatkan output, diperlukan 4 tahapan : Pembentuk himpunan fuzzy, aplikasi fungsi implikasi (aturan), komposisi aturan, penegasan.
HASIL DAN PEMBAHASAN ◼
Tahap awal yang dilakukan adalah melakukan analisis terhadap data atau basis pengetahuan yang akan digunakan. Distribusi dan aturan gejala terhadap penyakit kandungan yang digunakan dalam penelitian ini disajikan pada Tabel 1 dan Tabel 2. Tabel 1. Distribusi gejala terhadap penyakit kandungan
TABEL 2 ATURAN GEJALA TERHADAP PENYAKIT
KESIMPULAN
◼
Dari hasil analisis, perancangan dan pembuatan aplikasi sistem pakar pendeteksi penyakit kanker kandungan, maka dapat ditarik kesimpulan bahwa dengan adanya aplikasi ini para wanita dapat mengetahui kemungkinan penyakit yang diderita berdasarkan gejala yang dirasakan. Gejala yang dapat dipilih ada 16 gejala, sedangkan penyakit kandungan yang kemungkinan terdeteksi ada 5 macam yaitu, kista ovarium, kanker ovarium, kanker serviks, myoma uteri dan kanker rahim. Selain itu user juga dapat mengetahui solusi yang harus diambil dengan penyakit yang terdeteksi. Metode yang digunakan untuk menganalisa dan menghitung menggunakan metode logica fuzzy. Aplikasi ini berbasis mobile yang dapat dijalankan pada smartphone dengan sistem operasi android.
ANALISIS DAN PERANCANGAN SISTEM PAKAR DIAGNOSA PENYAKIT MEMATIKAN PADA PEREMPUAN MENGGUNAKAN METODE BAYES (Studi Kasus : Asri Medical Center) Armadyah Amborowati, Nurul Hidayah SEMNASTEKNOMEDIA TAHUN 2016 MUHAMAD MUHYIDIN AMIN( 1441177004201)
LATAR BELAKANG TUJUAN :
DATA
METODE
PEMBAHASAN
REPRESENTASI PENGETAHUAN
METODE BEYES ● ●
● ●
●
KESIMPULAN
Sistem Pakar Pendeteksian Dini Kanker Mulut Rahim Berbasis Web Novita Mariana dan irfan Sungkaar Jurnal Teknologi Informasi DINAMIK Volume 20, No.1, Januari 2015: 42-50
Presented By Agus Wibawa 1441177004155
Latar Belakang
Karena banyaknya kematian wanita karena kanker rahim. ▶ Agar dapat membantu dokter dengan menggunakan Expert System. ▶
Tujuan Tujuan dari penelitian ini adalah sistem yang memanfaatkan sistem pakar untuk menangani masalah diagnosis penyakit dalam hal ini mendeteksi secara dini penyakit kanker mulut rahim dengan mesin inferensi forward chaining. Adapun hasil dari sistem informasi ini adalah memberikan informasi mengenai keterangan penyakit kanker mulut rahim dan solusi penanganan penyakit kanker tersebut sesuai dengan stadium.
Metode Sekuensial Linier mengusulkan sebuah pendekatan kepada perkembangan perangkat lunak yang sistematik dan sekuensial yang dimulai pada tingkat dan kemajuan sistem pada seluruh analisis, desain,kode, pengujian, dan pemeliharaan. Sekuensial linier untuk rekayasa perangkat lunak yang sering disebut juga dengan siklus kehidupan klasik atau model air terjun model (waterfall).
Metodologi pengembangan sistem pakar
Metode inferensi yang digunakan adalah Forward Chaining berarti menggunakan himpunan aturan kondisi-aksi. Dalam metode ini, data digunakan untuk menentukan aturan mana yang akan dijalankan, kemudian aturan tersebut dijalankan. Kaidah, suatu aturan yang digunakan sistem untuk menemukan suatu konklusi. Gejala yang dimasukkan user merupakan kondisi (IF) dan penyakit adalah merupakan konklusi (THEN). Sebagai contoh Kaidah 1 IF Keputihan berbau AND keputihan berwarna kuning AND keputihan berwarna hijau AND perdarahan dari jalan lahir AND perdarahan setelah berhubungan AND histopatologi karsinoma insitu (karsinoma intraepitel)
PERANCANGAN SISTEM PAKAR DIAGNOSA INFEKSI MENULAR SEKSUAL (IMS) BERBASIS WEB DENGAN METODE FORWARD DAN BACKWARD CHAINING PADA RSUP DR. SARDJITO YOGYAKARTA NUZLA ABIDIN KUSRINI SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER AMIKOM YOGYAKARTA 2013
PRESENTED BY YUDI RAHARJO 1441177004169
LATAR BELAKANG • Infeksi menular seksual (IMS) adalah infeksi yang menular lewat hubungan seksual, baik dengan pasangan yang sudah tertular, maupun mereka yang sering berganti-ganti pasangan. • Menurut WHO Information Fact Sheet No 110 August 2011, 499 juta infeksi baru dapat disembuhkan menular seksual (sifilis, gonore, klamidia dan trikomoniasis) terjadi setiap tahun di seluruh dunia pada orang dewasa berusia 15-49 tahun • Beberapa infeksi menular seksual terjadi tanpa gejala • Infeksi menular seksual merupakan penyebab utama infertilitas pada pria dan wanita • IMS dapat meningkatkan risiko HIV akuisisi tiga kali lipat atau lebih.
TUJUAN PENELITIAN • Dapat membantu masyarakat khususnya penderita IMS • Bagi mahasiswa kedokteran atau dokter muda dalam melakukan tindak diagnosis terhadap penyakit IMS.
DATA YANG DIGUNAKAN • Sumber pengetahuan sistem pakar ini terdiri dari Data penyakit Infeksi Menular Seksual Definisi Infeksi Menular Seksual
Wawancara dengan dokter RSUP dr. Sardjito
Gejala Infeksi Menular Seksual Penyebab Infeksi Menular Seksual Saran Infeksi Menular Seksual
Buku yang direferensikan oleh dokter
METODE YANG DITERAPKAN inferensi runut maju (forward chaining)
inferensi runut balik (backward chaining)
• Runut maju (forward chaining) digunakan untuk menentukan calon-calon jenis penyakit yang mungkin diderita oleh pasien berdasarkan keluhan yang dimasukkan oleh pasien • Setelah diketahui daftar jenis penyakit IMS yang menjadi calon konklusi, dilakukan runut balik (backward chaining) guna mengetahui gejala yang dialami oleh pasien dan dihitung menggunakan metode perhitungan probabilitas berbobot untuk menentukan tingkat kemungkinan jenis penyakit yang dialami pasien • Penentuan penyakit dilakukan dengan memilih diantara konklusi yang memiliki probabilitas tertinggi.
HASIL DAN PEMBAHASAN Tampilan awal ketika melakukan konsultasi
Hasil diagnosa diperoleh dari inputan keluhan dan gejala pada halaman sebelumnya, dimana hasil kemungkinan prosentasi penyakit yang terdeteksi menggunakan perhitungan probabilitas berbobot
Halaman ini untuk konsultasi keluhan yang dimiliki pasien pada penyakit Infeksi Menular Seksual (IMS)
Tampilan daftar penyakit kemudian pasien diminta untuk menginputkan gejala yang dirasakan dengan memberi tanda cheklist (√).
KESIMPULAN • Dengan adanya website ini mampu memberikan informasi kepada pemakai mengenai jenis penyakit infeksi menular seksual yang dideritanya berdasarkan keluhan dan gejala-gejala yang diberikan. • Web sistem pakar ini hanya membahas 4 faktor resiko, 3 keluhan, 65 gejala dan 12 jenis penyakit infeksi menular seksual.
Sistem Pakar dengan Inferensi Fuzzy Tsukamoto dalam Mendiagnosa Penyakit Saluran Reproduksi Manusia LATHIFAH DAN SRI WINIARTI JURNAL SARJANA TEKNIK INFORMATIKA, VOLUME 2 NOMOR 1, FEBRUARI 2014
MUKHAMMAD KHILMI ( 1441177004160 )
LATAR BELAKANG Minimnya pemahaman yang baik dan benar mengenai kesehatan reproduksi
Penderita penyakit kelamin meningkat mencapai 20 – 40 %
Kurangnya kesadaran masyarakat untuk melakukan pemerikasaan dini penyakit reproduksi Keterbatasan penyuluh kesehatan yang berkompeten dalam penyakit saluran reproduksi
Pelajar 20 % Segmentasi penderita penyakit kelamin
Biaya konsultasi Dokter yang relatif mahal
Remaja 35 %
Lain-lain 45%
TUJUAN Media untuk meningkatkan pengetahuan penyuluh kesehatan mengenai penyakit saluran reproduksi
Membuat sistem pakar untuk mendiagnosa penyakit saluran reproduksi
Memberi informasi mengenai solusi penanganan penyakit saluran reproduksi
Alternatif media konsultasi peyakit saluran reproduksi yang murah
DATA PENELITIAN Data gejala penyakit Data jenis penyakit Data dari pakar penyakit reproduksi : Dr.H.Irwan Taufiqur Rachman, Sp.OG.
Data penyebab penyakit Data pencegahan penyakit
METODE Backward Chaining Metode inferensi
Metode Tsukamoto
Metode defuzzifikasi rata-rata terpusat (Center Average Defuzzyfier)
HASIL PENELITIAN Tampilan hasil Diagnosa
Tampilan menu utama Aplikasi sistem pakar penyakit reproduksi Tampilan daftar gejala penyakit reproduksi
KESIMPULAN
• Sistem mampu mendiagnosa penyakit reproduksi manusia berdasarkan gejala yang dimasukkan • Sistem dapat dijadikan media informasi mengenai penyakit reproduksi manusia dan solusi untuk menanggulanginya • Informasi yang dihasilkan sistem dapat digunakan sebagai alternatif pengganti pakar dalam berkonsultasi dengan biaya murah dan mampu mendiagnosa 28 penyakit reproduksi