Doelstellingen voor hernieuwbare warmte en koude in Nederland D6 van WP3 van het RES-H Policy project Werkdocument geschreven in het kader van het IEE-project "Policy development for improving RES-H/C penetration in European Member States (RES-H Policy)" Concept April 2010 Door: Luuk Beurskens Energieonderzoek Centrum Nederland, ECN
Met bijdragen van: Marijke Menkveld, Sander Lensink Energieonderzoek Centrum Nederland, ECN
Lukas Kranzl, Gustav Resch, Andreas Müller, Marcus Hummel Energy Economics Group Vienna University of Technology
Supported by
Het project "Policy development for improving RES-H/C penetration in European Member States (RES-H Policy)” is uitgevoerd met steun van de Europese Commissie via het IEE-programma (contractnr. IEE/07/692/SI2.499579). De verantwoordelijkheid voor de inhoud van dit rapport ligt volledig bij de auteurs. Het rapport geeft niet bij de mening van de Europese Gemeenschappen weer. De Europese Commissie is niet verantwoordelijk voor het gebruik dat gemaakt wordt van de informatie die in dit rapport beschreven staat. © Energieonderzoek Centrum Nederland (ECN), april 2010.
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Inhoud 1
Methodologie .................................................................................................................................... 11 1.1
2
3
4
Literatuuroverzicht.......................................................................................................................... 14 2.1
Warmte uit zonneenergie .......................................................................................... 14
2.2
Biomassa ................................................................................................................... 15
2.3
Warmtepompen ......................................................................................................... 16
2.4
Andere opties ............................................................................................................ 17
Top-down benadering ...................................................................................................................... 18 3.1
Het Green-X model ................................................................................................... 18
3.2
Green-X resultaten voor Nederland .......................................................................... 18 3.2.1 Scenario-aannames ..................................................................................... 18 3.2.2
Het aandeel van duurzame warmte in duurzame energie ........................... 18
3.2.3
Ontwikkeling van hernieuwbare warmte ....................................................... 20
Bottom-up benadering ..................................................................................................................... 23 4.1
Algemene aanpak en methodologie .......................................................................... 23
4.2
Potentiëlen voor gebouwde omgeving en industrie .................................................. 26 4.2.1 Zonnewarmte – gebouwen ........................................................................... 27
4.3 5
Bepaling van het potentieel ....................................................................................... 12
4.2.2
Biomassa – gebouwen ................................................................................. 28
4.2.3
Warmtepompen – gebouwen ....................................................................... 30
4.2.4
Potentieel voor Duurzame warmte voor de industrie ................................... 31
Samenvatting van gebouwde omgeving en industrie................................................ 34
Lessen uit literatuur, top-down en bottom-up benaderingen, nieuwe doelstelling..................... 36 Biomassa in houtkachels en blokverwarming ........................................................... 36 Bioketels en bio-WKK in landbouw en industrie........................................................ 36 Afvalverbrandingsinstallaties ..................................................................................... 37 Diepe geothermie ...................................................................................................... 37 Warmtepompen, zonneboilers en WKO in de gebouwde omgeving ........................ 38 Synthesis ................................................................................................................... 39
6
Vergelijking van literatuur, top-down en bottom-up benadering ............................................... 41
7
Discussie met stakeholders .............................................................................................................. 43 7.1
Deelnemers in het stakeholder proces ...................................................................... 43
7.2
Feedback van de deelnemers ................................................................................... 43
7.3
Conclusies ................................................................................................................. 45
8
Samenvatting: RES-H/C doelstellingen ......................................................................................... 47
9
Referenties ........................................................................................................................................ 51 3
RES-H Policy
Appendix A
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Het Green-X model ................................................................................................. 52
A.1
Algemeen .................................................................................................................. 52
A.2
Bepaling van potentiëlen voor duurzame energie in Green-X .................................. 54
A.3
Scenario beschrijving ................................................................................................ 55
A.4
Resultaten voor EU-27 .............................................................................................. 56
Appendix B
Technische parameters en resultatenvoor de gebouwde omgeving .................... 60
B.1
Zonthermische collectoren – gebouwen ................................................................... 60
B.2
Biomassa verwarming – gebouwen .......................................................................... 63
B.3
Warmtepompen – gebouwen .................................................................................... 66
Appendix C
Modelaanpak: het bepalen van het potentieel voor duurzame warmte
in de industrie 70 C.1
Algemene modelbenadering ..................................................................................... 70
C.2
Gedetailleerde modelbenadering .............................................................................. 70
C.3
Bronnen ..................................................................................................................... 83
Appendix D
Gebouwvoorraad voor Nederland ......................................................................... 84
D.1
Woningen (2006) ....................................................................................................... 84
D.2
Overheid, handel en dienstensector ......................................................................... 85
4
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
List of figures Figure 1
Methodology for deriving RES-H/C targets............................................................. 11
Figure 2
Methodology for the definition of potentials ............................................................ 13
Figure 3
RES generation until 2030 in a strengthened policy scenario in the Netherlands ............................................................................................................. 19
Figure 6
The share of RES on gross final energy demand until 2030 in a strengthened policy scenario in the Netherlands .................................................... 19
Figure 8
RES-H generation (technologies) until 2030 in a strengthened policy scenario in the Netherlands .................................................................................... 20
Figure 10
RES-H generation (sectors) until 2030 in a strengthened policy scenario in the Netherlands ................................................................................................... 21
Figure 11
New installed RES-H capacity in a strengthened policy scenario in the Netherlands ............................................................................................................. 22
Figure 12
Principle of a S-curve diffusion approach applied in the bottom-up analysis of the building sector ................................................................................. 24
Figure 13
Installed solar collector area in residential buildings in the selected bottom-up scenario ................................................................................................. 27
Figure 14
Solar thermal heat generation in residential buildings in the selected bottom-up scenario ................................................................................................. 27
Figure 15
Number of residential buildings with biomass heating systems in the selected bottom-up scenario ................................................................................... 28
Figure 16
Biomass fuel input for heating and hot water preparation in residential buildings in the selected bottom-up scenario ......................................................... 29
Figure 17
Biomass useful heat generation in residential buildings in the selected bottom-up scenario ................................................................................................. 29
Figure 18
Number of buildings with heat pumps in the selected bottom-up scenario ............ 30
Figure 19
Ambient heat utilization from heat pumps in the building sector in the selected bottom-up scenario ................................................................................... 30
Figure 20 Projection of final energy use [PJ] in industrial processes in the Netherlands .......... 32 Figure 21 Impact of applying series of constraints to the final energy demand in industrial processes in the Netherlands .................................................................. 34 Figure 26
Method of approach regarding dynamic cost-resource curves for RES (for the model Green-X) ................................................................................................ 54
Figure 27
RES generation until 2030 in a strengthened policy scenario in EU-27 countries ................................................................................................................. 57
5
RES-H Policy
Figure 28
Doelstellingen voor hernieuwbare warmte en koude in Nederland
The share of RES on gross final energy demand until 2030 in a strengthened policy scenario in EU-27 countries ................................................... 57
Figure 30
RES-H generation until 2030 in a strengthened policy scenario in EU-27 countries ................................................................................................................. 58
Figure 32
RES-H generation (sectors) until 2030 in a strengthened policy scenario in EU-27 countries .................................................................................................. 59
Figure 33
New installed RES-H capacity in a strengthened policy scenario in EU-27 countries ................................................................................................................. 59
Figure 34
Installed solar collector area in residential buildings in the selected bottom-up scenario ................................................................................................. 62
Figure 35
Solar thermal heat generation in residential buildings in the selected bottom-up scenario ................................................................................................. 62
Figure 36
Number of residential buildings with biomass heating systems in the selected bottom-up scenario ................................................................................... 65
Figure 37
Biomass fuel input for heating and hot water preparation in residential buildings in the selected bottom-up scenario ......................................................... 65
Figure 38
Biomass useful heat generation in residential buildings in the selected bottom-up scenario ................................................................................................. 66
Figure 39
Number of buildings with heat pumps in the selected bottom-up scenario ............ 68
Figure 40
Ambient heat utilization from heat pumps in the building sector in the selected bottom-up scenario ................................................................................... 69
6
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
List of tables Table 1 Projection of total final energy use and renewable heating technologies in industrial processes in the Netherlands (sources: ODYSSEE 2009, PRIMES 2007, RESolve-H/C) ................................................................................ 32 Table 2 Contribution [%] to the final energy input in industrial processes in the Netherlands ............................................................................................................. 33 Table 3 RES-H/C technologies providing final renewable heat [PJ] for industrial processes in the year 2020 in the Netherlands (source: RESolve-H/C) ................ 33 Table 4 Impact of applying series of constraints to the final energy demand in industrial processes in the Netherlands .................................................................. 34 Table 5: Synthesis of the bottom-up analysis in the industry and building sector (PJ) ............... 35 Table 6 Synthesis table of the potentials derived in this section. These values will be used as input for the modelling excercises in the economic analysis as reported in D13 of the RES-H Policy project. Not all sectors and technologies have been covered in the models applied, therefore the last two columns indicate which values have been considered. ................................... 40 Table 7 Synthesis table of target ranges presented in the preceding chapters. ........................ 41 Table 8 Summary overview of the target values per subsector, to be used in the further modelling approaches. ................................................................................ 49 Table 10:
Main input sources for scenario parameters .......................................................... 56
7
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Introductie Het RES-H Policy project Het project "Policy development for improving RES-H/C penetration in European Member States (RES-H Policy)" heeft als doel de regeringen van Europese lidstaten steun te bieden bij de voorbereiding van invoering van de Europese Richtlijnen voor Hernieuwbare energie ten aanzien van de aspecten die betrekking hebben op hernieuwbare warmte en koude (RES-H/C). Lidstaten krijgen steun bij het opstellen van nationale sectorspecifieke doelstellingen voor RES-H/C voor 2020 en 2030. Verder start het pro-ject participerende nationale beleidsprocessen waarin geselecteerde beleidsopties voor ondersteuning van RES-H/C kwalitatief en kwantitatief worden beoordeeld. Op basis van deze beoordeling stelt het project op maat gemaakte beleidsopties en –aanbevelingen op voor optimaal ontwerp van een steunkader voor een groter aandeel RES-H/C in nationale warmte- en koudemarkten. De volgende landen zijn in dit project aan bod gekomen: Oostenrijk, Griekenland, Litouwen, Nederland, Polen en het Verenigd Koninkrijk – landen die een variatie laten zien ten aanzien van de raamwerkcondities voor RES-H/C. Op Europees niveau beoordeelt dit project opties voor coördinatie en harmonisatie van nationale beleidsbenaderingen. Dit leidt tot gemeenschappelijke ontwerpcriteria voor een algemeen EUraamwerk voor RES-H/C-beleid en een overzicht van kosten en baten van verschillende harmonisatiestrategieën. Dit rapport The objective of this report is to provide target ranges for the main RES-H/C technologies in the Netherlands for the years 2020 and 2030. These target ranges will serve as a discussion point for the stakeholder consultation and a workshop where the results will be discussed. The main outcomes of this discussion process will also be documented in this report. The report is structured into the following parts: after a short introduction into the methodology of this report (Chapter 1) we will present selected results from previous, existing projects, studies and scenarios (Chapter 2). This comparison of different scenarios is supposed to provide a first insight into the ranges that have been discussed and suggested in former projects. Section 3 will present results of the simulation tool Green-X. The selected scenario is compatible with the EU 2020 targets for renewable energy and the RES directive. We are documenting the result for EU 2020 as well as for the Netherlands. In Chapter 4 we are developing a bottom-up methodology for RES-H/C technologies. Diffusion parameters are selected and the resulting bottom-up scenario is presented. Chapter 5 will report on learnings from literature findings, the top-down and bottom-up approaches and propose newly defined target for the modelling approach.) In Chapter 6 we will compare the results from the literature review, the top-down approach (Green-X) and the bottom-up methodology. Chapter 7 documents the outcome of the stakeholder consultation process and Chap-
9
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
ter 8 gives a synthesis resulting into final target ranges for RES-H/C technologies in the Netherlands.
10
RES-H Policy
1
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Methodologie
The methodology of setting up targets for the RES-H/C sector is described in Figure 1. Three pillars are providing the data basis and scientific ground for the target setting process (‘WP3 RES-H/C targets’): Existing scenarios and literature (Chapter 2), scenarios from a top-down approach (Chapter 3, application of the model Green-X) which is applied for all target countries in the same way and the bottom-up approach (Chapter 4). Based on these results a stakeholder consultation and discussion process has taken place in September 2009 (the Hague, the Netherlands). As a result of this consultation the targets have been modified. The adapted targets have been documented in Chapters 6 to 8. In the RES-H Policy project, work package 4 deals with policy options. In this work package we will carry out a more detailed economic modelling of RES-H/C policy measures and incentives. Also these results will be subject to stakeholder discussions. The analyses in work package 4 might lead to a revision of the target setting results.
Revised targets
Stakeholder policy process target setting
WP 3: RES-H/C targets
Figure 1
Methodology for deriving RES-H/C targets
11
Bottom-up approach
Top-down approach
Existing scenarios
Data basis and scientific ground for target setting
Policy workshops Economic modelling results Policy assessment
RES H/C targets
WP 4: Policy options
RES-H Policy
1.1
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Bepaling van het potentieel
The possible use of RES depends in particular on the available resources and the associated costs. In this context, the term "available resources" or RES potential has to be clarified. In literature potentials of various energy resources or technologies are intensively discussed. However, often no common terminology is applied. In order to contribute to the comprehension of the derived data, we start with an introduction on the applied terminology:
•
Theoretical potential: For deriving the theoretical potential general physical parameters have to be taken into account (e.g. based on the determination of the energy flow resulting from a certain energy resource within the investigated region). It represents the upper limit of what can be produced from a certain energy resource from a theoretical point-of-view – of course, based on current scientific knowledge;
•
Technical potential: If technical boundary conditions (i.e. efficiencies of conversion technologies, overall technical limitations as e.g. the available land area to install wind turbines as well as the availability of raw materials) are considered the technical potential can be derived. For most resources the technical potential must be considered in a dynamic context – e.g. with increased R&D conversion technologies might be improved and, hence, the technical potential would increase;
•
Realisable potential: The realisable potential represents the maximal achievable potential assuming that all existing barriers can be overcome and all driving forces are active. Thereby, general parameters as e.g. market growth rates, planning constraints are taken into account. It is important to mention that this potential term must be seen in a dynamic context – i.e. the realisable potential has to refer to a certain year;
•
Mid-term potential: The mid-term potential is equal to the realisable potential for the year 2020.
In this report we are trying to quantify the last two items, namely realisable potential and mid-term potential, broken down for all RES-H/C technologies. Figure 2 shows the general concept of the realisable mid-term potential up to 2020, the technical and the theoretical potential.
12
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Energy generation
Theoretical potential Technical potential
R&D
Barriers (non-economic) Maximal time-path for penetration (Realisable Potential)
Historical deployment
Mid-term potential
Additional realisable midmid-term potential (up to 2020)
Policy, Society
Economic Potential (without additional support) 2000
Figure 2
2005
2010
2015
2020
Achieved potential (2005)
Methodology for the definition of potentials
13
Long-term potential
RES-H Policy
2
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Literatuuroverzicht
In the year 2007 an important report was published on possibilities for renewable heating and cooling (RES-H/C) in the Netherlands by Harmsen, commissioned by the Dutch Ministry of Economic Affairs. The outcome of this analysis has been summarised below, and it has been extended with estimates of the authors of the current report. The above-mentioned report focuses on the mid-term potential i.e. the realisable potential for the year 2020. In the tables below data are provided for the years 2020 and 2030, whereas the latter is an expert-based extrapolation. This information is required for calibrating the shape of the s-curve (see Chapter 4). All data are provided in the form of ranges. For calibrating the upper value of the range can be used. An important effect of determining high penetrations of renewable heating and cooling technologies is exclusion through competition: not all options can be applied to the maximum, as they compete to supply the same heat demand. The cumulative effect of the renewable technologies should thus be corrected, by approximately 10 - 20%. Specifically in the case of large-scale SNG production from gasification this is not a problem, as the SNG can still be used for example in advanced condensing boilers.
2.1
Warmte uit zonneenergie
In a previous roadmap the solar thermal industry association Holland Solar assumed 10 km2 collector surface in 2030, 13 PJ/year (Holland Solar, 2007). This figure was updated recently, which has been processed below. Harmsen (2007) estimates for the year 2020 a final heat/cooling delivery of 7.4 PJ. For the services sector this is 2.6 PJ. The target range for solar thermal can be estimated as 7 - 25 PJ/year in 2030 (depending on upper value according to new Holland Solar projection). Arguments for this increase mainly lie in the strong uptake after 2020 as a result of increased requirements to new buildings (Bouwbesluit (building code), system size of 8 to 12 m2 including compact heat storage).
Solar thermal
2020 [PJ final energy]
2030 [PJ final energy]
Residential
5–8
5 – 16
Services
2–3
2–8
Industry
<1
<1
7 – 12
7 – 25
Total
14
RES-H Policy
2.2
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Biomassa
For the application of biomass in the Netherland it is very important to take also imports into account. This has been done implicitly in the overview below. The estimates are to a large extent based on current penetrations. For future penetrations, also the option of grid-connected biogas (substitute natural gas, SNG) will be considered.
Data from Dutch statistics (CBS, for the year 2007) Industry
Buildings
Other
Total
Biomass Grid (includes
Final heat PJ
large scale biomass)
(RE share only)
n.a.
n.a.
4.7
4.7
Biomass Non-Grid
Final heat PJ
2.1
5.2
3.3
10.6
Biogas Grid
Final heat PJ
0.0
0.0
0.0
0.0
Biogas Non-grid
Final heat PJ
0.2
0.0
0.8
0.9
Biomass total
Final heat PJ
2.3
5.2
8.8
16.3
Harmsen (2007) estimates that biomass CHP installations in the residential sector have a potential of 11.6 PJ by 2020. Individual biomass boilers are assumed to be constant over time (no growth). The subdivision into wood log / wood chips / wood pellets is difficult to make for the Dutch market, and has been done assuming simply a 1/3 share for each technology in the building sector, whereas wood log actually is not expected to increase, but chips and pellets are. Harmsen (2007) further estimates that biomass CHP installations in the services sector have a potential of 1.6 PJ by 2020. This technology is mentioned under ‘district heating’ although the CHP installation in most cases will only serve one or a few buildings. NotCHP options are not considered in the report. Biomass CHP installations in the industry sector have a potential of 14.3 PJ by 2020. For heat only the estimate is 32.1 PJ.
Biomass
2020 [PJ final energy]
2030 [PJ final energy]
6–9
6-9
Wood log
2–3
2-3
Wood chips
2–3
2-3
Wood pellets
2–3
2-3
Residential non-grid
15
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Residential district heating
10 – 12
10 - 18
0
0
Wood log
0
0
Wood chips
0
0
Wood pellets
0
0
1–2
2-5
Industry CHP
10 – 15
10 – 20
Industry heat only
30 – 33
30 - 40
Industry SNG gasification
10 – 20
200 - 300
Total
67 – 91
258 - 392
Services non-grid
Services district heating
2.3
Warmtepompen
The penetration of heat pumps is difficult to estimate. One high-penetration route might be that a combined condensing boiler plus aerothermal heat pump installation becomes the default next-generation condensing boiler, used as a standard option for all boiler replacements. Whereas a conventional condensing boiler can be regarded as a heat generating equipment with a conversion efficiency of 107%, the new installation might have an overall efficiency of up to 130%. This means that the primary energy required for generating X PJ heat will be reduced to 0.82 ⋅ X, with 0.18 ⋅ X recovered from ambient air. In this way, 18% of final energy demand can be provided in a renewable fashion. Harmsen (2007) estimates the potential in 2020 as 57.2 PJ final heat in the renovations of existing dwellings, an enormous potential, largely driven by the replacement rate of conventional (condensing) boilers. A second option, a heat pump for hot sanitary water generation is estimated by Harmsen (2007) as 1.7 PJ in 2020. For new housing projects, the renewable potential of heat pumps is estimated as 9.2 PJ. Application of underground thermal storage is estimated as 4.5 PJ for cooling demand. Also for the service sector data are provided in Harmsen (2007) see the table below. The data in the table below do not only show the renewable share, but the total final heat delivered (including conventional energy share). Heat pumps Residential renovations combined condensing boiler heat pump
2020 [PJ final energy] 51 – 60 50 – 58
16
2030 [PJ final energy] 52 - 74 50 - 70
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Hot water heat pump Residential new housing Heat pump Underground storage Services renovations combined condensing boiler heat pump Hot water heat pump Services new built Heat pump Underground storage Total
1–2 8 – 15 5 – 10 3 - 5 (cooling)
2-4 10 - 25 5 - 15 5 - 10 (cooling)
10 - 20 15 - 20 for cooling 0 60 – 73 35 – 41 25 - 32 (cooling) 144 – 188
15 - 30 20 - 30 for cooling 0 65 - 90 40 - 50 25 - 40 (cooling) 162 - 259
The above ranges have been used (slightly adapted in some cases) in the stakeholder consultation and have also been discussed at the workshop in the Hague. Since the report discussed here has addressed all technologies no further roadmaps, scenarios or assessments have been listed here. Harmsen (2007) is considered leading in the area of RES-H/C and has incorporated a lot of technology-specific knowledge.
2.4
Andere opties
The option of deep geothermal is not explicitly considered in the RES-H Policy project templates. The table below gives some ranges for the targets, based on Harmsen (2007). Deep geothermal Residential Services Industry Total
2020 [PJ final energy] 1–2 0 1–5 2–7
17
2030 [PJ final energy] 2-4 0 1 - 10 3 - 14
RES-H Policy
3 3.1
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Top-down benadering Het Green-X model
The model Green-X has been developed by the Energy Economics Group (EEG) at Vienna University of Technology in the research project “Green-X – Deriving optimal promotion strategies for increasing the share of RES-E in a dynamic European electricity market”. In the RES-H Policy project Green-X is applied to perform a detailed quantitative assessment of the future deployment of renewable energies on country level, sector level as well as technology level. The general modelling approach to describe renewable energy generation technologies in the model Green-X is to derive dynamic cost-resource curves for each generation and reduction option in the investigated region. More detail on the technical background of Green-X is presented in Annex A. This annex provides also simulation results for the EU-27 region.
3.2 3.2.1
Green-X resultaten voor Nederland Scenario-aannames
This section presents results for the so called strengthened (national) policies scenario derived by the Green-X model: in this scenario it is assumed that the European RES policy framework will be improved with respect to its efficiency and effectiveness. These changes will become effective by 2011 in order to meet the agreed target of 20% RES by 2020. Improvements refer to both the financial support conditions (if necessary) as well as to non-financial barriers. See Annex A for more detail on the scenario assumptions. 3.2.2
Het aandeel van duurzame warmte in duurzame energie
As shown in Figure 3 a steep increase in their RES generation for the Netherlands. It is expected that the RES generation will rise from 21.3 TWh (76.7 PJ) in 2006 to above 75 TWh (270 PJ) in 2020 and further to more than 100 TWh (more than 360 PJ) until 2030. RES electricity is the most important sector in the overall RES generation in the Netherlands. It shows a strong increase until 2020 then the growth slows down. For RES-transport a constant growth is expected.
18
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
RES generation (TWh)
120 100 80 60 40 20
RES-electricity (& CHP)
Figure 3
RES-transport
2030
2028
2026
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
0
RES-heat
RES generation until 2030 in a strengthened policy scenario in the Netherlands
45% 40% 35%
electricity
30%
heat
25%
transport
20%
total
15% 10% 5% 2030
2028
2026
2024
2022
2020
2018
2016
2014
2012
2010
2008
0% 2006
RES share on gross final energy demand
Figure 4 shows that the Netherlands will reach a total RES share on gross final energy demand of 12% until 2020 and of 16% by 2030. Noticeable is a strong growth in the electricity sector, which is cut off abruptly from 2022, as a 40% RES-E in total electricity is a reasonable high penetration. The renewable heat and transport sectors show lower rates of increase than the total RES-share on gross final energy demand. The share of renewable energies in the heat sector will grow to about 11% by 2030.
final energy demand - medium
Figure 4
The share of RES on gross final energy demand until 2030 in a strengthened policy scenario in the Netherlands
19
RES-H Policy
3.2.3
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Ontwikkeling van hernieuwbare warmte
In Figure 5 the heat generation by RES in the Netherlands is shown for each technology. It can be observed that heat pumps show a significant increase until 2030, when they become the most important contribution to the overall portfolio. Until 2020 the RES-H production through heat pumps will exceed 6 TWh (21.6 PJ) and thereafter the contribution will further rise. Solid biomass (non grid) and biogas heat generation are close to their saturation point in 2010 already. In contrast grid connected solid biomass and biogenic waste (biowaste) will grow steadily until 2020. Geothermal heat (grid) shows only a small potential and remains below 0.1 TWh (0.36 PJ) annual output until 2030. Solar thermal heating and hot water shows a steady growth until 2022. Afterwards it starts to saturate. Solar thermal is projected to have an important contribution at approximately 5 TWh (18.0 PJ) by 2020 and remaining constant up to 2030.
40 RES-H generation (TWh)
35 30 25 20 15 10 5
Biogas (grid) Biowaste (grid) Solid biomass (non-grid) Heat pumps
Figure 5
2030
2028
2026
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
0
Solid biomass (grid) Geothermal heat (grid) Solar thermal heating and hot water
RES-H generation (technologies) until 2030 in a strengthened policy scenario in the Netherlands
Figure 6 shows an increase in non-grid connected RES-H technologies. According to Green-X currently there are 4.6 TWh (16.6 PJ) produced in RES-H (non grid). This amount is projected to triple until 2020 and grow further and reach about 24 TWh (about 86.4 PJ) annual output by 2030. Until 2020 district heating & large scale RES-H technologies will reach about 2 TWh (about 7.2 PJ) annual output. Renewable energy in combined heat and power (RES-H CHP) shows an increase of its heat production form currently about 3 TWh (about 10.8 PJ) to 6.4 TWh (23.0 PJ) by 2020.
20
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
From Figure 7 it can be seen that in thermal capacity terms solar thermal and heat pumps are expected to be dominating technologies. For solar thermal this is an indication that the average load factor of the technology is relatively small. Moreover, it is confirmed from this figure that according to Green-X the additional solar thermal capacity is expected to remain largely unchanged.
RES-H generation (TWh)
40 35 30 25 20 15 10 5 2030
2027
2024
2021
2018
2015
2012
2009
2006
0
RES-H non-grid RES-H district heating & large scale RES-H CHP
new installed annual RES-H capacity (MW)
Figure 6
RES-H generation (sectors) until 2030 in a strengthened policy scenario in the Netherlands
2.500 Heat pumps Solar thermal heating and hot water
2.000
Solid biomass (non-grid) 1.500 Geothermal heat (grid) 1.000
Biowaste (grid) Solid biomass (grid)
500 Biogas (grid) 0 2010
2015
2020
2025
21
2030
RES-H Policy
Figure 7
Doelstellingen voor hernieuwbare warmte en koude in Nederland
New installed RES-H capacity in a strengthened policy scenario in the Netherlands
22
RES-H Policy
4
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Bottom-up benadering
This section of the report explores the bottom-up based scenarios for three RES-H/C technologies: solar thermal, biomass and ambient heat using heat pumps. The analysis is carried out both for the building sector (residential and non-residential buildings) and the industry sector (process heat). In section 4.1 the general approach and methodology for the analysis is described. In section 4.2 the resulting potentials are being presented, and section 4.3 summarises the results. The underlying details of the analysis have been presented in Appendix B. Appendix D provides the building data.
4.1
Algemene aanpak en methodologie
We use the term “bottom-up” for this approach because we use disaggregated data of the building stock, available roof area, currently existing heating systems etc. Therefore, this approach can provide a detailed data basis supporting the technology specific target setting process. The objective of carrying out this bottom-up analysis is to understand the bottom-up “meaning” and relevance of a certain target more clearly. For example, this analysis helps to identify the share of roof area that has to be equipped with solar collectors or the share of single dwellings with wood pellets boilers. Thus, it is a tool for increasing the transparency of the target setting and can help us to assess how ambitious a certain target is. We want to state clearly that it is not an objective of this task to provide a prognosis of what will happen. Also, economic restrictions are not explicitly taken into account1 (also this is implicitly the case by setting certain values for diffusion restrictions). Rather, the approach helps us to show the relation between certain diffusion parameters and the related energy output. Available biomass potentials are an important restriction for the development of this sector. In particular, the comparison of regionally available biomass potentials with the demand can give us a hint to what extent biomass imports might be necessary. For this purpose, the following section compares the biomass demand with the available biomass potentials for heating. Biomass potentials for heating were derived from EEA 2007 subtracting the biomass demand for electricity generation and transport. This has been done for the different biomass fractions. Thus, the different characteristics of e.g. ligno-cellulose biomass vs. plant oil were taken into account. The potential not iused in the building sector was considered ‘available’ for industry.
1
This will be done in the model based analysis of WP4 of the project. This will include modelling the impact of various economic incentives, economic side conditions like energy price settings etc.
23
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Gebouwde omgeving In the following, we give a rough overview on the general methodological steps that are applied for the building sector. 1. Firstly we assume a certain maximum technology penetration. The definition of the technology penetration is related to a time span (see next step): 98% of the maximum technology penetration will be achieved after a certain diffusion time (e.g. x% of buildings equipped with a certain biomass heating system or solar collectors). 2. As the second step we assume a certain diffusion time constant. The setting of this time constant has to be seen in relation to the maximum technology penetration defined in step 1. From typical historical diffusion processes we know that in the building sector usually time constants between about 30 and 60 years can be observed. 3. With steps one and two we have defined key parameters for the possible future diffusion of this technology. However, of course the actual development also depends on the maturity of a market and thus the current penetration of a technology has to be documented and taken into account in the third step. 4. With these three parameters defined in the first three steps we determine the diffusion of a technology by a standard S-Curve approach (see figure below). The concrete values of these diffusion parameters are documented below for the different technologies. 90
50 40 30 20
Figure 8
2027
2025
2023
2021
2019
2013
2011
2009
2007
0
2017
Diffusion time
2029
60
10
Current penetration
Maximum technology penetration
70
2015
solar collector area (Mm²)
80
Principle of a S-curve diffusion approach applied in the bottom-up analysis of the building sector
5. Besides this standard approach determining the scenario of the technology diffusion we assume a certain rate of thermal renovation within the building stock 24
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
(different construction periods are treated separately). This is in particular essential for the amount of energy that is provided by a certain technology. With increasing thermal building efficiency an increasing number of heating systems can lead to a stable or even declining heat output. In our results presented below this is to some extent relevant for the biomass heating results. 6. As a last step, we are carrying out additional checks regarding basic consistency e.g. with current annual installations and total amount of RES-H in different building classes. This methodology is applied both on residential and non-residential buildings. We are distinguishing the three main technology sectors: solar thermal collectors, biomass, and heat pumps. The specific methodological approaches, assumptions and results are documented in the chapters below. In Annex B parameters and results for solar thermal collectors, biomass and heat pumps respectively in the building sector are presented. The results of the analysis are displayed in section 0.
Industrie Also for the industry sector a bottom-up approach is applied. The same restrictions apply as indicated for the building sector: the outcomes primarily serve as a base for discussion. Characteristics of industrial processes are decomposed into energy use in different industrial subsectors, distinguishing between temperature level and energy carriers currently used. Three separate methodological steps are applied for the industry sector: 1. Based on several data sources, non-electric and non-feedstock energy use in industrial processes is decomposed into energy use per energy carrier, per temperature level and per industry subsector and extrapolated to the year 2030. 2. For the base year 2005, each of the abovementioned decomposed energy uses are assigned energy conversion technologies, based on statistical information. 3. Applying a series of substitution and exclusion rules, a set of constraints is applied which indicates which share of the industrial energy use in the country at stake is available for RES-H/C: the potential or target (depending on the setting of the single parameters). The first two steps help to define the future energy use and the technologies applied, and the third step uses the detailed and decomposed picture to narrow down all possible applications of renewable energies in processes. The constraints applied are discussed in detail in Annex C.
25
RES-H Policy
4.2
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Potentiëlen voor gebouwde omgeving en industrie
Annex B reported in detail on the parameters used for calculating the realisable potentials for the building sector. The results from this exercise have are being shown in terms of number of systems installed and energy generation. Section 4.2.1 reports on solar thermal, section 4.2.2 on biomass and section 4.2.3 on heat pumps in buildings. Note, that in this stage of the modelling deep geothermal has not been considered in the residential sector (but it will be later in the RES-H Policy process). Section 4.2.4 reports on the modelling outcomes for industry.
26
RES-H Policy
4.2.1
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Zonnewarmte – gebouwen
Solar thermal collectors are allowed to grow fast, to 20.9 PJ by 2030. This analysis takes into account all opportunities for solarthermal, both in existing buildings and in newly built houses, both in the residential and in the service sector. The results are provided both in terms of solar colleactor area as for solar thermal energy.
solar collector area (Mm²)
20 18 16 14 12 10 8 6 4 2
Figure 9
2028
2025
2022
2019
2016
2013
2010
2007
0
Installed solar collector area in residential buildings in the selected bottomup scenario
solar thermal energy (TJ)
25.000 20.000 15.000 10.000 5.000
2028
2025
2022
2019
2016
2013
2010
2007
0
Figure 10 Solar thermal heat generation in residential buildings in the selected bottom-up scenario
27
RES-H Policy
4.2.2
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Biomassa – gebouwen
Biomass energy can be split into different technologies. To begin, typical for the Netherlands is that wood log is expected to remain unchanged. Specific conditions in the Netherlands are underlying this output (see also Chapter 5). For wood chips the situation is equal, but wood pellets might see an increase in relative importance towards 2030. The most important contribution is possible in biomass district heating.
Number of buildings with biomass heating system
400.000 350.000 300.000
Biomass district heating
250.000
Wood Pellets
200.000 Wood chips 150.000 Wood log 100.000 50.000
2029
2027
2025
2023
2021
2019
2017
2015
2013
2011
2009
2007
0
Figure 11 Number of residential buildings with biomass heating systems in the selected bottom-up scenario
28
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Biomass primary energy for heating in the building sector (TJ)
50.000 45.000 40.000
Biomass district heating
35.000
Wood Pellets
30.000 Wood chips
25.000 20.000
Wood log
15.000
Biomass potential for heat production
10.000 5.000 2029
2027
2025
2023
2021
2019
2017
2015
2013
2011
2009
2007
0
Figure 12 Biomass fuel input for heating and hot water preparation in residential buildings in the selected bottom-up scenario
35.000
Biomass usefule heat in the building sector (TJ)
30.000 25.000 Biomass district heating Wood Pellets Wood chips
20.000 15.000
Wood log 10.000 5.000
2028
2025
2022
2019
2016
2013
2010
2007
0
Figure 13 Biomass useful heat generation in residential buildings in the selected bottom-up scenario
29
RES-H Policy
4.2.3
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Warmtepompen – gebouwen
In line with the previous Chapter, the possible contribution from ambient heat through the use of heat pumps might increase enourmously. The pace of this technology’s success is given mainly by the replacement rate of conventional gas boilers and new-tobuild dwellings and offices.
number of buildings with heat pumps
1.800.000 1.600.000 1.400.000 1.200.000 1.000.000 800.000 600.000 400.000 200.000 2029
2027
2025
2023
2021
2019
2017
2015
2013
2011
2009
2007
0
Figure 14 Number of buildings with heat pumps in the selected bottom-up scenario
60.000
Ambient energy (TJ)
50.000 40.000 30.000 20.000 10.000
2029
2027
2025
2023
2021
2019
2017
2015
2013
2011
2009
2007
0
Figure 15 Ambient heat utilization from heat pumps in the building sector in the selected bottom-up scenario
30
RES-H Policy
4.2.4
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Potentieel voor Duurzame warmte voor de industrie
Annex C presents in detail the modelling approach to determine the potential of RES-H in industry. This section reports on the outcomes of this analysis. From Table 1 it can be concluded that the most important contribution possibly can be expe ted from biomass: with an energy input of 38.8 PJ by 2020 and 65.6 PJ by 2030 its share in final energy use of the Dutch industry could rise to 8.4% and 13.7% in those years respectively (see Table 2). Deep geothermal could contribute with 5 PJ in 2020 and 10 PJ in 2030. The projected value for 2010 is too ambitious, especially considering the fact that in 2007 there has been no deep geothermal in place at all. This projection might be adjusted later in the process (Chapter 5). The least important contribution is expected from solar thermal, with almost 1 PJ by 2030 (0.8 PJ). The data for three target years have been discussed with the Dutch Industry association Holland Solar. Note that the table makes the differences for input versus output explicit, which is mainly relevant for biomass. The biomass input can be used in three conversion processes, namely to generate heat (the main purpose of this industry modelling exercise) , electricity (an important contributor to energy supply, but in this section figuring as a byproduct) and bio-SNG (biomass-based substitute natural gas). Note, that the energy losses within the conversion steps are significant: this can be explained by the mix of processes that for which aggregate inputs and aggregate outputs are being reported here: also, two different fuel qualities have been modelled: wood (high quality fuel) and waste (low quality fuel). Table 4 and Figure 17 present in numerical and graphical form the outcomes of the modelling approach for industry in the Netherlands. It becomes clear that for the use of biomass in industry the demand constraint is not the limiting factor, but rather the resources constraint. However, for deep geothermal and solar thermal the limiting factor is the equipment constraint: the remaining solar thermal potential is reduces heavily, to 0.04% of total energy use in industry. The same applies to deep geothermal, but the effect here is less dramatic due to its technology properties (high energy yield per technology, the more constant supply and the temperature level which is generally higher than solar thermal. The values from this analysis will be compared in Chapter 6.
31
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Table 1 Projection of total final energy use and renewable heating technologies in industrial processes in the Netherlands (sources: ODYSSEE 2009, PRIMES 2007, RESolve-H/C)
Conventional energy use Solarthermal Geothermal Biomass of which waste of which wood Biomass Biomass Biomass Biomass All renewables
600
Unit PJ PJ PJ PJ (input) PJ (input) PJ (input) PJ (heat output) PJ (electricity output) PJ (bio-SNG output) PJ (total output) PJ
2005 403 0.0 0.0 0.6
2.0
2010 429 0.1 2.5 16.3 5.1 11.2 4.4 1.9 0.9 7.2 7.0
2020 464 0.2 5.0 38.8 15.2 23.6 9.8 4.5 2.0 16.3 15.0
2030 479 0.8 10.0 65.6 12.6 53.0 19.4 8.0 3.7 31.1 30.2
Projection of final energy use [PJ] in industrial processes in the Netherlands
500
400
300
200
100
0
2005
2010 Conventional energy use
2020 Solarthermal
Geothermal
2030 Biomass
Figure 16 Projection of final energy use [PJ] in industrial processes in the Netherlands
32
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Table 2 Contribution [%] to the final energy input in industrial processes in the Netherlands 2005
2010
2020
2030
Solarthermal
0.0
0.0
0.0
0.2
Geothermal
0.0
0.6
1.1
2.1
Biomass
0.2
3.8
8.4
13.7
Table 3 RES-H/C technologies providing final renewable heat [PJ] for industrial processes in the year 2020 in the Netherlands (source: RESolve-H/C) Technology
Input
Heat
Electricity
Bio-SNG
Combined heat and power
Waste
0.6
0.3
0.0
Combined heat and power
Wood
3.5
3.0
0.0
Direct firing
Wood
0.5
0.0
0.0
Electricity from digestion
Waste
0.1
1.2
0.0
Heat only
Waste
1.2
0.0
0.0
Heat only
Wood
3.9
0.0
0.0
Bio-SNG from digestion
Waste
0.0
0.0
0.2
Bio-SNG from gasification
Waste
0.0
0.0
0.3
Bio-SNG from gasification
Wood
0.0
0.0
1.4
Direct geothermal heat use
Geothermal
5.0
0.0
0.0
Direct solar thermal heat use
SolarThermal
0.2
0.0
0.0
Subtotal biomass
Waste
1.9
1.4
0.6
Subtotal biomass
Wood
7.9
3.0
1.4
Total biomass
Wood and Waste
9.8
4.5
2.0
(weighted)
Wood and Waste
25%
12%
5%
Total all technologies
All
15.0
4.5
2.0
Overall
system
conversion
for
biomass
efficiency
33
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Table 4 Impact of applying series of constraints to the final energy demand in industrial processes in the Netherlands RES technology
After demand side constraint
After competition constraint
15%
0.04%
0.04%
30%
30%
1.1%
1.1%
228%
8%
8%
8%
273%
53%
9%
9%
Geothermal
All resources
After equipment constraint
15%
Solar thermal
Biomass
After resources constraint
300%
250%
200%
150%
100%
50%
0% After demand side constraint
Solarthermal
After resources constraint
After equipment constraint
Geothermal
After competition constraint
Biomass
Figure 17 Impact of applying series of constraints to the final energy demand in industrial processes in the Netherlands
4.3
Samenvatting van gebouwde omgeving en industrie
The previous chapters presented results of the bottom-up analysis for the building and the industry sector for the technologies biomass, ambient energy and solar thermal energy. The following tables show the contribution of each of these sectors for the different technologies as well as the total sum of RES-H final energy.
34
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Table 5: Synthesis of the bottom-up analysis in the industry and building sector (PJ) INDUSTRY
PJ Type
2010
2020
BUILDINGS 2030
2010
2020
TOTAL 2030
2010
2020
2030
Biomass
4.4
9.8
19.4
12.4
21.4
33.1
16.8
31.2
52.5
Ambient energy
0.0
0.0
0.0
6.0
28.0
55.0
6.0
28.0
55.0
Solarthermal
0.1
0.2
0.8
1.6
9.2
20.9
1.7
9.4
21.7
Deep geothermal
2.5
5.0
10.0
n.a.
n.a.
n.a.
2.5
5.0
10.0
Total
7.0
15.0
30.2
20.1
58.5
109.0
27.1
73.5
139.2
It can be observed from the above table that in all sectors and for all technologies high growth rates might be realised. For biomass, industry is a relatively important market from the viewpoint of the potentials, compared to the building sector (19.4 PJ out of a total of 52.5 PJ by 2030). For the other technologies industry plays a minor role (solar and geothermal) or is even absent (ambient heat). Still, the main contribution for renewable heating options is expected in the building sector, where heat pumps might contribute most to the generation of renewable heat (up to 55 PJ in 2030). Solar thermal and biomass contribute importantly to the potential in thebuilding sector. Deep geothermal has not been assessed in the buildings sector.
35
RES-H Policy
5
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Lessen uit literatuur, top-down en bottom-up benaderingen, nieuwe doelstelling
Chapters 2 to 4 provide three different approaches for assessing the renewable heating and cooling potential. From the synthesis section in this report it becomes clear that ranges may vary considerably for various technologies. In this section all suggestions from the previous analyses have been taken note of, and on a per-technology basis realisable potentials have been derived, considering thereby existing policy, proposed policy and detailed knowledge of various energy demand sectors. The potentials have been defined additional to the renewable energy projection as presented in the ECN Reference projections (Daniëls, Kruitwagen et al., April 2010) in which the European target for the Netherlands (of 14% of gross final energy consumption) is being met. The sections below estimate the impact of additional policy measures, resulting in an additional realisable potential. These estimates have been presented and discussed at the RES-H Policy workshop of May 2010 in Amsterdam and have been documented in (Daniëls, Elzenga et al, April 2010). The synthesis table at the end of this section summarises all data, including the projections according to the reference projections.
Biomassa in houtkachels en blokverwarming Biomassa in houtkachels heeft betrekking op kachels bij individuele huishoudens. Openhaarden hebben een slecht rendement, maar er zijn ook pelletkachels met goed rendement op de markt. Die pelletkachels zijn vanwege de opslag van houtvoorraad alleen toepasbaar in woningen met voldoende ruimte/perceeloppervlak (vrijstaande woningen, boerderijen). Een nadeel van deze optie is de verhoogde emissie van NOx en van fijn stof. Voor zover de beschikbaarheid van duurzame biomassa beperkt is, ligt het meer in de rede om deze biomassa elders met hogere meerwaarde in te zetten. Biomassa kan ook ingezet worden voor collectieve ketels in blokverwarming. De gasvraag van ketels in blokverwarming in de woningbouw is in de Referentieraming ca. 10 PJ, waarvan 7,5 PJ in de bouwjaarklasse 1960/1990 met grote galerijflats. Ook hier geldt dat ruimte nodig is voor de opslag van pellets, terwijl niet altijd voldoende ruimte beschikbaar is. Niet alle gasvraag kan dus door biomassa worden vervangen. Het aanvullende potentieel bedraagt daarom met ca. 2 PJ een deel van de totale gasvraag. Bioketels en bio-WKK in landbouw en industrie Er is in de industrie een aanzienlijke warmtevraag die eventueel ingevuld kan worden met bio-ketels of bio-WKK. De mogelijke reststromen zijn echter vaak klein en zeer divers. Bij de geschiktste stromen bestaat kans op concurrentie met andere toepassingen. Reststromen uit de voedings- en genotmiddelenindustrie worden al voor een zeer groot deel ingezet als veevoer, voor vergisting of biobrandstoffen. Er zijn ook reststromen uit papierverwerking, bijproducten uit de productie van bio-ethanol en biodiesel.
36
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Ook voor resthout bestaan veel toepassingen, zoals verbranding, pelletiseren en materiaalgebruik in spaanplaat of strooisel.
De groei- en vervangingsmarkt voor ketels is ca. 13 PJ per jaar. Hiervan kan 20% worden benut voor verduurzaming. In 2020 kan het dan om een groei tot ongeveer 21 PJ warmtelevering met bio-ketels gaan (23 PJ vermeden primair). De vervangingsmarkt voor WKK in de industrie is ongeveer 5 PJ per jaar, waarvan 20% potentieel voor bioWKK. De markt voor bio-WKK in de industrie in 2020 is dan ongeveer 8 PJ warmte (9 PJ primair). Dit potentieel voor bio-WKK en bio-ketels kan deels worden ingevuld met nationale biomassastromen. Met geïmporteerde biomassa is er meer mogelijk, en vanwege de beperkte schaalgrootte van de installaties heeft bio-olie dan grote technische voordelen. Het is dan de vraag is of dat binnen de duurzaamheidscriteria mogelijk is. In de glastuinbouw is het WKK-vermogen al tot meer dan 3000 MW e gegroeid. De vervangingsmarkt voor bio-WKK in de glastuinbouw is ongeveer 120 MW e per jaar, waarvan 20% kan overstappen op bio-WKK. 200 MWe in 2020 is goed voor ongeveer 4 PJ warmtelevering (4,4 PJ primair). De vervangingsmarkt voor ketels bij energieextensieve bedrijven is ongeveer 1 PJ ketelwarmte per jaar. Als 25% vervangen wordt door ketels op biomassa gaat het om ongeveer 2 PJ warmte (2,2 PJ vermeden primair). Het totaal voor bio-ketels en bio-WKK in de landbouw en industrie is dan 35 PJ warmte (39 PJ primair). Afvalverbrandingsinstallaties Het elektrisch vermogen van AVI's neemt in de Referentieraming toe, daarbij zijn inschattingen van de afvalsector aangehouden. De warmtekrachtverhouding is constant verondersteld. Het potentieel voor extra warmtenbenutting bij AVI’s is in het Ecofys 2007 rapport geraamd op ca. 11 PJ. Dat is uitgaande van de toen geplande uitbreidingscapaciteit en uitgaande van restwarmtebenutting bij nieuwe AVI’s en werd toen ook al als een maximum gepresenteerd. Diepe geothermie In de Referentieraming is uitgegaan van continuering van de garantieregeling en subsidie uit de MEI-regeling, die diepe geothermie aantrekkelijk maakt voor de glastuinbouw. In de Referentieraming gaat het om ca. 100 projecten tot en met 2020. De bandbreedte voor geothermie in de raming is 4 tot 11 PJ. De boorcapaciteit zal zeer waarschijnlijk een beperkende factor zijn die er voor zorgt dat de onderkant van de bandbreedte waarschijnlijker is dan de bovenkant van de bandbreedte. Geothermie zou ook een rol kunnen spelen bij de verduurzaming van bestaande stadsverwarming. Dat is wel afhankelijk van de situatie - soms ligt benutting van industriële restwarmte meer voor de hand. Verder speelt bij stadsverwarming vanuit zogenaamde warmteplaneenheden dat daar langetermijncontracten bestaan voor de afna37
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
me van restwarmte. De vraag is welke aftapcentrales of stadsverwarmingseenheden voor 2020 aan vervanging toe zijn. In de veronderstelling is hier niet vanuit gegaan, het is ook erg eenvoudig om een bestaande centrale gedeeltelijk te renoveren.
Een geothermiebron levert ongeveer 0,1 PJ warmte. Dit komt overeen met een thermisch vermogen van 3,2 MW th (8760 uur per jaar). Uitgaande van een thermisch rendement van 50% en een elektrisch rendement van 40% hebben gasmotoren met een vermogen van 2,5 MW e hetzelfde thermisch vermogen. Op basis van een inschatting over het aantal grote gasmotoren buiten de glastuinbouwhier (170 stuks) lijken er hooguit 20 locaties te zijn, voornamelijk in de utiliteitssector, met een warmteinfrastructuur die past bij de schaal van een aardwarmtebron (dus totaal 2 PJ vermeden primair). Warmtepompen, zonneboilers en WKO in de gebouwde omgeving In de gebouwde omgeving heeft de aanscherping van de EPC effect op de toepassing van hernieuwbare energietechnieken. In de utiliteitsbouw worden door de aanscherping vanaf 2009 al veel meer warmtepompen en WKO toegepast, zo is de verwachting. Meer potentieel in de nieuwbouw ligt daar niet. In de Referentieraming is verondersteld dat pas vanaf de aanscherping in 2015 naar een EPC van 0,4 in de woningbouw meer duurzame energie wordt toegepast. In de Referentieraming is de subsidieregeling voor bestaande woningen meegenomen t/m 2011, daarna stokt de penetratie van zonneboilers en warmtepompen in de bestaande bouw. Conform de duurzame energierichtlijn van de EU zou een verplicht aandeel hernieuwbare energie in de gebouwde omgeving een optie zijn. Voor de bestaande bouw lijkt dat niet uitvoerbaar, maar voor de nieuwbouw kan het wel. Een eis voor het aandeel hernieuwbaar binnen de EPC kan ook zonder de EPC te verlagen. In het protocol monitoring duurzame energie wordt uitgegaan van netto 5,2 GJ besparing primair per zonneboiler. Tussen 2012 en 2020 worden 575.000 woningen gebouwd. In de Referentieraming is voor 100.000 nieuwbouwwoningen een zonneboiler verondersteld, het aanvullend potentieel is dus maximaal voor 475.000 woningen. Totaal gaat dat in 2020 dan om 2,3 PJ vermeden primair. Een voortzetting van de subsidieregeling voor de bestaande bouw zou in het huidige tempo (50.000 zonneboilers in 4 jaar tijd) 0,5 PJ extra kunnen opleveren. De subsidieregeling zou ook voor bepaalde utiliteitsbouwsectoren kunnen worden opengesteld. Totaal is het aanvullend potentieel voor zonthermisch dan ca. 3 PJ vermeden primair. Belangrijk zijn de hybride ketels die toepassing van warmtepompen in de bestaande bouw mogelijk maken. Ecofys heeft in een studie voor VROM2 als aanvullend beleids2
M. Hoogwijk et al, 2009: Mogelijkheden voor additioneel beleid apparaten, Ecofys en VHK, december 2009.
38
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
maatregel een programma warmtepompen uitgewerkt, daar wordt een potentieel van 6 PJ genoemd. Het doel van het programma is de penetratie van warmtepompen in bestaande woningen tot met 2021 een stimulans te geven, waarna ze na 2021 verwacht worden commercieel te zijn en geen subsidie meer nodig te hebben. In het programma wordt gestreefd om het aandeel van warmtepompen in de vervangingsmarkt te vergroten van vrijwel nihil in 2008 naar 50% in 2021. De hybride ketel in de utiliteitsbouw is een optie voor kleine gebouwen, zoals bij horeca en winkels, waar ook gekoeld wordt. Het potentieel wordt op basis van de (Harmsen 2007) studie geraamd op 7 PJ. Voor warmtekoude opslag is in de utiliteitsbouw al een forse groei in de nieuwbouw verondersteld, in de bestaande bouw is deze optie niet mogelijk en daarom wordt hiervoor geen extra potentieel verondersteld.
Extrapolation to 2030 The above paragraphs address the year 2020. In order to pronounce on the year 2030, an extrapolation has been applied to yield data for the year 2030, based on the information on average growth rates, known constrains to the potential and expert judgements. The resulting values are presented for each technology in the synthesis section.
Synthesis On the next page a synthesis table of the potentials derived in this section is presented. These values will be used as input for the modelling excercises in the economic analysis as reported in D13 of the RES-H Policy project. Not all sectors and technologies have been covered in the models applied, therefore the last two columns indicate which values have been considered. In Chapter 6 these values will be compared to the results from the three different approaches for assessing the renewable heating as reported in Chapters 2 to 4 of this report.
39
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Table 6 Synthesis table of the potentials derived in this section. These values will be used as input for the modelling excercises in the economic analysis as reported in D13 of the RES-H Policy project. Not all sectors and technologies have been covered in the models applied, therefore the last two columns indicate which values have been considered. Grid Solar
Ambient heat
Deep geothermal
Biomass
*
Solar thermal (all categories) Solar thermal (new buildings) Solar thermal (existing buildings) Solar thermal (all services) Solar thermal (industry) Solar thermal (agriculture) Total ambient heat no UHS Amb.heat (resid. and serv.) Amb.heat (UHR serv. also for cooling) Underground heat storage Total deep geothermal Deep geothermal in residential Deep geothermal in services Deep geothermal in agriculture Deep geothermal in industry Total biomass Municipal solid waste* Co-firing in large power plant CHP in agriculture CHP in industry Biomass heat only Wood stoves (houtkachels)
No No No No No
PJ prim for heat 2020 2030 4.4 2.3 1.5 0.6 0.0 0.0
PJ final heat 2020 2030
9.4 5.3 3.5 2.0 0.0 0.0
No No No Yes Yes No No Yes Yes No No No No
68.3 16.7 1.6 32.0 9.0 2.0 7.0
84.3 21.3 1.6 39.3 12.9 2.2 7.0
Biogene part of 50% in 2020 and 2030
40
3.0 1.6 1.0 0.4 0.0 0.0 20.0 14.2 5.8 14.9 12.8 0.5 1.5 10.8 n.a.
6.4 3.6 1.7 1.1 0.0 0.0 38.2 23.6 14.5 28.0 25.6 1.0 3.0 21.6 n.a.
48.6 7.7 1.1 29.9 8.0 1.8 5.7
61.2 9.9 1.1 36.8 11.5 2.0 5.7
Used in modelling Buildings Industry X X X x
x x
x x x x
x x x
RES-H Policy
6
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Vergelijking van literatuur, top-down en bottom-up benadering
This chapter provides a comparison of the data presented in the previous chapters. What is the range of RES-H/C penetration for different technologies and sectors in various scenarios and approaches? From this comparison we derive first suggestions for target ranges intended as a basis for the discussion in the stakeholder consultation process (as documented in Chapter Error! Reference source not found.). Note, that for the first consultation round only the literature range (Chapter 2) has been presented, and that the second consultation round primarily focused on the data from Chapter 5, indicated in Table 7 as ‘Realisable potential’).
Table 7 Synthesis table of target ranges presented in the preceding chapters.
[PJ] Solar thermal
Literature range Chapter 2 2020 2030
Green X Bottom-up Realisable potential Chapter 3 Chapter 4 Chapter 5 2020 2030 2020 2030 2020 2030
7 – 12
7 – 25
18
18
9.4
21.7
3.0
6.4
Ambient heat Biomass Deep geothermal
144 – 188 67 – 91 2–7
162 – 259 258 – 392 3 – 14
21.6 90 <1
54 126 <1
28.0 31.2 9.4
55.0 52.5 21.7
20.0 48.6 12.8
38.2 61.2 25.6
Total
220 – 298
430 – 690
130.6
199
78.0
151.0
84.3
131.4
Zonthermische collectoren It can be observed that the literature range is very wide for both target years. The lower value of the range is constant at 7 PJ, but a doubling of the maximum 2020 potential towards 2020 is considered possible. Green-X assumes a very high growth rate towards the year 2020, which is contradicted by the bottom-up approach (Green-X: 18 PJ in 2020, bottom-up: 9.4 PJ). The target presented in Chapter 5 however is only half of the lower value from the literature range. The rationale behind this is explained in the previous chapter, but main criticism to the literature range is that it can be observed in practise that still solar thermal is not being developed strongly, which results in a situation of lack of momentum. Moreover, it should be realised that in the bottom-up approach no economic constraints are taken into account explicitly, reason for which the values are relatively high.
Warmtepompen, omgevingsenergie According to the literature range, ambient heat could play the most important role in renewable energy by 2020. This would then come mainly from new constructions in the service sector, but also existing dwellings could play a major role when assuming the conventional boiler replayement rate as an guiding parameter for the implementation of 41
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
heat pumps (basically in the form of a combined condensing boiler with heat pump). The targets following from Green X and the bottom-up approach are comparable, and the relaisable potential from Chapter 5 is only slightly less. Although usually heat pumps will only be applied in buildings with low-temperature heating system and high thermal quality in order to achieve high COP values, the above mentioned hybrid solution is also suitable for existing dwellings. Note, that for industry no renewable ambient heat was assumed (see Appendix C).
Biomassa Bioenergy is the most diverse of the technologies considered. Again, the literature ranges vary considerably. Green-X projects large penetrations, but the bottom-up analysis has less ambitious targets. However, based on the analysis on realisable potentials in Chapter 5 a larger potential was found. Main reason is that the biomass resource constraints were tighter in the assumptions of the bottom-up approach.
Diepe geothermie The option of deep geothermal receives more attention compared to previous years. This results clearly from the literature ranges, in which deep geothermal only is attributed few weight. Moreover, the Green X approach virtually sees no opportunities for this technology. In the bottom-up approach and the analysis presented in Chapter 5, deep geothermal receives quite considerably more attention. It should be noted however that so far not much experience is available with this technology, which makes its possible development less sure. This does not impact the realisable potential, but might turn out sensitive in future analysis.
42
RES-H Policy
7
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Discussie met stakeholders
Tijdens het RES-H Policy project zijn er twee waardevolle momenten geweest waarin belangrijke feedback is ontvangen op de potentiëlen zoals die in het project vastgesteld zijn. Dit waren a) de eerste workshop (WP3) van september 2009 en b) de tweede workshop (WP4) van mei 2010. Deze terugkoppeling uit de stakeholder discussie is hieronder samengevat.
7.1
Deelnemers in het stakeholder proces
In de eerste workshop is feedback ontvangen van 13 externe experts (beleidsmakers: 6 personen, branche voor hernieuwbare energie: 5 personen, installatiebranche: 1, NGO: 1). In de tweede workshop is feedback ontvangen van 12 externe experts: (beleidsmakers: 4 personen, branche voor hernieuwbare energie: 6 personen, consultants: 2, NGO: 1) De feedback uit deze processen is weergegeven in de volgende paragraaf. Meer detail en achtergrondinformatie bij deze gelegenheden is te vinden in het verslag van de twee bijeenkomsten (documenten D8 en D12 van het RES-H Policy project).
7.2
Feedback van de deelnemers
Bij de verdeling van de EU doelstelling van 14% moet een verdeling worden gemaakt van de bijdrage van duurzame elektriciteit biobrandstoffen en duurzame warmte. De afweging daartussen kan o.a. op basis van kosteneffectiviteit gebeuren. Maar dan moet worden gekeken naar de kosten voor stimulering door de overheid (bijv. subsidies) en moeten verwachte kostendalingen worden meegenomen. De gebruikte bron voor duurzame warmtepotentiëlen (Harmsen 2007) veronderstelde onmiddellijke implementatie. Daarvan zijn nu al twee jaar verloren. In de utiliteitsbouw is de nieuwbouw nu al 40% duurzaam. Dit volgt uit een rapport dat EZ in bezit heeft. Het is standaard om een elektrische warmtepomp te installeren, eventueel met warmteopslag. Een snelle optie is om bij vervangingsinvesteringen voor bestaande stadsverwarmingsnetten een bio-wkk of diepe geothermie in te zetten. WKO zonder warmtepompen telt niet mee in de Europese doelstellingen. Voor Nederland zou het een mooie kans bieden als exportproduct of in ieder geval voor het exporteren van kennis, en dus is het interessant om te proberen of het er wellicht toch onder zou kunnen vallen. Check de EU-wijze van berekening voor de bijdrage door warmtepompen. Het zou wel eens om meer dan 4 PJ kunnen gaan. De Taskforce WKO noemt 100 PJ als potentieel (maar dit zou slechts voor 50% meetellen in de definitie) 43
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Doorbraken zijn nodig in de bestaande bouw, want alleen nieuwbouw leidt niet tot voldoende groei. Biomassa is minder beschikbaar door de inzet voor groene grondstoffen (die buiten de Europese doelstelling vallen). De vraag wordt gesteld wat het verschil is in definitie tussen biogas en groen gas, omdat deze beiden opgevoerd worden als bijdrage aan hernieuwbare warmte. Wordt er bijvoorbeeld rekening gehouden met de manier waarop groen gas wordt ingezet? Antwoord hierop is dat er geen rekening gehouden wordt met de uiteindelijke inzet van groen gas. Er is dus geen rekening gehouden met conversieverliezen bij de productie van elektriciteit door groen gas. Het is correct dat de bijdrage van groen gas bij toepassing van de Europese definitie minder zou zijn dan in de huidige manier van presenteren. Bij toepassing van de substitutiemethode heeft het uiteindelijke proces geen effect omdat de hoeveelheid vermeden primaire energie gelijk blijft. De verwachting van de branchevereniging voor zonthermie is dat deze optie in het jaar 2020 een groter aandeel verwerft dan in raming verondersteld is, onder andere omdat de verwachting is dat de gemiddelde systeemgrootte per woning en daarmee de energieopbrengst groter wordt. Ook verwacht de branchevereniging een belangrijk stimulerend effect door de EPN. Dat de markt voor zonneboilers dan flink in omvang zal moeten toenemen om aan de verwachting van de vereniging te voldoen lijkt geen beperking te zijn, omdat de meest recente cijfers van het Centraal Bureau voor de Statistiek (CBS) over 2009 al een flinke groei laten zien. Naar aanleiding van een vraag over de definities en wordt duidelijk gemaakt dat de gepresenteerde maatregelen uit het aanvullend beleid in verband met mogelijke overlap niet opgeteld kunnen worden bij de cijfers uit de Referentieramingen, en dat wegens definities (warmteproductie in NREAP en vermeden primair in de raming) de bijdragen aan aanvullend beleid niet opgeteld kunnen worden bij de realisaties uit het Actieplan (NREAP). Er zijn vragen over de verwachting voor diepe geothermie en de beperkende invloed van de warmte-infrastructuur. Toelichting: dit betreft het voorhanden zijn van een centraal systeem voor verwarming van de juiste grootte en het juiste temperatuurniveau. Er wordt opgemerkt dat een belangrijke factor bij het ontwikkelen van beleid voor diepe geothermie de boorcapaciteit is, die gecorreleerd is met boringen naar fossiele energiedragers. Bij hoge energieprijzen is vooral inzet van boorcapaciteit in gasvelden te verwachten, bij lage prijzen is er voldoende capaciteit voorhanden maar dan is geothermie weer minder competitief. De Stichting Platform Geothermie heeft schriftelijk gereageerd op de twee rapporten en geeft onderstaande commentaarpunten: -
De gegevens over het aantal boringen voor diepe geothermie in het rapport (pagina 60 van rapport Referentieraming) zijn achterhaald. In mei 2010 zijn er twee installaties operationeel en twee in de boorfase (in de loop van dit jaar naar schatting mogelijk vijf projecten in de boorfase). 44
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
De schatting van 100 hectare glastuinbouwareaal verwarmd met aardwarmte (voor de variant vaststaand beleid, pagina 60 van rapport Referentieraming) is een onderschatting, omdat in het jaar 2011 al 50 hectare gepasseerd lijkt te worden. LTO gaat uit van 500 hectare in 2020. - Het aangenomen 'kleine aantal bedrijven' dat aardwarmteboringen kan uitvoeren (pagina 60 van rapport Referentieraming) is verrassend omdat er wat techniek betreft geen verschil is met boorbedrijven voor olie en gas, waarvoor er een buitengewoon grote capaciteit bestaat. Er vinden in Nederland al decennia lang enige tientallen boringen van vergelijkbare diepte per jaar plaats Tijdelijke krapte zou kunnen ontstaan bij een zeer sterk toegenomen gasprijs (door de toenemende concurrentie met de olie- en gaswereld) en/of bij significant hogere aantallen geothermische boringen dan in de Referentieraming verondersteld. In recente jaren zijn er vrij veel nieuwe torens en boorbedrijven bijgekomen en deze trend lijkt nog niet gekeerd. - De uitgangspunten voor diepe geothermie op pagina 35 van het rapport Aanvullend beleid lijken niet bijzonder aannemelijk. De genoemde broncapaciteit van gemiddeld 3,2 MWth is laag, eerder lijkt een range tussen 3,5 en 14 MWth voor te komen. Voor de bron in Vierpolders wordt circa 20 MWth voorspeld (bij P90). De ervaring in het buitenland (Duitsland, Frankrijk) is, dat het vermogen van nieuwe bronnen trendmatig lijkt te stijgen in de tijd. De 8760 vollasturen zijn daarentegen te hoog: diepe geothermie is namelijk binnen redelijke grenzen regelbaar. Het idee dat geothermie alleen haalbaar is bij 100% vollast bezetting is door de praktijk achterhaald. Bovenstaande effecten heffen elkaar op, waardoor de schatting van 0,1 PJ voor de geleverde energie redelijk overeen komt met de werkelijkheid. - Het lijkt buitengewoon onaannemelijk, dat er geen elektriciteitsproductie (in cascade met warmteproductie) zou komen. Duitsland gaat uit van enige honderden MWe in 2020. Voor Nederland zal dit pas na 2020 significant worden, maar het zou de moeite waard zijn om deze optie alvast te benoemen. - Voor de gebouwde omgeving komt diepe geothermie in beeld voor de warmtevoorziening van bestaande woningen in stadskernen. Hoewel lastig (en tijdrovend) lijkt dit een optie die tegen relatief lage kosten per woning (of per ton CO2) gerealiseerd kan worden. - De conclusie dat een productiesubsidie niet effectief zou zijn voor de ondersteuning van diepe geothermie (pagina 35 Aanvullend beleid) wordt niet onderschreven. Er wordt opgemerkt door de branchevereniging dat de aanvullende bijdrage van zonthermie in 2020 groter zou moeten zijn. Reden voor de relatief kleine aanvullende bijdrage is de beperkte hoeveelheid nieuwbouwwoningen die geraamd is. -
7.3
Conclusies
Tijdens het eerste stakeholder moment vinden de aanwezigen het moeilijk om zich uit te spreken over de ranges voor de duurzame opties. Aanbeveling was om het maximum voor zonneboilers en warmtepompen af te schatten door te kijken naar ketelvervangingen. In het process lukt het niet om een uitspraak te doen per optie, maar wel wordt geconcludeerd dat een maximum van 200 PJ hernieuwbare warmte in 2020 haalbaar is.
45
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Op de cijfers die op het tweede stakeholder moment gepresenteerd worden komt gedetailleerd commentaar, zoals boven te zien is. Ondanks het feit dat sommige opmerkingen, afhankelijk van het perspectief van waaruit ze geformuleerd zijn, verdedigbaar zijn, wordt voor de verdere analyse in het RES-H Policy project uitgegaan van de cijfers zoals ze in hoofdstuk 8 van dit rapport beschreven zijn.
46
RES-H Policy
8
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Samenvatting: RES-H/C doelstellingen
Based on the four different analyses in this report (Chapters 2 to 5), including the feedback from stakeholders (Chapter 7) a final dataset is derived in this section. This yields a detailed table, which reports for every technology type in every demand sector (if applicable) the realisable potential for two target years (2020 and 2030). For a few technologies modifications compared to the data from Chapter 5 have been applied.
Gebouwde omgeving The most important contribution for solar thermal is expected in new dwellings. The data used for the modelling have been adapted to learnings from the INVERT modelling (as documented in D13 of the RES-H Policy project) : in the case of high prices, the detailed modelling of the Dutch building and residential sector exceeds the realisable potentials found in D6 (i.e. the current report, see column ‘Final heat’ in the table below). The total target values used for modelling have thus been increased for the building sector, amounting to 3.7 PJ in 2020 and 8.0 PJ in 2030. In order to make the breakdown correct, the increase has been allocated to new buidlings. Note, that agriculture is not highlighted as a possible sector in this listing. In the RES-H Policy project this sector is not being considered. The largest share in ambient heat is projected for normal heat pumps. Hybrid installations, consisting of a heat pump connected to a conventional boiler (also mentioned as ultra-high rendement (UHR), i.e. ultra-high efficiency) are especially considered important in the service sector. No changes have been applied here for modelling purposes. Deep geothermal energy is mainly projected for the agricultural sector (horticulture), which is not covered in the modelling approaches inthe RES-H Policy project. For the building sector a potential of 2 PJ in 2020 and 4 PJ in 2030 remains. The possible contribution of biomass to a great extent is foreseen in agriculture (CHP in horticulture). The second important technology is heat from municipal solid waste incineration, which for the modelling is attributed to the building sector. The use of wood stoves in the Netherlands is not considered a promising option, and it is assumed to remain constant.
Industrie Solar thermal in industry has been adjusted: maximum realisable potential defined as 0.2 (for 2020) and 0.8 (for 2030) respectively. Doing so, findings from literature and modelling are recognised, as well as feedback from the solar thermal association has been considered (see Chapters 2 and 5).
47
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Deep geothermal in industry adjusted: maximum realisable potential defined as 0.5 (for 2020) and 1.0 (for 2030) respectively. The values chosen are compromises based on learnings in the RES-H Policy project and literature ranges (Chapter 2). It is expected that gaining experience on deep geothermal drilling will result in ever deeper drillings, with corresponing higher temperatures. However, it is expected that this process stretches out several years, and that the first types of use are more likely to attain lower temperatures (order of magnitude 70°C) which makes that projects in the residential sector and horticulture are more likely. The values chosen represent a moderate estimate for this technology in industry. This represents then one or a few (demonstration) projects up to 2020, and several projects up to 2030, but all together still small. For biomass it can be observed that the number of technologies considered has been reduced. The RESolve-H/C offers the opportuinity of modelling various technologies, but the analysis documented in Chapter 5 of this report has led to a reduction of the amount of technologies considered relevant, resulting in only CHP and heat only boilers as technologies with significant potential.
48
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Table 8 Summary overview of the target values per subsector, to be used in the further modelling approaches. Grid Solar
Ambient heat
Deep geothermal
Biomass
Solar thermal (all categories) Solar thermal (new dwellings) Solar thermal (existing dwellings) Solar thermal (all services) Solar thermal (industry) Solar thermal (agriculture) Ambient heat (no underground storage) Amb.heat (residential and services) Amb.heat (UHR service sector, also for cooling) Underground heat storage Total deep geothermal Deep geothermal in residential Deep geothermal in services Deep geothermal in agriculture Deep geothermal in industry Total biomass Municipal solid waste Co-firing in large power plant CHP in agriculture CHP in industry Biomass heat only Wood stoves
No No No No No No No No Yes Yes No No Yes Yes No No No No
Final heat [PJ] 2020 2030 3.0 6.4 1.6 3.6 1.0 1.7 0.4 1.1 0.0 0.0 0.0 0.0 20.0 38.2 14.2 23.6 5.8 14.5 14.9 28.0 12.8 25.6 0.5 1.0 1.5 3.0 10.8 21.6 n.a. n.a. 48.6 61.2 7.7 9.9 1.1 1.1 29.9 36.8 8.0 11.5 1.8 2.0 5.7 5.7
Used in modelling Buildings Industry x x x
Input for building simulation [PJ] 2020 2030 3.7 8.0 2.3 5.2 1.0 1.7 0.4 1.1
x
Input for industry simulation [PJ] 2020 2030 0.2 0.8
0.2
0.8
20.0 14.2 5.8
38.2 23.6 14.5
0
0
x x
2.0 0.5 1.5
4.0 1.0 3.0
0.4
1.0
x x
13.4 7.7
15.5 9.9
0.4 9.8
1.0 13.5
8.0 1.8
11.5 2.0
x x
x x x
5.7
5.7
Note : data for modelling purposes have been changed for solar thermal (new dwellings and industry) and deep geothermal (industry)
49
9
Referenties
Ragwitz, M.; Schleich, J.; Huber, C.; Faber, T.; Voogt, M.; Ruijgrok, W.; Bodo, P. (2004): FORRES 2020: Analysis of the renewable energy's evolution up to 2020, Final report of the research project FORRES 2020 of the European Commission DGTREN (Tender Nr. TREN/D2/10-2002). Resch,G., Panzer, C., Ragwitz. M., Faber, T., Huber, C. , Rathmann, M., Reece, G., Held, A., Haas R. (2009): Scenario report “20% RES by 2020 – Scenarios on future European policies for RES-Electricity”. Report of the European research project futures-e, Energy Economics Group (EEG), Vienna University of Technology, the Netherlands Daniëls, Kruitwagen et al., Referentieraming energie en emissies 2010-2020, ECN/PBL, april 2010, www.ecn.nl/docs/library/report/2010/e10004.pdf Daniëls, Elzenga et al., Aanvullende beleidsopties Schoon en Zuinig, ECN/PBL, April 2010, www.ecn.nl/docs/library/report/2010/e10015.pdf Harmsen et al., Duurzame warmte en koude 2008-2020: potentiëlen, barrières en beleid, Ecofys, 2007 Holland Solar, G.A.H. van Amerongen et al., Transitiepad Thermische zonne-energie - de roadmap van Holland Solar, maart 2007 CBS, Duurzame energie in Nederland, 2008 van der Drift, B, info SNG
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Appendix A Het Green-X model
A.1
Algemeen
As in previous projects such as FORRES 2020, OPTRES, PROGRESS or FUTURES-E the Green-X model was applied to again perform a detailed quantitative assessment of the future deployment of renewable energies on country level, sector level as well as technology level. The core strength of this tool lies on the detailed RES resource and technology representation accompanied by a thorough energy policy description, which allows assessing various policy options with respect to resulting costs and benefits. A short characterisation of the model is given below, whilst for a detailed description we refer to www.green-x.at. The model Green-X has been developed by the Energy Economics Group (EEG) at Vienna University of Technology in the research project “Green-X – Deriving optimal promotion strategies for increasing the share of RES-E in a dynamic European electricity market”. Initially focusing on the electricity sector, this tool and its database on RES potentials and costs have been extended within follow-up activities to incorporate renewable energy technologies within all energy sectors. Green-X covers geographically the EU-27, and can easily be extended to other countries such as Turkey, Croatia or Norway. It allows to investigate the future deployment of RES as well as accompanying cost – comprising capital expenditures, additional generation cost (of RES compared to conventional options), consumer expenditures due to applied supporting policies, etc. – and benefits – i.e. contribution to supply security (avoidance of fossil fuels) and corresponding carbon emission avoidance. Thereby, results are derived at country- and technology-level on a yearly basis. The time-horizon allows for in-depth assessments up to 2020, accompanied by concise out-looks for the period beyond 2020 (up to 2030). Within the model, the most important RES-Electricity (i.e. biogas, biomass, biowaste, wind on- & offshore, hydropower large- & small-scale, solar thermal electricity, photovoltaics, tidal stream & wave power, geothermal electricity), RES-Heat technologies (i.e. biomass – subdivided into log wood, wood chips, pellets, grid-connected heat -, geothermal (gridconnected) heat, heat pumps and solar thermal heat) and RES-Transport options (e.g. first generation biofuels (biodiesel and bioethanol), second generation biofuels (lignocellulotic bioethanol, BtL) as well as the impact of biofuel imports) are described for each investigated country by means of dynamic cost-resource curves. This allows besides the formal description of potentials and costs a detailed representation of dynamic aspects such as technological learning and technology diffusion. 52
Besides the detailed RES technology representation the core strength of the model is the in-depth energy policy representation. Green-X is fully suitable to investigate the impact of applying (combinations of) different energy policy instruments (e.g. quota obligations based on tradable green certificates / guarantees of origin, (premium) feed-in tariffs, tax incentives, investment incentives, impact of emission trading on reference energy prices) at country- or at European level in a dynamic framework. Sensitivity investigations on key input parameters such as non-economic barriers (influencing the technology diffusion), conventional energy prices, energy demand developments or technological progress (technological learning) typically complement a policy assessment. The general modelling approach to describe renewable energy generation technologies in the model Green-X is to derive dynamic cost-resource curves for each generation and reduction option in the investigated region. Dynamic cost curves are characterised by the fact that the costs as well as the potential for electricity generation / demand reduction can change year by year. The magnitude of these changes is given endogenously in the model, i.e. the difference in the values compared to the previous year depends on the outcome of that year and the (policy) framework conditions set for the simulation year. In principle, the approach is carried out in three steps:
•
The development of static cost-resource curves for each generation and demand reduction option, on a technology and country-level;
•
The dynamic assessment, including a dynamic assessment of costs as well as of potential restrictions, in order to derive annual dynamic cost-resource curves.
•
The derivation of the dynamic cost-resource curve.
The technology and country-specific dynamic cost-resources for the simulation year are derived by combining the static cost-resource curves with the dynamic assessment. This dynamic cost-resource curve on the supply side contains information about actual generation costs and the possible potential for electricity generation for various technologies for the simulation year. The following figure illustrates this procedure for one technology.
53
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
New achieved potential of technology x in year n-1
Already achieved potential of technology x in year n-2 Costs [€/kWh]
Costs [€/kWh]
electricity generation [GWh]
electricity generation [GWh]
already achieved potential ( capacity built) year n-2
New achieved potential capacity built) in year n-1
Achieved potential of technology x in at the end of year n-1
Costs [€/kWh]
End of life-time in year n of the installed capacity technology x
electricity generation [GWh] already achieved potential ( capacity built) year n-1
Achieved potential of technology x available in year n Costs [€/kWh]
electricity generation [GWh] already achieved potential available in year n (capacity built)
Figure 18 Method of approach regarding dynamic cost-resource curves for RES (for the model Green-X)
A.2
Bepaling van potentiëlen voor duurzame energie in Green-X
From a historical perspective the starting point for the assessment of realisable mid-term potentials in the Green-X model was geographically the European Union as of 2001 (EU15), where corresponding data was derived for all Member States initially in 2001 based on a detailed literature survey and a development of an overall methodology with respect to the assessment of specific resource conditions of several RES options. In the following, within the framework of the study “Analysis of the Renewable Energy Sources’ evolution up to 2020 (FORRES 2020)” (see Ragwitz et al., 2005) comprehensive revisions and updates have been undertaken, taking into account reviews of national experts etc.. Consolidated outcomes of this process were presented in the European Commission’s Communication “The share of renewable energy” (European Commission, 2004).
54
A.3
Scenario beschrijving
The following sections will show results for the so called strengthened (national) policies scenario derived by the Green-X model, which describes a realistic path that could serve as a guideline for fulfilling the 2020 target (see also Resch et al 2009). In more detail the strengthened policy scenario can be characterised as follows: Strengthened policy scenario: Hereby it is assumed that the European RES policy framework will be improved with respect to its efficiency and effectiveness. These changes will become effective by 2011 in order to meet the agreed target of 20% RES by 2020. Improvements refer to both the financial support conditions (if necessary) as well as to nonfinancial barriers (i.e. administrative deficiencies etc.) where a rapid removal is also preconditioned. The fulfilment of the target of 20% RES by 2020 is preconditioned at EU level as well as at national level. For the case that a Member State (MS) would not possess sufficient potentials, MS based transfers as foreseen in the RES Directive (i.e. where MS posses the possibility to transfer their surplus to other MS) would serve as complementary option to fulfil given 2020 RES objectives. For the period beyond 2020 intensified cooperation between MS is preconditioned, meaning a step towards intensively coordinated RES support all over Europe and an enhanced sharing of corresponding costs and benefits.
Overview on key input parameters Besides the comprehensive Green-X database for RES – which includes potentials and costs for RES-E within Europe on a country and technology level and assumptions with respect to the overall conventional energy system are discussed below in a concise manner. In order to ensure maximum consistency with existing EU scenarios and projections, the key input parameters of the scenarios are derived from PRIMES modelling and from recent assessments of the European RES market (FORRES 2020, OPTRES, PROGRESS). Table 9 shows which parameters are based on PRIMES and which have been defined for this study. More precisely, the PRIMES scenario used to depict the overall energy demand is the following:
The European Energy and Transport Trends by 2030 / 2007 / Efficiency Case (16% demand reduction compared to baseline)
55
RES-H Policy
Table 9:
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Main input sources for scenario parameters
Based on PRIMES
Defined for this study
Energy demand
Reference electricity prices
Primary energy prices
RES cost (based on FORRES 2020, PROGRESS)
Conventional supply portfolio and conversion efficiencies
RES potential (based on FORRES 2020, PROGRESS) Biomass import restrictions Technology diffusion Learning rates Weighted average cost of capital (WACC)
A.4
Resultaten voor EU-27
The share of RES-H on overall RES deployment As is shown in Figure 19 below the RES heating sector currently contributes more than half of the overall final energy deployment of renewable energy sources. This overall contribution within the renewable energy mix will slightly decline to about 45% until 2020. As shown in Figure 20 the share of renewable energy in the total heat demand will grow at a very similar pace as the contribution of renewable energies in total final energy consumption in the EU and will reach about 20% by 2020. 4.500
3.500 3.000 2.500 2.000 1.500 1.000 500
RES-electricity (& CHP)
RES-transport
2030
2027
2024
2021
2018
2015
2012
2009
0 2006
RES generation (TWh)
4.000
RES-heat
56
50% 45%
electricity
40% 35%
heat transport
30%
total
25% 20% 15% 10% 5% 2030
2028
2026
2024
2022
2020
2018
2016
2014
2012
2010
2008
0% 2006
RES share on gross final energy demand
Figure 19 RES generation until 2030 in a strengthened policy scenario in EU-27 countries
final energy demand - medium
Figure 20 The share of RES on gross final energy demand until 2030 in a strengthened policy scenario in EU-27 countries
RES-H development As shown in Figure 21 grid connected solid biomass and non-grid connected solid biomass currently are the most important RES-H generating technologies. The RES-H generation in the EU-27 will nearly double until 2020. Heat pumps and solar heating and hotwater will gain a significantly higher share until 2030. Heat pumps increase their generation until 2020 by more than a factor of ten and will continue in growth the next 10 years. Solar thermal heating and hotwater will exceed 100 TWh/a in 2020. Also the Solid biomass (grid) triples its contribution until 2020.
57
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
2.000 RES-H generation (TWh)
1.800 1.600 1.400 1.200 1.000 800 600 400 200
Biogas (grid) Biowaste (grid) Solid biomass (non-grid) Heat pumps
2030
2028
2026
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
0
Solid biomass (grid) Geothermal heat (grid) Solar thermal heating and hot water
Figure 21 RES-H generation until 2030 in a strengthened policy scenario in EU-27 countries As shown in Figure 22 RES-H non grid currently contributes about 81% to the RES-H generation in the EU-27. This share will decline to 73% by 2020. The overall RES-H generation will raise its amount of currently (2009) about 790 TWh to about 1360 TWh/a by 2020. RESH district heating & large scale generation raises its shares to 11% by 2020. RES-H CHP shows only a limited growth from 2020 onwards.
1.800 1.600 1.400 1.200 1.000 800 600 400 200 2030
2027
2024
2021
2018
2015
2012
2009
0 2006
RES-H generation (TWh)
2.000
RES-H non-grid RES-H district heating & large scale RES-H CHP
58
new installed annual RES-H capacity (MW)
Figure 22 RES-H generation (sectors) until 2030 in a strengthened policy scenario in EU27 countries
80.000 Heat pumps 70.000 60.000
Solar thermal heating and hot water
50.000
Solid biomass (nongrid) Geothermal heat (grid)
40.000 30.000
Biowaste (grid)
20.000
Solid biomass (grid)
10.000
Biogas (grid)
0 2010
2015
2020
2025
2030
Figure 23 New installed RES-H capacity in a strengthened policy scenario in EU-27 countries
59
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Appendix B Technische parameters en resultatenvoor de gebouwde omgeving
B.1
Zonthermische collectoren – gebouwen
Methodology In the following, we will give an overview on the main steps of the methodology for the technology solar thermal collectors for heating and hot water in the building sector. 1. We are calculating the roof area for each building class from building data describing the building stock within a country. 2. For reasons of inappropriate orientation etc. we assume a certain share of the maximum roof area which is suitable for solar thermal collectors. 3. Combining step one and two with the number of buildings within each building class we determine the total maximum available roof area (Mm²). 4. For each building class we determine the max. penetration rate of suitable roof area. This refers to step 1 that we explained in section 4.1. 5. For each building class we assume the corresponding time constant (time that has to pass until an increase from 1% to 98% of the maximum penetration is achievable). 6. As the next step the current diffusion of solar thermal appliances per building class is determined. 7. As described above, we apply the standard S-curve approach for modelling of dynamic diffusion of solar thermal collectors. 8. Based on the specific average solar yield (kWh/m²/yr) we calculate the solar thermal heat generation. 9. In order to avoid excess solar thermal energy supply within a building and thus double-counting we carry out a check with the solar share on total heating and DHW consumption within each building class.
60
A critical issue that should be further is discussed is the question of solar district heating. Actually, our approach does not explicitly distinguish between grid connected and non-grid connected solar heating systems. However, for this basic bottom-up approach we are mainly using the available roof area as a basic starting point. Since this basic potential is more or less the same for grid connected and non-grid connected systems we assume this approach as valid.
Country specific data The following table contains the basic input data as described above:
unit
single dwellings
multiple dwellings
nonresidential buildings
25%
25%
25%
23%
10%
18%
38
50
36
325
325
325
Solar thermal share of roof area suitable for solar % thermal max. penetration rate of solar collec% tors on suitable roof area diffusion time constant (time that has to pass for an inyr crease from 1% to 99% of the maximum potential) specific average kWh/m²/yr solar yield
61
Doelstellingen voor hernieuwbare warmte en koude in Nederland
solar collector area (Mm²)
RES-H Policy
20 18 16 14 12 10 8 6 4 2 2028
2025
2022
2019
2016
2013
2010
2007
0
Figure 24 Installed solar collector area in residential buildings in the selected bottom-up scenario
solar thermal energy (TJ)
25.000 20.000 15.000 10.000 5.000
2028
2025
2022
2019
2016
2013
2010
2007
0
Figure 25 Solar thermal heat generation in residential buildings in the selected bottom-up scenario
62
B.2
Biomassa verwarming – gebouwen
Methodology In the following, we will give an overview on the main steps of the methodology for the technology biomass heating systems in the building sector. This is applied separately to the sectors wood log, wood chips, wood pellets and biomass district heating: 1. As a first step we determine the maximum diffusion of the specific biomass system (e.g. wood log boilers) for every building class (% of total number of buildings in this class). 2. For each building class we assume the corresponding time constant (time that has to pass until an increase from 1% to 98% of the maximum penetration is achievable). 3. We take the current distribution of these technologies in every building class as starting point for the S-curve approach. 4. Taking into account the mean heating energy consumption in every building class and a certain (ambitious-realistic) renovation scenario we estimate the biomass energy demand. 5. As a consistency check we compare the total biomass energy demand in the scenario with the bioenergy potential available for residential heating purposes (weak coupling, no strict restriction). The biomass potential is derived from EEA 2007. For determining the biomass potential available for heating we subtract the energy demand for electricity and transport for the different bioenergy fractions according to the Green-X scenario described above in chapter 3. After this comparison, it is up to the stakeholders and decision makers to decide whether biomass imports are acceptable or whether biomass exports should be possible.
Feed-in of biogas into the natural gas grid could be an additional option for RES-H. Our approach for this part is to assess the possible biogas-potential for feed-in purposes (taking into account the source EEG2007 and the Green-X scenario documented above). This potential we are comparing to the natural gas consumption within a country. This comparison provides a basis for determining the potential share of biogas in natural gas consumption.
63
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Country specific data The following table contains the basic input data as described above:
unit
single dwellings
multiple dwellings
nonresidential buildings
% % % %
0% 0% 2% 6%
0% 2% 2% 20%
0% 1% 1% 12%
yr yr yr yr
47 52 47 40
60 60 60 50
60 60 60 50
%
16%
16%
3%
%
28%
28%
5%
Biomass heating max. share of biomass heating systems on the total number of buildings Wood log Wood chips Wood pellets District heating diffusion time constant (time that has to pass for an increase from 1% to 99% of the maximum potential) Wood log Wood chips Wood pellets District heating Reduction of mean heating energy demand due to thermal renovation in 2020 Reduction of mean heating energy demand due to thermal renovation in 2030
64
Number of buildings with biomass heating system
400.000 350.000 300.000
Biomass district heating
250.000
Wood Pellets
200.000 Wood chips 150.000 Wood log 100.000 50.000
2029
2027
2025
2023
2021
2019
2017
2015
2013
2011
2009
2007
0
Figure 26 Number of residential buildings with biomass heating systems in the selected bottom-up scenario
Biomass primary energy for heating in the building sector (TJ)
50.000 45.000 40.000
Biomass district heating
35.000
Wood Pellets
30.000 Wood chips
25.000 20.000
Wood log
15.000
Biomass potential for heat production
10.000 5.000 2029
2027
2025
2023
2021
2019
2017
2015
2013
2011
2009
2007
0
Figure 27 Biomass fuel input for heating and hot water preparation in residential buildings in the selected bottom-up scenario
65
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
35.000
Biomass usefule heat in the building sector (TJ)
30.000 25.000 Biomass district heating Wood Pellets Wood chips Wood log
20.000 15.000 10.000 5.000
2028
2025
2022
2019
2016
2013
2010
2007
0
Figure 28 Biomass useful heat generation in residential buildings in the selected bottomup scenario
B.3
Warmtepompen – gebouwen
Methodology In the following, we will give an overview on the main steps of the methodology for the technology heat pumps in the building sector. The basic assumption for the approach is that ambitious COP values (of 3.5-4) are only achievable in buildings with low-temperature heating systems.
1. Thus, the first step is to identify the share of buildings that is suitable for heat pumps (assuming that only in buildings with low temperature heating system and corresponding low energy house standard COP above 3.5-4 is achievable). For all existing building classes and new buildings an S-Curve approach is applied to determine the share of correspondingly innovative renovation in existing buildings and low energy standard in new building construction, respectively.
66
Multiplying this share with the renovation rate (or new building construction rate) and the total number of buildings gives the annual number of buildings suitable for heat pump installation. 2. The actual number of annual heat pump installation (and total accumulated number of heat pumps, respectively) is determined by an S-curve approach assuming a certain maximum diffusion share of heat pumps in those buildings which are suitable for heat pumps. 3. The total ambient energy from heat pumps is calculated on an assumed low energy house standard for all building classes and an annual COP of 4.
Deep soil for geothermal district heating is not considered in these bottom-up approaches. For countries where this technology has a considerable potential this will be taken from available literature, see also Chapter 6.
Country specific data The following table contains the basic input data as described above:
Geothermal, heat pumps share of buildings that is suitable for heat pumps in 2020 share of buildings that is suitable for heat pumps in 2030
unit
single dwellings
multiple dwellings
nonresidential buildings
new buildings
%
24%
24%
27%
93%
%
26%
26%
30%
95%
6%
6%
4%
90%
1,3
1,3
1,3
4
10
10
10
15
166
278
145
100
max. penetration rate of heat pumps % in those buildings that are suitable COP diffusion time constant (time that has to pass for an inyr crease from 1% to 99% of the maximum potential) current average specific useful heating energy demand kWh/m²/yr of buildings with heat pumps
67
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
number of buildings with heat pumps
1.800.000 1.600.000 1.400.000 1.200.000 1.000.000 800.000 600.000 400.000 200.000 2029
2027
2025
2023
2021
2019
2017
2015
2013
2011
2009
2007
0
Figure 29 Number of buildings with heat pumps in the selected bottom-up scenario
68
60.000
Ambient energy (TJ)
50.000 40.000 30.000 20.000 10.000
2029
2027
2025
2023
2021
2019
2017
2015
2013
2011
2009
2007
0
Figure 30 Ambient heat utilization from heat pumps in the building sector in the selected bottom-up scenario
69
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Appendix C Modelaanpak: het bepalen van het potentieel voor duurzame warmte in de industrie C.1
Algemene modelbenadering
This section of the annex describes the consecutive steps applied to evaluate the potential of renewable heating and cooling sources (RES-H/C) and technologies. Starting point for the modelling work is based on EU-wide data sources. The advantage is that the modelling can take place based on generic datasets combined with relatively few country-specific data (or assumptions when specific data are lacking). The result of the modelling train described in this section is potentials (or targets) for RES-H/C penetrations in industry. In a few words, the modelling approach can be summarised as follows: A. Based on several data sources, non-electric and non-feedstock energy use in industry is decomposed into energy use per energy carrier, per temperature level and per industry subsector and extrapolated to the year 2030. This is elaborated in steps 1 to 3 in this section. B. For the base year 2005, each of the abovementioned decomposed energy uses are assigned energy conversion technologies, based on statistical information. This is elaborated in steps 4 and 5 in this section. C. Applying a series of substitution and exclusion rules, a set of constraints is complied which indicates which share of the industrial energy use is available for RES-H/C: the potential of target. This is elaborated in steps 6 to 8 in this memo. The detailed steps including the data sources and the assumptions made are explained in the next section (steps 1 to 9).
C.2
Gedetailleerde modelbenadering
This section elaborates on the series of steps needed to get to the final potentials or targets. Also the assumptions made are presented. An outline of the steps described in this section is provided in the overview below:
A.
Calculate energy use per Step 1: Energy use per energy carrier and per subsector energy carrier, temperature Step 2: Future development of the industry subsectors 70
level and industry subsector Step 3: Decomposing heat demand into temperature and extrapolation to 2030 levels
B.
Assign energy conversion Step 4: Conversion technologies and efficiencies technologies to historic final Step 5: Match existing biomass technologies to projecenergy data (fuel use) tions
C. Apply a series of substitu- Step 6: Match RES-H/C technologies to temperature tion and exclusion rules to levels find constraints to RES-H/C Step 7: Limiting the number of technologies penetration Step 8: Define constraints to RES-H/C potential in industry Step 9: Amending the potential by applying expert’s view
Step 1: Energy use per energy carrier and per subsector Determine the energy use per energy carrier, per subsector. The data are taken from the source Odyssee (version February 2009). In this way, data are available for all EU-27 Member States.
Step 2: Determine future development of the industry subsectors To this end, demand growth is taken from the PRIMES Baseline Scenario (2007). This source splits demand growth into ‘energy intensive industries’ and ‘other industrial sectors’. The relative increase from the year 2005 to 2020 and 2030 for both branches is displayed in Table 2. In Table 3, each industry subsector from Table 1 is attributed an ‘intensive’ or ‘other industry’ label.
Step 3: Decomposing heat demand into temperature levels In order to decompose heating and cooling demand into temperature levels, five heating categories H1 to H5 have been defined, and three cooling levels C1 to C3. Table 4 indicates the temperature ranges connected to these levels. The shares of each temperature level have been listed in Table 4. For some subsectors no estimates could be made, therefore several subsectors have been filled out with an indus71
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
try-average temperature decomposition. By default, the shares as listed in Table 4 will be input to the model but they might be updated for specific countries in case detailed information is available. In industrial processes no heat demand below 65°C e xists, at least not in a well-integrated process design. Locally low-value heat may be used, but this heat can, in almost all cases, be recovered from the higher temperature processes in the plant (the heat demand below 65°C is always far below the pinch temperature of a n industrial installation). Generally speaking: for industry the low-value heat should be supplied by residual heat. Applying RES-H/C technologies to supply this demand is inadequate. An important modelling assumption is being applied in this step. Namely, the subdivision to heat levels is applied one-to-one to all energy carriers listed in Table 1. This is a very rough combination of two datasets, without recognising any correlations between specific energycarrier use for heat supply in certain temperature ranges. By default the temperature subdivisions from Table 4 are distributed equally among the energy carriers. In case countryspecific data are available this can be adjusted.
72
Table 4 Indicative estimates for temperature levels in subsectors. Industry subsectors in italics are based on average v.alues Several sources: Mueller (2009), Schmid (2003), Spoelstra (2008), Wemmers (2009)
Above 600°C Between 200 and 600°C Between 100 and 200°C Between 65 and 100°C Below 65°C Between +10 and +15°C Between -30 and +10°C Below -30°C Several temperature levels Total
100% 45% 20% 20% 100% 20% 20% 0% 20% 80% 20% 20% 2 0% 0% 0% 0% 32% 25% 45% 0% 25% 25% 0% 25% 5% 25 % 25% 25% 0% 0% 0% 18% 25% 30% 0% 25% 25% 60% 25% 0% 2 5% 25% 25% 0% 0% 0% 5% 30% 0% 0% 30% 30% 40% 30% 15% 30% 30% 30% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
0% 0% 50% 30% 20% 0% 0% 0% 0% 100%
0% 0% 0% 30% 50 % 20% 0% 0% 0% 100%
Agriculture
Tertiary Agriculture
Tertiary
Cooking
Water heating
Space heating
Wood industry
Transport equipment
Textile and leather industry
Steel industry
Rubber and plastics
Residential
Paper printing industry
Non ferrous metals
Machinery
Glass industry
Food industry
Fabricated metals
Chemical industry
Subsector H5 H4 H3 H2 H1 C3 C2 C1 Losses Total
Cement industry
Industry
0% 0% 0% 0% 90% 10% 0% 0% 0% 100%
Step 4: Conversion technologies and efficiencies Table 5 lists the technologies used in the projection for RES-H/C in industry. It can be observed that for the biomass technologies there are three fuels used: wood, waste and biooil. The product to which the biomass is converted to are three also: heat, electricity and biomass-based substitute natural gas (bio-SNG). The respective conversion efficiencies are also listed in the table. Table 5 Overview of technologies and their characteristics. These technologies will be used in the projection to 2030 Conversion efficiency Technology
Input
Heat
Electricity
Bio-SNG
Bio-SNG from digestion
Waste
2%
10%
0%
Bio-SNG from gasification
Waste
0%
0%
50%
Bio-SNG from gasification
Wood
0%
0%
70%
Combustion CHP
Waste
40%
20%
0%
Combustion CHP
Wood
40%
35%
0%
Combustion CHP
Bio-oil
40%
35%
0%
Direct firing
Bio-oil
90%
0%
0%
Direct firing
Wood
90%
0%
0%
Combustion heat only
Waste
65%
0%
0%
Combustion heat only
Wood
90%
0%
0%
Combustion heat only
Bio-oil
90%
0%
0%
Geothermal direct heat use
Geothermal
100%
0%
0%
Solar thermal direct heat use
Solar thermal
100%
0%
0%
Underground thermal storage
Diverse
90%
0%
0%
Step 5: Matching existing biomass technologies to projections In this step historic data from Odyssee (see step 1) and the conversion technologies considered in the modelled projection to 2030 (see step 4 – Table 5) are matched for biomass and waste.
Step 6: Matching of RES-H/C technologies to temperature levels
Renewable energy sources for heating and cooling perform in a window of temperature ranges. All sources together, a wide spectrum of -30°C to more than 600°C can be served. Table 8 shows in general terms which RES-H/C technology can serve which temperature level.
Temperature range Above 600°C
x
H4
Between 200 and 600°C
x
H3
Between 100 and 200°C
x
x
x
H2
Between 65 and 100°C
x
x
x
H1
Below 65°C
x
x
C3
Underground
Solar thermal
Heat pumps
H5
heat/cold storage
Level
Deep geothermal
Biomass
Table 8 Matching of RES-H/C technologies to temperature levels
x
x
x
Between +10 and +15°C
x
x
x
C2
Between -30 and +10°C
x
C1
Below -30°C
Losses
Several temperature levels
The use of heat from product cooling or space cooling is not considered a renewable source. For this reason for heat pumps only heating is considered (Article 5.5 in the Directive). However, each temperature level has its own specific technologies and system-layouts. Also, the use pattern is of importance: the consumption pattern in the residential sector differs significantly from the industrial sector. Table 9 shows in more detail which specific installation is best suited for each technology type and temperature level.
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
The leading principle for filling out the table has been to use standard technology configurations, ready for uptake. Exotic configurations thus haven’t been listed; for example concentrating solar thermal for the highest temperature level is not considered.
76
Level H5
heat/cold storage
Underground
Solar thermal
Heat pumps
Temperature
Deep geothermal
Biomass
Table 9 Specific RES-H/C technologies serving the defined temperature levels
range > 600°C
Direct firing and substitute natural gas from biomass(bio-SNG)
H4
200 - 600°C
Direct firing and substitute natural gas from biomass(bio-SNG)
H3
100 - 200°C
CHP or heat-only from combustion
CHP or direct use
Vacuum collec-
from biomass, municipal solid
of enhanced and
tors
waste (MSW) or bio-SNG
conventional deep geothermal
H2
65 - 100°C
CHP or heat-only from combustion
Enhanced and
Flat plate
from biomass, municipal solid
conventional
collectors
waste (MSW) or bio-SNG (possi-
deep geothermal
bly from anaerobic digestion
H1
< 65°C
CHP or heat-only from combustion
Enhanced and
Aerothermal,
Flat plate
Storage in
from biomass, municipal solid
conventional
geothermal or
collectors, air-
aquifers or
waste (MSW) or bio-SNG (possi-
deep geothermal
hydrothermal
collectors,
lakes
heat pumps
unglazed
bly from anaerobic digestion
collectors
C3
+10 to +15°C
Flat plate or
Storage in
vacuum collec-
aquifers or
tors combined
lakes
with a cooling device
C2
-30 to +10°C
C1
< -30°C
Losses
Several temperature levels
77
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Step 7: Limiting the number of technologies by considering specific industry aspects From the range of all renewable energy technologies available, a limited set is suitable for delivery of heating and cooling services in industry. The type of constraints applied to find the suitable subset of technologies is discussed for each technology in the listing below. •
Combined heat and power from geothermal energy is not considered since the maximum temperature level from geothermal is still relatively low for electricity generation. Should electricity generation indeed be opted for, the temperature level of the residual heat on its turn is relatively low for use in industrial processes. Using the geothermal heat directly at its maximum temperature level is relatively uncomplicated and therefore this option is preferred.
•
Underground storage (or storage in lakes) for heating and cooling is a success in the built environment because of the seasonal pattern in heating and cooling demand. Since this pattern doesn’t exist in industry, this technology is not considered in the modelling work.
•
Similar to the reasoning above, solar assisted cooling is not very likely to be applied in industry as the cooling demand in this sector generally isn’t correlated to solar irradiation.
•
The valorisation of ambient energy using heat pumps is not very likely to occur in industry. Reason for this lies in the definition of renewable energy using heat pumps: the source should be either soil, water or air. In industry these sources are very unlikely to be used, especially since residual heat is often available and could be much more attractive that these renewable sources of generally a lower thermal quality.
Step 8: Limiting the potential by applying constraints to the RES-H/C potential in industry
The potential defined here is a ‘realisable potential’, corresponding to the terminology in the Green-X and INVERT modelling approach: it represents the maximum achievable potential assuming that all barriers can be overcome and all driving forces are active. The realisable potential quantifies in a time dependent manner to what extent renewables can penetrate in a sector. The realisable potential takes into account the following limiting factors:
1. Constraints on fuel supply (mainly relevant for biomass technologies) 2. Constraints on equipment supply (relevant for all manufactured technologies) 3. Constraints on the demand side (relevant for most options; this regards for example maximum market growth rates and planning constraints)
78
4. Constraints because of competition (some technologies compete for delivering the same energy service) The four above factors all limit the realisable potential that will be determined in Work Package 3 of the RES-H Policy project.
Once this realisable potential has been defined, an additional constraint determines the extent to which renewables options effectively penetrate into the market:
5. Constraints related to the cost-benefit ratio 6. Constraints related to consumer behaviour Adding these two additional constraints obviously limits the actually achievable penetration at levels below the earlier defined realisable potential. These constraints will be modelled in Work Package 4 of the RES-H Policy project and are discussed in a next section of this report.
The above mentioned limiting factors 1 to 4 are discussed below.
1. Constraints on supply of resources: especially for biomass processes the amount of fuel input is subject to constraints in resource availability. Indigenous resources have been assessed in detail by several studies. In addition to these resources, biomass can also be imported from other countries or other continents. Also for import a constraint applies: in an open market it is not very likely that one single country absorbs the full worldwide biomass potential. 2. Constraints on supply of conversion or caption equipment. Emerging technologies with small current market shares are limited in market growth. This applies for example to biomass gasification units (only few companies can design large installations), deep geothermal (only few companies have the right competences for deep drilling) and also to solar thermal, for which cumulative sales and installations can only grow sustainably up to certain percentages. 3. Constraints on the demand side: not all conventional energy carriers can be substituted to a full extent by RES-H/C equivalents. For example, coal can partly be substituted by high quality solid biomass without problems, but only up to a share of 20% (energy based) without changing the installation. Other constraints on the demand side are connected to the temperature level of the process: flat solar thermal collectors can for example yield temperatures up to 200°C, but not above that level. Finally, most processes in industry are of a continuous nature, meaning that they require constant heat input. Some renewable technologies can only yield energy in a 79
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
variable manner, which makes them less suitable for use in industry. This is for example the case for solar thermal energy. 4. Constraints because of competition: different biomass processes might depend on a same resource potential, or different technologies might be suitable for a same temperature level. The competition between the resources should be such that double counting is excluded. Schematically, the four main constraints are indicated and quantified in Table 11.
Quantifying constraints 1 to 4 it is not always obvious. An example is the allocation of available biomass between the residential and services use as modelled by INVERT and the industry sector. Table 12 provides an empty table illustrating in what manner countryspecific equipment constraints need to be specified. This will be further elaborated in the country-specific sections.
Step 9: Amending the potential by applying expert’s view The projections for the RES-H potential in industry will following from steps 1 to 8 listed above are being checked by national experts. This may result in amended potentials if experts consider this important.
80
Table 11 Different types of constraints resulting in the realisable potential for all RES-H/C technologies in Industry Technology type
Technology
Fuel supply
Equipment (see also table 12)
supply Demand side
Biomass
Direct firing
Availability of suitable
No equipment constraint when
Replaces coal up to
Competition on the level
high-quality biomass or bio-oil from cost-
substituting up to demand side
20% or bio-oil up to
of resource allocation
constraints
50% (energy content) for
supply curve
temperature
Competition
levels
above 200°C
Substitute natural gas from biomass (bio-SNG) through gasification
Availability of suitable
Constraints in bio-SNG produc-
Can replace 100% of
Competition on the level
inputs for gasification process from cost-
tion facilities. For each country 15 PJ/a starting in 2020, 200-
natural gas
of resource allocation and
supply curve
300 PJ/a in 2030 (source: van
competition between sectors
der Drift 2008)
Substitute natural Availability of suitable gas from biomass inputs for anaerobic (bio-SNG) through digestion process from digestion cost-supply curve
Constraints in digestion facilities: define maximum pene-
Can replace 100% of
Competition on the level
natural gas
of resource allocation and
trations [PJ] in target years
competition between sec-
2010, 2020 and 2030
tors
CHP from biomass Availability of solid Constraints in CHP installa- Constraints to on-site Competition on the level combustion biomass or municipal tions: define maximum pene- heat demand, assumed of resource allocation and solid from
waste (MSW) cost-supply
trations [PJ] in target years 2010, 2020 and 2030
not limiting
competition between sectors
curve
Heat-only from Availability of solid Constraints in CHP installa- Constraints to on-site Competition on the level biomass combus- biomass or municipal tions: define maximum pene- heat demand, assumed of resource allocation and tion solid waste (MSW) trations [PJ] in target years not limiting competition between sec-
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
from
cost-supply
2010, 2020 and 2030
tors
curve
Geothermal
Direct use
Local resource availability from realisable
Constraints in drilling: define
Serves all temperature
For relative small penetra-
maximum penetrations [PJ]
levels up to 200°C
tions no limitations due to
potential
in target years 2010, 2020 and
competition
2030
Solar thermal
Direct use
Practically no limits
Constraints in solar thermal installations: define maximum
Serves all temperature
For relative small penetra-
levels up to 200°C
tions no limitations due to
penetrations [PJ] in target
competition
years 2010, 2020 and 2030
Underground thermal storage
Heat transfer and Suitable sources are Suitable locations are needed storage needed
82
Only a few processes:
Synergy with some RES-
very sector-specific
H/C technologies
C.3
Bronnen
Hofer, R. (1994): Analyse der Potential industrieller Kraft-Wärme-Kopplung.IfESchriftenreihe, Nr. 28, TU München Andreas Mueller, Technical University Vienna, Energy Economics Group (EEG), personal communication, 2009 Schmid, Ch.; Layer, G.; Brakhage, A.; Radgen, P.; Arndt, U.; Carter, J.; Duschl, A.; Lilleike, J.; Nebelung, O. (2003): Möglichkeiten, Potenziale, Hemmnisse und Instrumente zur Senkung des Energieverbrauchs branchenübergreifender Techniken in den Bereichen Industrie und Kleinverbrauch, Endbericht an das Umweltbundesamt, Karlsruhe/München: Fraunhofer-Institut für Systemtechnik und Innovationsforschung, Forschungsstelle für Energiewirtschaft Spoelstra, S., De Nederlandse en Industriele energiehuishouding van 2000 tot en met 2006, ECN-E--08-065, http://www.ecn.nl/publicaties/default.aspx?nr=ECN-E--08065, October 2008 Anton Wemmers, Energy research Centre of the Netherlands, personal communication, 2009
83
RES-H Policy
Doelstellingen voor hernieuwbare warmte en koude in Nederland
Appendix D Gebouwvoorraad voor Nederland D.1
Woningen (2006)
Bulding category Single family dwelling (detached)
Single family dwelling (semi-detached)
Single family dwelling (row)
multifamily dwelling
Construction period <1930 1930-1959 1960-1979 1980-1994 >1995 Total <1930 1930-1959 1960-1979 1980-1994 >1995 Total <1930 1930-1959 1960-1979 1980-1994 >1995 Total <1930 1930-1959 1960-1979 1980-1994 >1995 Total
Total
Number of buildings
Floor surface 2 [km ] 226,306 218,522 237,553 189,717 148,418 1,020,516 98,827 178,608 235,155 221,233 135,770 869,593 375,056 535,553 1,031,761 757,959 328,178 3,028,507 212,896 443,748 641,886 428,876 266,383 1,993,789 6,912,405
Source: Existing building stock in the Netherlands, reference year 2006, by Energy research Centre of the Netherlands (ECN)
84
54 54 59 47 38 23 34 44 40 25 68 75 146 106 49 20 35 49 35 25 1,028
D.2
Overheid, handel en dienstensector
Offices Hospitals Nursing homes Schools Shops Hotels, restaurants, cafes Swimming pools Sports accomodations
Space heating 2 kWh/m 139 186 200 111 125
Water heating 2 kWh/m 2 42 11 2 2
Cooling 2 kWh/m 19 33 1 0 14
Floor surface 2 km 50 - 73 11 - 38 22 - 31 29 - 57 13 - 25
158 467 128
18 58 58
44 0 0
2 - 27 n.a. n.a.
Source: Energy research Centre of the Netherlands
85