1/30/2012
Overview Pendahuluan
Pertemuan : I Dosen Pembina : Danang Junaedi Susetyo Bagas Baskoro Sriyani Violina
• • • • • • • • •
Deskripsi Tujuan Instruksional Kaitan Materi Urutan Bahasan Penilaian Grade Referensi Aturan Perkuliahan Intro Artificial Intelligence
Jurusan Teknik Informatika – Universitas Widyatama IF-UTAMA
Tujuan Instruksional & Kaitan Materi
Deskripsi
• Tujuan Instruksional
Mata kuliah ini mempelajari : – – – – – –
– tingkat pemahaman : tentang konsep-konsep dan teknik penyelesaian masalah dalam artificial intellegence dan – tingkat aplikasi : tentang memahami aplikasi dan diharapkan dapat
Konsep Artificial Intelligence Searching Reasoning Planning Learning Evolutionary Algorithm
IF-UTAMA
IF-UTAMA
2
membuat penyelesaian masalah dalam artificial intellegence.
• Kaitan Materi Terkait dengan Mata Kuliah Algoritma & Pemrograman II, Struktur Data dan Algoritma Lanjut serta Matematika Diskrit.
3
IF-UTAMA
4
1
1/30/2012
Urutan Bahasan - 1
Urutan Bahasan - 1
Pertemuan
Materi
Pertemuan
1
Pendahuluan (Susunan Materi, Aturan Perkuliahan, Aturan Penilaian, grade nilai, referensi); AI introduction
9 10
Learning (Decision Tree)
2
Searching (Blind Search)
11
Learning (Decision Tree) Review Paper
3
Searching (Heuristic Search)
12
Evolutionary Algorithm (Genetic Algorithm)
4
Searching (Heuristic Search) Review Paper
13
Evolutionary Algorithm (Genetic Algorithm)
5
Reasoning (Proposional Logic)
14
Evolutionary Algorithm (Neural Network)
6
Reasoning (First Order Logic)
15
Evolutionary Algorithm (Neural Network) Review Paper
7
Reasoning (Fuzzy Logic) Review Paper
16
UAS
8
UTS
IF-UTAMA
5
Penilaian & Grade • Penilaian Presentasi/ Quiz
10%
Tugas
15%
Praktikum
20%
IF-UTAMA
6
Referensi 1. 2. 3.
• Grade Grade A
Range Nilai ≥ 85
B
70 - 85 55 - 70 40 - 55 < 40
UTS
25%
UAS
30%
C D
Kehadiran
5% (>80%)
E
4. 5. 6. 7. 8. 9. 10. 11.
Atau tergantung performansi di kelas
Jumlah 105%
12.
13.
IF-UTAMA
IF-UTAMA
Materi Planning Review Paper
7
Suyanto.2007.“Artificial intelligence”,.Informatika Michael L. Littman.2001.“Introduction to Artificial Intelligence”.Princeton University Dhfmanongga, “Pengantar Intelegensia Buatan [online]” url:http://dhfmanongga.wordpress.com/2007/09/25/pengantarintelegensia-buatan/,Tanggal Akses : 2 Februari 2011 Ermitasari, “Intelegensi Buatan (AI)[online]”,url:http://blog.math.uny.ac.id/ermitasari/2009/12/16/intelegensi-buatan-ai/, Tanggal Akses : 2 Februari 2011 Rinaldi Munir, “Matematika Diskrit”,Informatika, Bandung,2001 -,”Artificial Intelligence[online]”, url:http://www.ittelkom.ac.id/library/index.php?view=article&catid=15%3Apemrosesansinyal&id=364%3Aartificial-intelligence&option=com_content&Itemid=15, Tanggal Akses: 2 Februari 2011 -,”Artificial Intelegence”, Institute for Artificial Intelligence and Computer Science Department UGA,Irfan Subakti.2006.“Artificial Intelligence [online]”,url:http://is.its-sby.edu/subjects/ai2006-1/Irfan%20%20Artificial%20Intelligence%20-%203.ppt, Tanggal Akses : 9 Februari 2011 Yeni Kustiyaningsih.2010. “Kecerdasan Buatan-pertemuan 3 MASALAH, RUANG KEADAAN DAN PENCARIAN [online]”.url: http://yenikustiyahningsih.files.wordpress.com/2010/10/pertemuan-3.ppt.Tanggal Akses: 9 Februari 2011 -.2008.”Artificial Intelligence [online]”.url: http://sitoba.itmaranatha.org/PIB%200809/Presentasi%20PPT/PIB0809-04.ppt. Tanggal Akses: 9 Februari 2011 Jaap Hofstede, Beasly, Bull, Martin.2000. Genetic Algorithms And other approaches for similar applications [online] url : http://web.cecs.pdx.edu/~mperkows/temp/0101.Genetic-Algorithm.ppt Tanggal akses: 21 Mei 2011 Assaf Zaritsky.-. Introduction to Genetic Algorithms[online] url : http://www.cs.bgu.ac.il/~sipper/courses/ecal051/assaf-ga.ppt Tanggal Akses:21 Mei 2011 Internet dan referensi-referensi lain yang terkait
IF-UTAMA
8
2
1/30/2012
Intro Artificial Intelligence
Intro Overview 8. 9. 10. 11. 12. 13. 14. 15. 16.
1. 2. 3. 4.
Intelligent Behaviour Why Study AI? What is AI? Acting Humanly: The Turing Test 5. Thinking Humanly: Cognitive Modelling 6. Acting Rationally 7. Thinking Rationally: Laws of Thought
Jurusan Teknik Informatika – Universitas Widyatama
IF-UTAMA
INTELLIGENT BEHAVIOR (or stuff people are good at) • • • • • • •
The Foundations of AI A Brief History of AI Task Domains of AI AI Technique Referensi Latihan Praktikum I Tugas Rumah I Tugas Besar Tugas Rutin
10
Why study AI?
Problem Solving Learning Planning Perception Language Processing Collecting Stuff Independent Action
Search engines Science
Medicine/ Diagnosis Labor Appliances What else?
IF-UTAMA
IF-UTAMA
11
IF-UTAMA
12
3
1/30/2012
What is AI? - 1
What is AI? - 1
• Intelligence: “ability to learn, understand and • •
think” (Oxford dictionary) AI is the study of how to make computers make things which at the moment people do better. Examples: Speech recognition, Smell, Face, Object, Intuition, Inferencing, Learning new skills, Decision making, Abstract thinking
The exciting new effort to make computers thinks … machine with minds, in the full and literal sense” (Haugeland 1985)
“The study of mental faculties through the use of computational models” (Charniak et al. 1985)
“The art of creating machines that perform functions that require intelligence when performed by people” (Kurzweil, 1990)
A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes” (Schalkol, 1990)
Systems that think like humans
Systems that think rationally
Systems that act like humans
Systems that act rationally CS 561, Lecture 1
IF-UTAMA
13
IF-UTAMA
What is AI? - 3
What is AI? - 4
•
• Schalkoff, 1990 : "A field of study that seeks to explain and emulate
•
Bellman, 1978 : "[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning ...“ Haugeland, 1985:“The exciting new effort to make computers think ... machines with minds, in the full and literal senses“ Charniak and McDermott, 1985 : The study of mental faculties, through the use of computational models"
intelligent behavior in terms of computationl processes“
• Rich and Knight, 1991 : "The study of how to make computers do things at which, at the moment, people are better"
• Partridge, 1991 : "A collection of algorithms that are computationally tractable, adequate approximations of intractabiliy specified problems“
• Rich dan Knight,1991 :”Artificial intelligence (AI) is the study of how to make computers do things which, at the moment, people do better”
• Jackson, 1986 : "The field of computer science that studies
• Winston, 1992 : "The study of the computations that make it possible to
how machines can be made to act intelligently"
•
14
perceive, reason, and act“
Kurzweil, 1990 : "The art of creating machines that perform functions that require intelligence when performed by people”
• Luger and Stubblefield, 1993 : "The branch of computer science that is concerned with the automation of intelligent behaviour“
• Ginsberge, 1993 : "The enterprise of constructing a physical symbol system that can reliably pass the Turing test“
IF-UTAMA
IF-UTAMA
15
IF-UTAMA
16
4
1/30/2012
What is AI? - 5
Acting Humanly: The Turing Test - 1
•
• Alan Turing (1912-1954) • “Computing Machinery and Intelligence”
• •
•
John MacCarthy(1950-an) : cabang dari ilmu komputer yang berhubungan dengan pemahaman atas kemampuan alami manusia, dengan tujuan mensimulasikan kemampuan ini dengan komputer Suatu mesin atau alat pintar (biasanya computer) yang dapat melakukan suatu tugas yang bilamana tugas tersebut dilakukan oleh manusia akan dibutuhkan suatu kepintaran untuk melakukannya Kecerdasan yang ditunjukkan oleh suatu entitas buatan. Sistem seperti ini umumnya dianggap komputer. Kecerdasan diciptakan dan dimasukkan ke dalam suatu mesin (komputer) agar dapat melakukan pekerjaan seperti yang dapat dilakukan manusia. Cabang sains komputer yang mempelajari tentang otomatisasi tingkah laku intelegen, sehingga kecerdasan buatan didasarkan pada teorika dan prinsip prinsip yang mencangkup struktur data atau algorithma yang biasa digunakan dalam representasi knowledge
(1950) Imitation Game
Human
Human Interrogator IF-UTAMA
IF-UTAMA
Acting Humanly: The Turing Test - 2
Thinking Humanly: Cognitive Modelling
• Predicted that by 2000, a machine might
• Not content to have a program correctly
• •
have a 30% chance of fooling a lay person for 5 minutes. Anticipated all major arguments against AI in following 50 years. Suggested major components of AI: knowledge, reasoning, language, understanding, learning.
IF-UTAMA
IF-UTAMA
17
AI System
• •
19
18
solving a problem. More concerned with comparing its reasoning steps to traces of human solving the same problem. Requires testable theories of the workings of the human mind: cognitive science.
IF-UTAMA
20
5
1/30/2012
Acting Rationally
Thinking Rationally: Laws of Thought
• Acting so as to achieve one’s goals, given
• Aristotle was one of the first to attempt to
one’s beliefs.
• Does not necessarily involve thinking. • Advantages:
•
– More general than the “laws of thought” –
approach. More amenable to scientific development than human-based approaches.
•
codify “right thinking”, i.e., irrefutable reasoning processes. Formal logic provides a precise notation and rules for representing and reasoning with all kinds of things in the world. Obstacles: − Informal knowledge representation. − Computational complexity and resources.
IF-UTAMA
21
The Foundations of AI - 1
The Foundations of AI - 2
• Philosophy (423 BC − present):
• Psychology (1879 − present):
− Logic, methods of reasoning.
− Adaptation.
− Mind as a physical system. − Foundations of learning, language, and rationality.
− Phenomena of perception and motor control. − Experimental techniques.
• Mathematics (c.800 − present):
22
• Linguistics (1957 − present):
− Formal representation and proof.
− Knowledge representation.
− Algorithms, computation, decidability, tractability. − Probability.
− Grammar.
IF-UTAMA
IF-UTAMA
IF-UTAMA
23
IF-UTAMA
24
6
1/30/2012
A Brief History of AI - 1
A Brief History of AI - 2
• The gestation of AI (1943 − 1956):
• A dose of reality (1966 − 1974):
− 1943: McCulloch & Pitts: Boolean circuit model of brain.
− AI discovered computational complexity.
− 1950: Turing’s “Computing Machinery and Intelligence”. − 1956: McCarthy’s name “Artificial Intelligence” adopted.
− Neural network research almost disappeared after Minsky & Papert’s book in 1969.
• Early enthusiasm, great expectations (1952 −
• Knowledge-based systems (1969 − 1979):
1969):
− 1969: DENDRAL by Buchanan et al..
− Early successful AI programs: Samuel’s checkers,
− 1976: MYCIN by Shortliffle. − 1979: PROSPECTOR by Duda et al..
Newell & Simon’s Logic Theorist, Gelernter’s Geometry Theorem Prover. − Robinson’s complete algorithm for logical reasoning. IF-UTAMA
25
IF-UTAMA
A Brief History of AI - 3
Task Domains of AI
• AI becomes an industry (1980 − 1988):
• Mundane Tasks: – Perception • Vision • Speech
− Expert systems industry booms.
– Natural Languages
− 1981: Japan’s 10-year Fifth Generation project.
• Understanding • Generation • Translation
• The return of NNs and novel AI (1986 −
– Common sense reasoning – Robot Control
present):
• Formal Tasks – Games : chess, checkers etc – Mathematics: Geometry, logic,Proving properties of programs
− Mid 80’s: Back-propagation learning algorithm reinvented. − Expert systems industry busts. − 1988: Resurgence of probability. − 1988: Novel AI (ALife, GAs, Soft Computing, …). − 1995: Agents everywhere. − 2003: Human-level AI back on the agenda. IF-UTAMA
IF-UTAMA
26
• Expert Tasks: – – – – 27
Engineering ( Design, Fault finding, Manufacturing planning) Scientific Analysis Medical Diagnosis Financial Analysis IF-UTAMA
28
7
1/30/2012
AI Technique
Referensi
• Intelligence requires Knowledge • Knowledge posesses less desirable properties such as:
1.
– – – –
2.
Voluminous Hard to characterize accurately Constantly changing Differs from data that can be used
buatan-ai/, Tanggal Akses : 2 Februari 2011
3. 4.
• AI technique is a method that exploits knowledge that should be represented in such a way that: – – – –
Knowledge captures generalization It can be understood by people who must provide it It can be easily modified to correct errors. It can be used in variety of situations
IF-UTAMA
5. 6.
29
Rinaldi Munir, “Matematika Diskrit”,Informatika, Bandung,2001 -,”Artificial Intelligence[online]”, url:http://www.ittelkom.ac.id/library/index.php?view=article&catid=15%3A pemrosesan-sinyal&id=364%3Aartificialintelligence&option=com_content&Itemid=15, Tanggal Akses: 2 Februari 2011 -,”Artificial Intelegence”, Institute for Artificial Intelligence and Computer Science Department UGA,Dan sumber-sumber lain yang terkait
IF-UTAMA
Latihan Praktikum I Kelompok
Tugas Rumah I Kelompok
1. Berdasarkan definisi-definisi AI yang telah dibahas di kelas, buat definisi AI versi anda dan jelaskan secara singkat alasannya! 2. Asumsi anda adalah developer aplikasi dan akan menawarkan aplikasi AI kepada client anda. Buat proposal pengajuan ide/gagasan aplikasi AI anda tersebut (format proposal mengikuti format proposal PKM-GT)! 3. Termasuk ke dalam domain Ai yang mana aplikasi yang anda ajukan tersebut? Jelaskan secara singkat!
1. Berdasarkan latihan praktikum I, Lengkapi persyaratan proposal PKM-GT sesuai ketentuan DIKTI 2. Pilih dosen pembimbing untuk proposal anda (tidak harus dosen pembina mata kuliah AI) 3. Proposal yang anda buat harus diajukan atau dikirim untuk mengikuti kompetisi PKM DIKTI periode 2012. 4. Salinan proposal yang telah dikirim diserahkan ke dosen pembina sebagai komponen penilaian praktikum I. Deadline: 25 Februari 2012
IF-UTAMA
IF-UTAMA
Dhfmanongga, “Pengantar Intelegensia Buatan [online]” url:http://dhfmanongga.wordpress.com/2007/09/25/pengantarintelegensia-buatan/,Tanggal Akses : 2 Februari 2011 Ermitasari, “Intelegensi Buatan (AI)[online]”,url:http://blog.math.uny.ac.id/ermitasari/2009/12/16/intelegensi-
31
IF-UTAMA
30
32
8
1/30/2012
Tugas Besar
Tugas Rutin Kelompok
• Sifat Individu • Bwt proposal tugas akhir dengan tema tentang Aritficial Intelligence • Deadline: 2 minggu sebelum UAS
• Diakhir masing masing topik bahasan (Searching, Reasoning, Planning, Learning dan Evolutionary Algorithm) anda harus mereview paper terkait dengan topik bahasan • Deadline: akan ditentukan pada saat perkuliahan
IF-UTAMA
IF-UTAMA
33
IF-UTAMA
34
9