Design and validation of an in-plant transportation system at an automotive supplier Pieterjan Vereecke
Promotor: prof. dr. ir. Hendrik Van Landeghem Begeleiders: Filip Jurion (Tyco), ir. Tim Govaert Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: bedrijfskundige systeemtechnieken en operationeel onderzoek
Vakgroep Technische bedrijfsvoering Voorzitter: prof. dr. ir. Hendrik Van Landeghem Faculteit Ingenieurswetenschappen Academiejaar 2008-2009
Design and validation of an in-plant transportation system at an automotive supplier Pieterjan Vereecke
Promotor: prof. dr. ir. Hendrik Van Landeghem Begeleiders: Filip Jurion (Tyco), ir. Tim Govaert Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: bedrijfskundige systeemtechnieken en operationeel onderzoek
Vakgroep Technische bedrijfsvoering Voorzitter: prof. dr. ir. Hendrik Van Landeghem Faculteit Ingenieurswetenschappen Academiejaar 2008-2009
Preface This thesis would not have been realised without the support of some people. There are a number of people, who all in their own way, helped to make the thesis to what it is now. I would like to address a special thanks to them. First of all I would like to thank proffessor R. Van Landeghem and the company Tyco Electronics to give me the opportunity to do this thesis. Tim Govaert also deserves a special word of thanks for his support and feedback during the year. I also would like to thank the people at Tyco Electronics who helped me with the gathering of data. In particular Katty Tournoy, Koen Ongenae and Filip jurion for the answers to the load of small and big questions they got during the year. Special thanks to my parents, brothers and girlfriend for their support in everything I do. I also want to thank my review- and support team. Thank you Annelies, Viktor, Stef, Stefaan, . . . and specially Delfien who helped me with the last straw that breaks the camel’s back. Further I want to thank all the people who aren’t represented by their names here, who supported me, listened to me, helped me or made me, in one way or another, the person who I am now. Thank you.
Pieterjan Vereecke, june 2009
i
Toelating tot bruikleen - Permission to loan
De auteur geeft de toelating deze scriptie voor consultatie beschikbaar te stellen en delen van de scriptie te kopi¨eren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting de bron uitdrukkelijk te vermelden bij het aanhalen van resultaten uit deze scriptie.
Pieterjan Vereecke, juni 2009
The author gives permission for consultation of this thesis and to copy parts of this thesis for personal use. Any other use is subject to the restrictions of copyright, in particular with regard to the requirement to explicitly indicate the source when quoting results based on this thesis.
Pieterjan Vereecke, June 2009
ii
Chapter 0. Toelating tot bruikleen - Permission to loan
iii
Design and validation of an in-plant transportation system at an automotive supplier by Pieterjan Vereecke Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: Bedrijfskundige systeemtechnieken en operationeel onderzoek Academical year 2008–2009 Promotor: Prof. Dr. Ir. H. Van Landeghem Mentors: Ir. T. Govaert, F. Jurion Faculty of Engineering Ghent University Department Industrial Management Director: Prof. Dr. Ir. H. Van Landeghem
Summary As the title of this thesis already mentioned this work describes the investigation of the current in-plant transport. In the current situation the in-plant transport is handled by one forklift and this thesis examines if it is possible to conduct this transport operation with a tugger train. First, the demand for in-plant transport is examined. Then a future state map is developed for a typical product with the aim to decrease the variability in the demand for this transport. Finally an optimal layout is constructed for the current situation with a forklift. Again, this situation is simulated to investigate the effects of the layout improvements and layout propositions.
Entries fork lift, tugger train, layout, simulation, Tyco, in-plant logistics
Design and validation of an in-plant transportation system at an automotive supplier Pieterjan Vereecke Supervisor(s): prof. dr. ir. Hendrik Van Landeghem, Filip Jurion (Tyco), ir. Tim Govaert Abstract— This article discusses the investigation of the in-plant transport of an automotive supplier. The transport has been simulated for a tugger train and this was compared with the forklift situation. Finally, the effect of layout changes has been investigated. Keywords—fork lift, tugger train, layout, Tyco, in-plant logistics
I. I NTRODUCTION
A
T Tyco Electronics in Oostkamp electro-mechanical components are manufactured. There are four production departments in the factory: the molding department makes plastic parts, the stamping department stamps contacts out of a metal coil, the plating department covers the stamped parts with certain alloys to enhance specific properties. Finally, the assembly department adds these components to an end product. The in-plant transport is done by one forklift and happens between specified transport zones. The assembly machines are spread over the factory, so the internal transport is also very spread over the company.
III. S IMULATION CURRENT SITUATION Due to the economical crisis of 2009 the factory worked on low capacity. This made it impossible to measure the in-plant transport. The transport was calculated by dividing it in different components and calculate them with production data of 2008. As a result the material flow between all the transport zones was obtained, expressed as a number of pallets per shift. These numbers are then used in a simulation program [2] to obtain the utilization of the forklift used to do this internal transport. This has two advantages: • This value can be compared to the real world situation and will confirm if the calculations were correct. • Even if this value does not exactly match the current situation, it can be used to evaluate future propositions that are simulated with the same basic numbers. The obtained results for different (un)loading times (LT) are found in the next table. TABLE I S IMULATION OF CURRENT SITUATION WITH FORK LIFT
II. R EDUCE VARIABILITY Before alternatives and prepositions are made to handle the in-plant transport, the need for internal transport is analyzed. A complaint at Tyco were the many pallets that sometimes stood near the lines. A closer look made clear that this was greatly caused by a great variability in the need for the in-plant transport. To understand the causes etc. a current state value stream of a standard product has been made. A standard end product is an assembly product that consists of at least one molded plastic part and at least one plated part that was stamped before. A future state was created where the causes of the variability were gone. The most important changes were: The control processes should be done at the same pace of the production. Currently, control happens after every production process by different workers, sometimes at different times. The controls don’t happen in a constant way, but in peaks. • The whole quality procedure should be reformed. Quality problems and slow decision processes of what to do with the disapproved products lead to great inventory along the lines. Reformation is needed to ensure that the maximum time between the discovery of a quality problem and a decision is one shift. • The registration in SAP of some products is now done by one worker who needs to do this for the whole factory. This process should be included in another process, f.e. it could be done by the forklift driver or the warehouse operators. •
Loading Time Utilization
10s 0.48
20s 0.52
30s 0.56
This utilization is rather low due to following reasons: The simulation does not account for any variability, which is quite large in the current situation. • In 2008 there was also an external warehouse (Jonckheere) were a lot of pallets were temporarly stocked. These pallets needed to go to the loading docks te be shipped to this external warehouse. This transport was also the task of the forklift driver. •
IV. D ESIGN AND VALIDATION OF TUGGER TRAIN As requested by Tyco, a route for a tugger train was designed. An intuitive approach has been used to achieve this. Following problems were encountered: • A tugger train can not turn on small aisles. All the transport zones situated on death-end paths were moved a bit. • The plating department is rather far from the other departments. It is situated in a building just next to the big production hall due to safety issues. A system (f.e. a lamp that can be switched on and off) should be installed so that the driver only goes there when it is needed. Because there is little transport to this department, it is worth the small investment.
Scenarios with multiple routes were considered however the scenario with one large route that passed all transport zones has been chosen. The reasons to this were: – The majority of the time was spent to (un)load the trailers. – The scenarios with multiple routes would make it too complicated for the drivers. – Only little time can be won with the multiple routes scenario. This situation was simulated for a tugger with a different number of trailers and a loading time of 30sec per trailer. Simulations with different loading times and a fixed number of trailers were carried out to investigate the sensitivity of the loading time. The results of these simulations can be found in the next tables. •
TABLE II S IMULATION OF CURRENT STATE FOR A TUGGER TRAIN WITH A DIFFERENT NUMBER OF TRAILERS
Number of trailers Utilization
3 0.82
4 0.7
5 0.63
6 0.59
TABLE III S IMULATION OF CURRENT STATE FOR A TUGGER TRAIN WITH DIFFERNT LOADING TIMES
Loading Time Utilization
30s 0.7
45s 1.07
60s 1.64
The tugger train with four trailers and the fork lift with a loading time of 10s are compared. The results are in the advantage of the forklift (0,48 compared to 0,70), this is almost 50% worse for the tugger. The cause for this is the difference in loading time, the tugger is more efficiently in the transport. V. L AYOUT C HANGES Finally CRAFT, an algorithm to improve a layout, is used to design a future state where the total distance travelled by a forklift is minimized. An Excel add-in [1] was used to find an optimal layout. This layout was changed a bit because some things weren’t very realistic. Unfortunately, according to Tyco, it would be too expensive to replace the molding department, so a new proposition for the layout had to be made. Both propositions, with fixed and variable molding department, were simulated and the results, together with those of the current situation, can be found in the next table. TABLE IV U TILIZATIONS OBTAINED BY SIMULATION
Utilization
Current state 0.48
Molding fixed 0.42
Molding VAR 0.4
The utilization is significantly lower and the moving time decreases with more then 20%. At First sight it is strange that the situation with the molding department fixed is better than when it is variable. Extra variability in the choice of the place of the departments should lead to a more optimal solution. That this
is not the case can be explained by the difference between the layout add-in and the other simulation program. • The add-in calculates the distances between the centroids of the departments • The simulation program works with the real location of the output zones. These are always at the borders of a department close to the transport paths. VI. C ONCLUSION The implementation of a tugger train has the following advantages: • The supply of in-plant transport will be very continuous. Always the same route at specified times. • If there is a need for in-plant transport the tugger driver will quickly notice this. The forklift driver can only know this by driving around which is actually lost time too. • It is much safer because the tugger driver has a better sight than the forklift driver. Because the tugger will follow a fixed route with a fixed direction less collissions will occur. However there are also disadvantages: higher utilization compared with fork lift. • every transport zone needs its own (un)loading equipment and there are a lot of transport zones, • the loading systems have bad ergonomics for the operator, • if layout changes it will be more difficult to adjust to the new situation •
The choice between the two transport systems, proposed and explored here, will depend on the value of each advantage and limitation set by the management of Tyco. R EFERENCES [1] Paul A. Jensen, Facility Layout Add-in, ˜ http://www.me.utexas.edu/jensen/ORMM [2] Moonen Tom, Uitwerken van een simulatietool ter optimalisatie van de interne logistieke flow, Master thesis 2008-2009 Hogeschool WestVlaanderen, dep. PIH
Contents Preface
i
Toelating tot bruikleen - Permission to loan
ii
Overview
iii
1 Introduction 1.1 Goal of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Information about Tyco Electronics and the factory in Oostkamp 1.2.1 General Information . . . . . . . . . . . . . . . . . . . . . 1.2.2 Groundplan of the factory . . . . . . . . . . . . . . . . . . 1.3 Information about the production departments in the factory . . 1.3.1 Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2 Stamping . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3 Plating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.4 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.5 Other, non-manufacturing departments . . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
2 Analysis of the need for in-plant transport to reduce its variability 2.1 Reduce variability in demand for internal transport . . . . . . . . . . . . . 2.2 Current state value stream of a standard end product . . . . . . . . . . . 2.2.1 Production of molded semi finished goods . . . . . . . . . . . . . . 2.2.2 Production of stamped and afterwards plated semi finished goods . 2.2.3 The assembly process starting from the semi finished goods in the sembly warehouses . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Future state value stream of a general end product . . . . . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
1 1 1 1 2 4 4 5 5 7 7 8 8 9 11 12
. . . . . . . . as. . . .
12 13
3 Internal transport in the current situation 3.1 General Information: parts of the internal transport . . . . . . . . . . . . . . 3.2 Finished goods transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Semi Finished goods transport . . . . . . . . . . . . . . . . . . . . . . . . . .
17 17 20 22
vi
vii
Contents . . . . . .
22 23 24 25 26 27
4 Design and validation of a tugger train to handle the transport 4.1 The most common transport systems . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Forklifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Conveyors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 Automated guided vehicle . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.4 Electrified monorail systems . . . . . . . . . . . . . . . . . . . . . . . . 4.1.5 Tugger train (manned) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Creating a route for a tugger train at Tyco electronics . . . . . . . . . . . . . 4.2.1 Death-end problems: a tugger train can’t turn in a small aisle . . . . . 4.2.2 The plating department: a far trip for a few pallets . . . . . . . . . . . 4.2.3 Central path: use it for multiple routes or eliminate it to create one standard route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.4 The direction of the tugger train . . . . . . . . . . . . . . . . . . . . . 4.3 Simulation of the found route . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Comparison of the current state for a fork lift and a train tugger . . . . . . .
33 33 33 36 37 41 42 43 43 45
5 Layout improvements to reduce the current in-plant forklift 5.1 Layout Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Basic types . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Situation at Tyco . . . . . . . . . . . . . . . . . . . . . . 5.2 Algorithmic Approaches to find the optimal Layout . . . . . . . 5.2.1 The most common methods: CRAFT and SSLP . . . . 5.2.2 Tyco situation: CRAFT . . . . . . . . . . . . . . . . . . 5.3 Creating a new Layout . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 Some introduction about the Excel add-in program . . . 5.4 Simulation of the proposed states . . . . . . . . . . . . . . . . .
52 52 52 54 56 56 58 58 59 67
3.4 3.5 3.6
3.3.1 Transport from Molding . . . . . . . 3.3.2 Transport from Stamping . . . . . . 3.3.3 Transport from Plating . . . . . . . Purchased parts transport . . . . . . . . . . Garbage and white boxes collection rounds Simulation of the fork lift situations in 2008
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .
46 48 48 48
6 Conclusions
69
A Nederlandstalige samenvatting
74
B Appendix
88
Chapter 1
Introduction 1.1
Goal of the thesis
Design and validation of an in-plant transportation system at an automotive supplier As the title of this thesis already mentioned this work describes the investigation of the current in-plant transport. In the current situation the in-plant transport is handled by one forklift and this thesis examins if it is possbile to do this transport with a tugger train. First the demand for in-plant transport is examine. A future state map is developed for a typical product with the aim to decrease the variability in the demand for this transport. Finally an optimal layout is constructed for the current situation with a forklift. Again this situation is simulated so the effects of the layout improvements can be investigated.
1.2
1.2.1
Information about Tyco Electronics and the factory in Oostkamp General Information
At Tyco Electronics Belgium EC in Oostkamp 750 employees develop and manufacture electro-mechanical components for the communication industry (including connectors for communication systems and mobile applications) and the automotive sector (including connectors and inductive systems for applications in the automotive electronics). These connectors, are sent to customers such as Nokia, Ericsson, Siemens, BMW, VW, Ford, . . . Tyco Electronics doesn’t only produce those products, they also develop them. The engineering group is specialized in machine and tool design. For example, most of the molds used in the molding department are developed on site.
1
2
Chapter 1. Introduction
The parent company Tyco Electronics is an independent $14.8 billion, publicly traded company. It’s a provider of engineered electronic components for thousands of consumer and industrial products; network solutions and systems for telecommunication and energy markets; undersea telecommunication systems; and wireless systems for critical communications. They design, manufacture and market products for customers in industries ranging from automotive, appliance, and aerospace and defense to telecommunications, computers and consumer electronics. They manufacture nearly 500,000 precision-engineered products and work with 96000 people worldwide.
Figure 1.1: Logo of Tyco Electronics
1.2.2
Groundplan of the factory
In the next section the different departments at Tyco are introduced. Figure 1.2 represents the ground plan of the factory. The departments are indicated so the reader can visualize the factory. The factory itself is located in one big main building (indicated by the black rectangle) except for the plating department. Special safety rules are necessary here because of the toxic products that are used. The plating department is located on the first floor in a building that is connected to this main building. The plating department is drawn above the elevator because it is situated on the first floor. The warehouses that are all over the factory are also marked. The biggest warehouse is the finished goods warehouse, where all the end products are stocked. The molding warehouse and the plating warehouse supply their respective departments. The assembly warehouses store the semi finished goods that are used by the assembly machines. More information about the different departments can be found in the next section.
3
Chapter 1. Introduction
Figure 1.2: Ground plan of the factory
Chapter 1. Introduction
1.3
4
Information about the production departments in the factory
1.3.1
Molding
In the molding department plastic parts are created. The raw materials are plastic granules (figure 1.3 (a)) that are transported with a pneumatic system from the warehouse to all machines . Figure 1.1 explains the injection molding process. Granules are fed to the machine through the hopper, and then they enter the injection barrel by gravity through the feed throat. Upon entrance into the barrel, the granules are heated to the appropriate melting temperature and injected to the mold by a reciprocating screw. The mold is the part of the machine that receives the plastic and shapes it appropriately. It’s cooled constantly to a temperature that allows the plastic to solidify.
Figure 1.3: Illustration of the principle of injection molding
These molded parts are used as components for assembled finished goods or go to an external customer. This customer can be another factory within Tyco Electronics.
5
Chapter 1. Introduction
(a) Input: granules
(b) Output: molded parts
Figure 1.4: Illustrations to visualize the in- and output of the molding process
1.3.2
Stamping
A normal connector doesn’t consist of plastic alone; usually there are also iron contacts in it. These contacts are made in the stamping department. The raw materials here are thin iron bands that are wrought-up on coils. An iron band goes in, is stamped, and an iron band comes out. One of the reasons the end products are still on an iron band is that this makes it easier to use this parts as input for other machines (for example assembly). It is easier for a machine to unroll a coil than to grab a tiny piece. Again customers of the stamped parts can be either internal or external.
(a) Some stamped parts
(b) Example of a stamping machine
Figure 1.5: Illustrations to visualize stamping
1.3.3
Plating
The contacts mentioned in the previous part generally aren’t just pure iron; usually one or more extra layers are added to increase connectivity and conductance. These added materials
Chapter 1. Introduction
6
can be tin, nickel, chromium, zinc, gold, silver, silicon, platinum,. . . The process of adding these layers is called plating and it takes place in the plating department. The coils are unwounded again and go through a series of baths in which the plating process takes place, at the end they are wrought-up again.
Figure 1.6: Plating line, notice the series of baths
With plating or electroplating the object(s) are immersed in a saline solution (with the metal ion as the salt). Through this saline solution, via an external source, a current is run. The object is used as cathode; there is a redoxreaction. To do this, the following procedure is followed: 1. A salt of the metal that has to form the layer should be dissolved in a bucket with water. This means that the salt decomposes into ions. For example AgN O3 forms Ag + cations and N O3− anions. 2. The object that needs the metal layer, is connected to the negative pole of a power source and is called the cathode. The external power source sends extra electrons to this pool. 3. Another metal object is connected to the positive pole and is called the anode. 4. Both articles are immersed in the liquid and a current is provided. 5. Because the subject, that needs to be provided with a metal layer, is the cathode, the metal ions are reduced to the metal. These metal ions will, according to their valency, absorb one or more electrons, offered by the power, and will transfer to a plate covering the object.
Chapter 1. Introduction
7
Figure 1.7: Plating of a spoon with a layer of silver
1.3.4
Assembly
The assembly machines make the ’real’ finished goods, with components from the different departments. Since there are so many different products, there are also a lot of assembly machines, and they cover most of the factory space. Not all components come from the factory itself, some are bought in externally. Every assembly machine is supplied from an assembly warehouse close to the machine. Internal transport delivers all those components to those warehouses. The warehouse operator is responsible to deliver the pallets to the machines on time.
Figure 1.8: Example of standard assembly part
1.3.5
Other, non-manufacturing departments
Besides these traditional departments with production machines there is also a shipping dock, on that side products are packed and shipped to customers. It happens that customers don’t want a full pallet so there’s a need for extra packaging. The purchased goods also arrive here and are then transported to the rest of the factory.
Chapter 2
Analysis of the need for in-plant transport to reduce its variability 2.1
Reduce variability in demand for internal transport
In order to investigate alternatives for the internal transport and make recommendations to improve this, it is necessary to understand why transport is needed and if there’s a need for it at all. Before trying to handle the transport as effectively as possible, it’s necessary to reduce it to the minimum. Transport is one of the seven mudas (muda means waste in Japanese) but can never be fully eliminated. According to the Toyota Production System, which forms the basis for Lean management, all non value adding activities or waste can be categorized in 7 types according to figure 2.1 [4]. .
Figure 2.1: 7 Types of waste
8
Chapter 2. Analysis of the need for in-plant transport to reduce its variability
9
A complaint that was brought up from Tyco was that there is to much inventory near the lines. Another complaint that was confirmed during several plant visits was that the demand for in-plant transport was very discontinuous. One moment there are 10 pallets that need to be transported, other moments nothing has to be transported. To understand the need for transport, a value stream map of the current situation is constructed. This map should help to understand the flow in the factory and the cause of discontinuities and variability in demand for transport. Usually a value stream map is created for every product family but in this case it is only done for a general product. A general end product consists of a plastic molded part and some plated iron connectors that have been stamped in the factory before. Afterwards a new future state is discussed where some adjustments are made to solve the problems mentioned before.
2.2
Current state value stream of a standard end product
A current state was created for the material flow, the information flow wasn’t included as it isn’t relevant in our case. A value stream is created by following a product’s production path from customer to supplier, and carefully draw a visual representation of every process in the material (and information) flow. [5] Although the drawing starts from the customer, the discussion of the value stream will start at the supplier so it would be easier to follow for the reader. Figure 2.2 shows the value stream of the current state.
Chapter 2. Analysis of the need for in-plant transport to reduce its variability
Figure 2.2: Current state value stream
10
Chapter 2. Analysis of the need for in-plant transport to reduce its variability
2.2.1
11
Production of molded semi finished goods
The raw materials are delivered to warehouse 35 (figure 2.3) next to the factory from where it is transported to the molding warehouse. This transport is not a part of the internal transport and happens with a bigger forklift. The raw material are granules which are transported in big boxes. From the molding department a pneumatic pipe network brings them to the right machines. The replenishment of these boxes happens according to the two bin principle. There are always two boxes, if one box is empty the other box is used and the empty one is replaced with a full one. Hence, there is never a shortage of granules.
Figure 2.3: Groundplan to illustrate the location of warehouse 35
After the molding process, the plastic components are transported to an assembly warehouse close to the assembly machine where they are needed. The warehouse operator is responsible for having enough components next to the assembly machines. The pallets with the plastic components undergo a control before being reallocated to the transport zones. This control doesn’t happen very continuously and sometimes there’s also production without this control. It’s clear that this control usually happens in peaks and so the demand for internal transport will also be in peaks.
Chapter 2. Analysis of the need for in-plant transport to reduce its variability
12
Figure 2.4: Zoom on the molding process
2.2.2
Production of stamped and afterwards plated semi finished goods
The raw materials for the plating, iron bands, are directly delivered at the lines by an external firm (Europal). A few exceptions are delivered to the stamping warehouse from where they are transported by machine workers. After the stamping process the stamped bands go to a warehouse next to the plating. From this warehouse (next to the plating) they are brought to the plating input zone by the warehouse operator. From here they are brought to the first floor with an elevator by the plating operators. After the plating process the pallets with the coils on are transported to the relevant assembly warehouse.
Figure 2.5: Zoom on the stamping and plating process
2.2.3
The assembly process starting from the semi finished goods in the assembly warehouses
The assembly warehouse operator is responsible to deliver the semi finished goods (SFG) at the assembly machines. The assembly workers make sure all components are at the right place so that the machine can work properly. During the assembly process the workers at the machines perform a first quality control on the end products (called: ZK). After this, the pallets undergo another control (called: FK). This control doesn’t necessarily has to happen
Chapter 2. Analysis of the need for in-plant transport to reduce its variability
13
at the same time as the first control. Usually there is even a different shift system between the production and this second control. After this final control the product needs to be registered in the SAP program. Once this is done, they are covered with transport papers and they move to the internal transport zone. On the transport papers the pick up and the drop off point is mentioned big enough to be read by the forklift driver. From here the pallets go to the FG warehouse from where they are packed and shipped to the customer. The value stream doesn’t mention what happens in case of a quality problem. A red paper is put on those pallets to indicate that there is a quality problem. According to the cost of the disapproved goods they need to wait between one and seven days before a decision is taken. This decision can be to destroy the whole lot or to check them one by one. This is a problem because the disapproved pallets usually remain in the transport zones where they usually obstruct the road.
Figure 2.6: Zoom on the assembly and following processes
2.3
Future state value stream of a general end product
Figure 2.7 shows a future state. The discontinuities from the previous part were eliminated by following the reasoning we will elaborate upon in this section.
Control assembly (and other production departments) - Current situation Two different controls of the finished good products happen by different workers at a different time. This causes extra inventory near the lines. The last control isn’t very continuously but happens in peaks. As a result the need for internal transport at the assembly machines will vary strongly as well.
Chapter 2. Analysis of the need for in-plant transport to reduce its variability
14
- Future situation The second control should happen at the same time as the first control. To achieve this the operators can work together or the assembly workers can receive an extra training. The same can be done in the other production departments.
Registration in SAP & transport papers - Current situation This used to be done by entering the numbers manually in the computer but happens now by scanning. However this still happens by a person who does this for the whole factory. As that person usually does one round each shift this causes a very discontinuous demand for transport. - Future situation We propose different solutions: • Workers who perform both controls should also scan the goods at once. This requires a lot of scanners. • The forklift driver can scan the pallets while picking them up. He can do this without loosing much time if the barcode is large enough. • The scanning could be performed by the warehouse operators.
Quality control - Current situation In case of a problem the pallets stay near the lines for a day up to one week, depending on the cost of the products. The higher the cost the more autographs are needed to decide what has to happen. During his visits the author of this thesis noticed that half of the pallets in the transport zone had quality issues and couldn’t be transported. - Future situation The whole procedure in case of a quality problem should be changed. The goal of the new procedure is to form a decision in maximum one shift time.
Reduce inventory levels
Chapter 2. Analysis of the need for in-plant transport to reduce its variability
15
- Current situation The current situation contains a lot of warehouses spread over the factory and this actually is not enough. When this thesis started (summer of 2008) there was even an external warehouse that was rented from another company. A lot of semi finished goods that were produced first had to go to an assembly warehouse. There the warehouse operator noticed there wasn’t enough room so these pallets were brought to the loading zone from where they were brought to that other warehouse. Because components could become obsolete it even happened that components needed to come back from that warehouse (to be used) while identical (just produced) products needed to go to that warehouse. At the moment of writing there are concrete steps to eliminate that warehouse, but it shows that there is actually too much inventory. - Future situation All the warehouses are replaced by supermarkets. For every product the ideal stock level should be calculated. In the future state every customer from a supermarket uses a physical pull to retrieve it’s goods. This can also be done by a kanban card that makes sure the goods are retrieved and delivered. Either way the customer (external of internal) pulls what he needs when he needs it. It should be mentioned that these prepositions won’t influence the demand for the internal transport.
Chapter 2. Analysis of the need for in-plant transport to reduce its variability
Figure 2.7: Current state value stream
16
Chapter 3
Internal transport in the current situation 3.1
General Information: parts of the internal transport
To improve the internal transport it is necessary to quantify it. The original plan was to do this by measurement. The fork lift operator should tally the pallets he/she transports during one week in a matrix with all the pick up and dropp off points. This would have given a good estimation of how many pallets go from where to where. Unfortunately, due to the economical crisis the factory worked at a very low capacity in the first months of 2009. Because these measurements couldn’t be executed, an alternative way to get these data had to be found. The internal transport consists of the following parts. All finished goods that go to the FG warehouse. SFG from production to assembly warehouses:
– From Stamping – From Molding – From Plating Foreign parts, bought from external customers or from other Tyco factories, that go to the warehouses. Garbage round and collection of white boxes every shift.
The different components of the internal transport are additive so each component can be investigated separately. There is also repair work and a small amount of products that are brought to small external workshops but this is ignored. The basis for the calculations to 17
Chapter 3. Internal transport in the current situation
18
quantify the transport is a list with all the products that were produced in 2008. This list contained the following information: unique part number description of the part wether the part was produced external or in the factory a code that represents the machine on which it was produced (if produced in the factory), the warehouse where it is stocked the total amount that was produced or bought in the year 2008
Following information is also needed to calculate the material flow in the factory: Which code stands for which machine and more important where every machine is located. This is important because there are transport zones in the factory. Only pallets in these zones may be transported by the fork lift operator. On every pallet a paper with origin and destination is attached so the fork lift driver knows what to do.
– Write down product codes of produced products together with the machine (place and transport zone) on which they are produced. With the code of the part the machine code can be determined. – Interviewing people of logistics, internal transport, production,. . . This was only necessary for the assembly machines, the other machines could be recognized from their product code. Figure 3.1 represents a simplified layout of the factory with all the transport zones (figure not on scale). For every part/product it’s important to know how many fit on a pallet. In the following sections is explained how this information was obtained, as this is different for each transport type.
19
Chapter 3. Internal transport in the current situation 9 Output Plating
Plating warehouse
9 Warehouse Raw material molding
5
15
Tandem Sipac Molding 18
19
94 p tes / tabhousing Modueles 23
22
Headers Aramis Doorlatch
Warehouse assy 40 Warehouse Stamping
Warehouse assy 2 3
13
Springs 21
Eurocard DIN & NID
40
2
20
Maxifuse 55V
11
Warehouse assy 61
Delphi
1 Warehouse assy 50 50
32
28 Get
EBC BCP
Output Stamping
DEKA / B2XX Wheelspeed
33
Warehouse assy 60
16
60 12
Garbage collecting
GARBAGE
1 X SHIFT = GARBAGE COLLECTING
WHITE BOXES
1 X SHIFT = MOLDING WAREHOUSE
Figure 3.1: Transport to finished goods warehouse
61
VKL
Chapter 3. Internal transport in the current situation
3.2
20
Finished goods transport
As stated earlier there are four different manufacturing processes in the factory. Molding, stamping, plating and assembly. Each of them delivers finished goods to the FG storing facility. The list mentioned in the previous part made it easy to filter all end products. Every product that was stored in the FG warehouse is an end product. The assembly machines only deliver products to this warehouse and the other departments only deliver a fraction of their production to the FG warehouse. In the previous section we already mentioned how we figured out which machine was ’connected’ to which transport zone. Tabel B.1 on 89 shows for all the assembly machines the zone they belong to. The numbers in the column ”From” represent the transport zones on figure 3.2. Filip Jurion, the contact person at Tyco Electronics and head of the internal transport made a list with most of the end products and the number of parts per pallet. The numbers that weren’t in the list yet could be found by some warehouse inspection. With the above information, the number of pallets per year for every product can be calculated. The material flow from a transport zone to the FG warehouse consists of the sum of these numbers of the pallets that use this as outputzone. Below you’ll find a table and a graphic representation of the FG warehouse transport. Only end products with at least 10.000 products a year are incluced because those parts represent more than 99% of all end products.
21
Chapter 3. Internal transport in the current situation From
Pallets/year
Percentage
11 maxi fuse
291
1,2
13 springs
929
3,9
15 tandem spring
1182
5,0
16 get
2045
8,7
18 molding
5937
25,2
19 tes/94pol
1010
4,3
20 delphi
375
1,6
21 eurocard
572
2,4
22 headers
3425
14,5
23 modules
1494
6,3
32 EBC/BCP
4468
18,9
33 deka/b2xx
819
3,5
28 Pickup stamping
1041
4,4
TOTAL
23589
Table 3.1: Number of pallets/year that go to the FG warehouse
Figure 3.2: The material flow to the FG warehouse
22
Chapter 3. Internal transport in the current situation
3.3
Semi Finished goods transport
All the parts from molding, plating and stamping that do not go to the FG warehouse (that are no end products) are semi finished goods. This is obvious because a produced part is either an end product or a component.
3.3.1
Transport from Molding
Most of the molded parts are used as a component in the end products and are therefore transported to the different assembly warehouses. These parts could be filtered from the earlier mentioned list because all the molding machines have a machine code that starts with M. For the molded parts there was a list available with the number of parts per pallet and there’s only one transport zone. Table 3.2 and figure 3.3 show the material flow that comes from the molding. Also the flow to the FG warehouse is included.
To warehouse
Pallets/year
Percentage
001 FG
5937
39,8
002 ASSY
2676
17,9
003 STAMP
99
0,7
040 ASSY
4890
32,8
050 ASSY
1201
8,0
060 ASSY
119
0,8
TOTAL
14922
Table 3.2: Number of pallets/year that come from the molding department
Chapter 3. Internal transport in the current situation
23
Figure 3.3: The material flow from the molding department
3.3.2
Transport from Stamping
Stamped parts are mostly put on coils, on which they are as well when they come in as bandmaterial. Some are put in boxes but most of them just remain on a big coil. On every pallet there can be from 3 up to 20 coils, depending on the product type, weight, . . . There was only a list available with the number of pieces on a coil and nothing about the number of coils on a pallet (for every part). A conversation with the warehouse operator and a look in the warehouse resulted in the estimation of that number. This was done for all parts that were produced at least one million times in 2008. These parts represent more than 98 % of the total parts produced at the stamping. Below you’ll find the obtained results. The material flow coming from the stamping department is represented in figure 3.4 and table 3.3.
24
Chapter 3. Internal transport in the current situation To warehouse
Pallets/year
Percentage
001 FG
1041
22,6
002 ASSY
98
2,1
003 STAMP
541
11,7
005 MOL
20
0,4
009 PLA
931
20,2
040 ASSY
1965
42,6
050 ASSY
11
0,2
060 ASSY
3
0,1
TOTAL
4610
Table 3.3: Number of pallets/year that come from the stamping department
Figure 3.4: The material flow from the stamping department
3.3.3
Transport from Plating
For the plating there were no lists available with the number of parts per coil and the number of coils per pallet. This information was available on paper and was looked up for all plated parts that were produced more then 1million times in 2008. These parts represent more then 98% of the total parts produced at the plating. Analogous calculations to the previous subsections lead to the following results. Again, the material flow is shown in figure 3.5 and
25
Chapter 3. Internal transport in the current situation table 3.4.
Figure 3.5: The material flow from the plating department
3.4
Purchased parts transport
Not all components for the endproducts are produced in the factory itself, some are bought from other companies. Those parts arrive at the dock and are brought to a transportzone (zone 12 on figure 3.1) from where they are transported to the warehouses. The reader will notice that there are even parts who go directly to the FG warehouse. These parts are sold without any value adding activity. Table 3.5 and figure 3.6 give an overview of the purchased parts flow. To warehouse
Pallets/year
Percentage
002 ASSY
203,1
23,3
003 STAMP
64,5
7,4
005 MOL
48,1
5,5
040 ASSY
433,5
49,7
050 ASSY
122,9
14,1
TOTAL
872,2
Table 3.4: Number of pallets/year that come from the plating department
26
Chapter 3. Internal transport in the current situation To warehouse
Pallets/year
Percentage
001 FG
164
18,2
002 ASSY
313
34,8
009 PLA
45
5,0
040 ASSY
25
2,8
050 ASSY
348
38,7
060 ASSY
5
0,6
TOTAL
901
Table 3.5: Number of pallets/year that come from the shipping dock
Figure 3.6: The material flow of the purchased parts
3.5
Garbage and white boxes collection rounds
In the factory there are also special zones for garbage and white boxes. Each shift the garbage needs to be brought to the garbage collecting point (next to number 12 in figure 3.1). The white boxes that are used as internal transport boxes need to be collected and brought to the molding warehouse. Both the garbage and the white boxes are transported on pallets.
Chapter 3. Internal transport in the current situation
3.6
27
Simulation of the fork lift situations in 2008
Although the logic to achieve the resulting material flows is good it’s also necessary to check if this matches with reality. In the next chapters, new possibilities to handle the internal transport are evaluated. It’s necessary to have a reference point to examine the effect of some parameters and to know if improvement propositions are really an improvement. This reference point will be obtained by simulation. In the previous section the number of pallets per year was calculated. These flows are recalculated to the number of pallets that need to be transported during each fork lift shift. Also the garbage and the white boxes transport has to happen each fork lift shift. The program that is used to simulate gives as a result the needed number of fork lifts to handle this tranport. This value is also equal to the utilization of the used fork. For example, if the result would be that 0.6 forklifts are needed then the capacity of the used fork lift is 60%. The resulting value can be used to check our calculation. If it is larger than one, the calculations were wrong as there’s only one fork lift in the current situation. This value can also be used as a reference point to compare improvement propositions. To calculate the number of pallets per fork lift shift starting from the pallets per year one needs to know how many shifts there are in one year to the pallets per the number of fork lift shifts in one year needs to be calculated. An interview with the people of internal transport resulted in the following results: During the week the fork lift works approximately 11 hours. On Saturday the fork lift operates 4 hours. This results in 59 hours per week, and given shifts of 8h, this is approximately 7.5 shifts per week There are 50 work weeks in a year
This leads to 375 fork lift shifts a year. The following input was put in the simulation program [7]. All the pick up and drop off points needed to be put in the program. This information can be imported as an Excel list, see table ??. Figure 3.7 shows the ground plan of the factory with all the pick up and drop off points represented by stars. There are three different colors: black stands for materials, green for garbage and red for the white boxes.
Chapter 3. Internal transport in the current situation Name
Description
1 2 3 5 9 11 12 13 15 16 18 19 20 21 22 23 28 32 33 40 50 60 61 90 91 92 93 94 95 96 80 81 82 83 84 85
Droppoff FG Droppoff assy 002 maga stamping Molding warehouse Droppoff/Pick up plating maxi fuse Pick up aankoop veren tandem/spring get molding 94pol/tes delphi eurocard headers modulen Pick up Stamping EBC/BCP deka/b2xx Dropoff assy40 Dropoff assy40 Dropoff assy60 Dropoff assy61 Droppoff afval Pick up afval Pick up afval Pick up afval Pick up afval Pick up afval Pick up afval Dropoff witte bakken Pickup witte bakken Pickup witte bakken Pickup witte bakken Pickup witte bakken Pickup witte bakken
Table 3.6: Inputdata transportpoints
28
29
Chapter 3. Internal transport in the current situation Name
Description
PickupStation
DropoffStation
Frequency
11 1 13 1 15 1 16 1 18 1 19 1 20 1 21 1 22 1 23 1 32 1 33 1 28 1 18 2 18 3 18 40 18 50 18 60 28 2 28 3 28 5 28 9 28 40 28 50 28 60 92 93 95 9 40 9 50 12 1 12 2 12 40 12 50 12 60 91tot96 90 81tot85 80
Van P11 naar D1 Van P13 naar D1 Van P15 naar D1 Van P16 naar D1 Van P18 naar D1 Van P19 naar D1 Van P20 naar D1 Van P21 naar D1 Van P22 naar D1 Van P23 naar D1 Van P32 naar D1 Van P33 naar D1 Van P28 naar D1 Van P18 naar D2 Van P18 naar D3 Van P18 naar D40 Van P18 naar D50 Van P18 naar D60 Van P28 naar D2 Van P28 naar D3 Van P28 naar D5 Van P28 naar D9 Van P28 naar D40 Van P28 naar D50 Van P28 naar D60 Van P9 naar D2 Van P9 naar D3 Van P9 naar D5 Van P9 naar D40 Van P9 naar D50 Van P12 naar D1 Van P12 naar D2 Van P12 naar D40 Van P12 naar D50 Van P12 naar D60 Van P91 naar D90 Van P85 naar D80
11 13 15 16 18 19 20 21 22 23 32 33 28 18 18 18 18 18 28 28 28 28 28 28 28 9 9 9 9 9 12 12 12 12 12 91 85
1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 40 50 60 2 3 5 9 40 50 60 2 3 5 40 50 1 2 40 50 60 90 80
0,775966667 2,477333333 3,153040741 5,454 15,8317968 2,692685202 1,000361111 1,524647222 9,133260268 3,984484539 11,91542857 2,184861685 2,775204092 7,136349525 0,263411225 13,04097709 3,202432892 0,318281958 0,261502718 1,441657786 0,052482427 2,48338831 5,23895184 0,030225117 0,008928312 0,54172402 0,171978944 0,128221172 1,156059792 0,327764245 0,43798 3,116836769 10,60473994 1,577807372 0,632152876 1 1
Table 3.7: Material flows between the transport zones
Chapter 3. Internal transport in the current situation
Figure 3.7: Groundplan with all transport zones, numbers can be linked with table ??
30
Chapter 3. Internal transport in the current situation
31
The material flows need to be inserted in the program. Again this can be done with an Excel list, see table 3.7. Pick up station and drop off station have to be mentioned for every flow and then of course the quantity. The characteristics of the fork lift need to be implemented in the simulation model as well. Some of these characteristics are: pick up and drop off time, speed,. . . The program has to know the location of all these pick up and drop off points and how they are connected. The way this data can be put in is, according to the author of this thesis, the biggest advantage of this program. A picture of the layout that has to be loaded by the program is shown in figure 3.7. In this picture the user has to draw the pick up and drop off points. Besides these pick up and drop off points also network nodes can be drawn to show the path where the fork lift driver can drive. The graphical representation is linked with the real world with the value m/pixel. This can easily be calculated if a real distance is compared with the pixel difference on the picture. The results of the program are summarized in table 3.8. These capacities seem low but two explanations can be found: The used simulation program didn’t take into account any variation The used data is from 2008 when there was a lot of transport to an external warehouse (Jonckheere). This was already mentioned but it means that a large part of the semi finished goods needed extra transportation. From the assembly warehouses to the shipping department, from where they were handled by the external company, and back.
32
Chapter 3. Internal transport in the current situation
Total time: Available time: Occupancy: Traffic congestion:
INPUT 8,00 h 60,00 min/h 100,00% 0,00%
8,00 h 60,00 min/h 100,00% 0,00%
8,00 h 60,00 min/h 100,00% 0,00%
Transport system Loading capacity: Speed (loaded): Speed (unloaded): Pick up time: Drop off time:
1 1,67 m / s 1,67 m / s 10,00 s 10,00 s
1 1,67 m / s 1,67 m / s 15,00 s 15,00 s
1 1,67 m / s 1,67 m / s 20,00 s 20,00 s
OUTPUT Total times (s) Pick up time: Drop off time: Handling time:
1260,77 1260,77 2521,54
1891,15 1891,15 3782,31
2521,54 2521,54 5043,08
Movement time (loaded): Movement time (unloaded):
6872,5 4346,86
6872,5 4346,86
6872,5 4346,86
Movement time:
11219,36
11219,36
11219,36
Needed time: Available time:
13740,9 28800
15001,67 28800
16262,44 28800
Total number of carriers Estimated value
0,48
0,52
0,56
Table 3.8: Summary of the simulation results for a loading time of 10 s, 15 s and 20 s
Chapter 4
Design and validation of a tugger train to handle the transport 4.1
The most common transport systems
Before we start with the specific situations at Tyco Electronics we would like to give the reader some information about the different in-plant transport types, with extra attention for the advantages and disadvantages of each type. In practice mostly one of the following transport means for the in-plant transport is used. Forklifts Conveyors AGV (Automated Guided Vehicle) Electrified Monorail System Tugger train (manned)
4.1.1
Forklifts
Since long, forklifts have been the most popular mean of material handling equipment to load and unload trucks and in fact they are being used most for transporting pallet cargos. Many claim that the fork lift has become an indispensable element in warehouse operations, but there are certainly some disadvantages too. There are different kinds of forklifts, here the standard four wheel counterweights fork lift will be discussed.
33
Chapter 4. Design and validation of a tugger train to handle the transport
34
Figure 4.1: fork lift
Figure 4.1 shows a standard fork lift: a motorized freight carrier, on the front side there’s a vertical mast that makes sure cargos can be lifted. Attached to the mast there is a L-shaped fork that is slid under the pallet. On the backside there is usually a counterweight that ensures the weight of the cargo is compensated. The maximum loading weight is generally associated with the term capacity of the fork lift. For this standard fork lift the capacity varies between 1000 kg and 45000 kg. A fork lift moves relatively fast (maximum 20 km/h) and makes it possible to lift and stock up to 5 m altitude. There are a lot of variations on this standard fork lift, for example the fork could be extended with an adapter to transport rolls (figure 4.2 (a)) [6] . For narrow aisles (warehouses) there are forklifts with their fork in a different angle (b on figure).
Chapter 4. Design and validation of a tugger train to handle the transport
(a) An adapter to transport rolls
35
(b) Reaching fork lift
Figure 4.2: Illustrations to visualize the in- and output of the molding process
Advantages of a fork lift: Diversity: forklifts are available in many forms with different capacity Multi-operationality: it’s possible to assemble different adapters on the fork lift to perform a specific task . A fork lift can put the pallet away in a warehouse or take it out. [2]
Disadvantages: As they are often used, they are an obstacle for people on the floor that work in the same environment. Lots of accidents happen with fork lifts, most of which are serious. Fork lifts are by far the most dangerous industrial vehicles in use today, due to their high number (over 1 million) and high accident rate (1 in 6 industrial accidents affects a fork lift, and there are over 100,000 injuries and 100-200 fatalities each year in the United States due to fork lift accidents) [1] refer to articles, are in directory articles If there are many forklifts they can impede each other. Compared with the other transport systems the operators have to learn a lot. It’s not that easy to pick up, drop off pallets without damaging anything. [2]
Chapter 4. Design and validation of a tugger train to handle the transport
36
This are severe disadvantages and give an indication why so many companies try to avoid the use of fork lifts.
4.1.2
Conveyors
To transport incoming products and raw materials easily and rapidly within the factory, it can be important to use a good conveyor system. In this section we will discuss roller conveyors, as these are most common and considered as an effective manner to transport material. Other types of conveyors are: Gravity conveyors Chain conveyors (figure 4.3) Powered Belt Conveyors
Figure 4.3: Chainconveyor
Roller conveyors are composed of narrow metal tubes, which are placed in a long file beside each other and operated (rotated) by an underlying mechanism (figure 4.2).
Chapter 4. Design and validation of a tugger train to handle the transport
37
Figure 4.4: Driven rollerconveyor
Advantages of (roller) conveyors are: They are flexible and able to transport material around turnings and on subtle slopes. They require little traction strength and can also ensure a lateral (un)loading along its route. They are very safe compared to forklifts. Relatively low costs for conveyors.
A few disadvantages are: As conveyors are static, they are safer but they also take a fixed location. This system limits vertical transport as the slope of such conveyors can never be more than 5°. Single point of failure, in case of a problem everything blocks. Conveyors are generally noisy. Maximum throughput is fixed
4.1.3
Automated guided vehicle
An Automated guided vehicle (AGV) is a self moving machine that follows a predetermined route. There are several types of AGV’s, so there are a lot of possibilities. Egemin [3] a company specialized in building AGV’s have the following types (figure 4.5):
Chapter 4. Design and validation of a tugger train to handle the transport
38
FLVs - Fork Lift Vehicles are AGVs equipped with forks to lift and transport different types of loads. In this type there are also some different kinds.
– FLV/N: Narrow version (fork over wheel) – FLV/S: Straddle type version (support legs outside load) SEE PICTURE – FLV/CB: Counterbalance version – FLV/R: Reach Truck – FLV/X: Special type of Fork Lift Vehicle (e.g. manipulation devices for load tipping, rotating, etc.) RLVs (Roll Lifting Vehicles) are AGVs equipped with forks to lift and transport different types of rolls. SLVs (Side Lifting Vehicles) are AGVs equipped with forks to lift different types of loads sideways. LTVs (Load Transfer Vehicles) are AGV vehicles equipped with a conveyor to pick loads from and drop loads at static conveyor systems. figure: LTV with double roller conveyor for double-height transport of four bins LPVs (Load Transfer Vehicles) are AGV vehicles equipped with a platform onto which loads are dropped or from which loads are taken. figure: Flatbed heavy-duty LPV for reel transport up to 12 tonnes TUVs (Tugger Vehicles) are AGV vehicles tugging non-driven carts charged with loads. Outside the scope of its standard type vehicles they also manufacture special AGV’s if the customer wants this.
The speed of the above solutions vary from 0.5 - 2 m/s.
Chapter 4. Design and validation of a tugger train to handle the transport
(a) illustration of FLV/S
39
(b) RLV for horizontal and length- (c) SLV with side-lifting telescopic wise paper reel transport forks
(d) LTV with double roller con- (e) Flatbed heavy-duty LPV for veyor for double-height transport of reel transport up to 12 tonnes four bins
(f) illustration of TUV
Figure 4.5: Illustration of the different AGV types
Other suppliers have a similar product range. As AGV’s are unmanned, communication is essential. There are several possibilities to do this, Egemin uses three systems: Laser, magnet and wire navigation, each of them having its own advantages and disadvantages. Because a detailed discussion would lead us too far we will shortly explain the laser navigation. The interested reader can find more information on the website of Egemin. The AGV sends out a laser signal that is reflected by beacons installed along drive paths. The system measures the distance and the angle to each reflector. If the AGV detects at least 3 beacons the exact position can be determined. This is illustrated on figure 4.6.
Chapter 4. Design and validation of a tugger train to handle the transport
40
Figure 4.6: The principle of laser navigation
An AGV has several advantages: As AGV’s work fully automatic they don’t demand any labor except for periodic and preventive maintenance. Modern navigation systems (f.e. the laser beam reflector method) allow AGV’s to be directed along a virtual path. So adaptions in the layout of a factory don’t cause any problems, we see that AGV’s have a large degree of adaptability/flexibility. AGV’s require only a bit more space than the material which they transport and are therefore space-efficient. AGV’s are useful for Multi-tasking. The vehicles are interchangeable in case of a problem. Throughput can be adjusted by adding extra vehicles.
Disadvantages of an AGV: Expensive Slow to medium speed of most AGV’s (0,5 m/s) Complex structure
Chapter 4. Design and validation of a tugger train to handle the transport
4.1.4
41
Electrified monorail systems
As it is often important to be able to add capacity to a busy factory or to increase it’s throughput, the floor occupancy is vital. The solution can be found in a technique that uses the altitude of the factory, the electrified monorail. These systems transport (raw) material(s) and are able to stock these above the work floor. The average speed of such monorail trolley is 1 m/s. Strong advantages of this technology are: Independent trolleys move along a central bar to the ceiling. Each trolley has its own engine, so unique paths can be outlined; this provides a lot of flexibility. Here as well, a central computer controls what the trolley does. Intelligent communications makes sure that the actions of the trolley can be carefully examined and controlled. Electrified monorail systems are very precise, both in the treatment of the material and in the movement along the line. Several weight classes are possible, ranging up to a few tons Turnings, slopes and descents can be incorporated without problems Trolleys are interchangeable in case of a problem. Throughput can be adjusted a bit by adding extra trolleys.
Disadvantages are: The greatest disadvantage is undoubtedly the price. They are more expensive than other alternatives and this is also the biggest reason why they’re almost never used in other sectors then the automotive industry. EMS can’t be used in uncovered surroundings. Humidity, dirt and extreme temperatures can drastically reduce its performance. Once installed, they are permanent. A change in the layout of the factory brings serious complications. In case problem with the track, the whole system has to stop.
Chapter 4. Design and validation of a tugger train to handle the transport
4.1.5
42
Tugger train (manned)
To conclude, we will discuss the system of a manned tugger train. As you can see in figure 4.7, a tugger train exists of a leading carrier, controlled by a worker, and different trailers where different materials can be transported in. They have a maximum capacity of 10ton. This transport type is very popular, also due to the low costs of this recent development. Advantages are: Economical benefits: you need less workers (in comparison with fork lifts) and especially the low capital investment in equipment. Productivity: this method has often a larger profit because it uses the most efficient way to transport (optimal use of the space). Congestion: A tugger train avoids bottlenecks in the movement within the factory by reducing the number of transport units. More volume and weight are provided less in trips. Flexibility to changing production methods or product mix. Several formats and sizes can be transported Security: the view of the driver is not obstructed as in a fork lift. As a result, less accidents will occur.
Disadvantages on the other hand are: Manual picking of the carriers and manual control of the tugger. You need a lot of space if you want to turn, so the routes of the tugger train and the layout of the factory should be adapted to this transport type.
Chapter 4. Design and validation of a tugger train to handle the transport
43
Figure 4.7: Tugger train
4.2
Creating a route for a tugger train at Tyco electronics
There was an explicit request of Tyco Electronics to look if it was possible to replace their fork lift by a tugger train (tow tractor). In the next chapter a route for the train will be created and the sensitivity of several parameters will be examined. A tugger with 4 trailers and a maximum speed of 6km/h is chosen. For this situation it is investigated if a route can be created that passes all pick up and drop off points. This is done by an intuitive approach where every problem is discussed in a different subsection. This way a solution for the route is found step by step.
4.2.1
Death-end problems: a tugger train can’t turn in a small aisle
The tugger will drive on the paths of the fork lifts. However, as the tow-tractor can’t turn, this will result in a problem for those pick up and drop off points who are connected to a dead-end path. As can be seen on figure 4.8 and 4.9 this is the case for:
Chapter 4. Design and validation of a tugger train to handle the transport
44
the maxi fuse, the assembly warehouses 2 and 61 and the GET transportzone.
A solution can be to move this transport zones, as you can see on figure 4.8 and 4.9 following changes are suggested: the maxi fuse zone is moved towards the eurocard transport zone the same happens for the assembly warehouses and the GET transport zone is moved closer to the central path
Figure 4.8: figure to illustrate reallocations
Chapter 4. Design and validation of a tugger train to handle the transport
45
Figure 4.9: figure to illustrate reallocation of GET transport zone
If you look at figures 4.8 and 4.9, it seems that also the plating department is a dead-end however there’s enough space for a tugger to turn in that area. However a big distance needs to be driven for only one pick up/drop off point, and that is the subject of the next subsection.
4.2.2
The plating department: a far trip for a few pallets
On figure 3.7 it is clear that the plating pick up and drop off point is far from the other departments. From chapter 3 we know that on average only 5 pallets are transported to or from the plating department (2.5 in and 2.5 out). Every shift 115 pallets from the production need to be transported, besides that there are five pallets with white boxes and six pallets with garbage every shift. This gives a total of 126 pallets every shift and only 5 of them go to or come from the plating. It could be useful to eliminate this point from a standard route.
Chapter 4. Design and validation of a tugger train to handle the transport
46
Two ideas to do this are: A lamp on the corner to the plating department The plating operator can switch this lamp on and off if pallets need to be picked up. If something needs to be delivered at the plating drop off point, the driver will know as he has picked that pallet up. Specefic plating round every shift
This will save time each shift. Distance to plating is 38 m and the speed of the tugger is 6 km/h. It takes a tugger approximatly 30 sec to turn so the total time saved each route is: 38 m · 2 + 30 = 1min 15sec 1.67 m s
4.2.3
(4.1)
Central path: use it for multiple routes or eliminate it to create one standard route
We can do two things with this path (see figure 4.10). Eliminate it and create one standard route. Use it to create three different loops;
– loop for the upper part, – loop for the lower part, – large loop without this path.
Chapter 4. Design and validation of a tugger train to handle the transport
47
Figure 4.10: Illustration of the elimination of the central path
The total distance of the big loop, and as a result the runtime are: total distance = 46 + 46 + 72 + 72 + 76 = 588time =
588 = 5min 52sec 1, 67
The time that can be saved with the upper and the lower loop: Upper This route is 144 m or 86 sec shorter compared to the large loop. Lower This route is 152 m or 91 sec shorter compared to the large loop.
If we look at figure 4.10, we see that the finished goods warehouse would be in the lower loop, which means that all assembly lines from the upper part already need a large loop. Besides that, multiple routes will complicate the work for the fork lift driver. Which pallet does he need to pick up in which round, should he do a small or large loop now, . . . These arguments together with the short time that can be won with a lot of increased complexity leads to a believe that the path should be eliminated. Following transportzones are moved: The delphi transport zone is moved to the nearest corner. The input zone for assembly warehouse 40 moves to the other end of the warehouse.
Chapter 4. Design and validation of a tugger train to handle the transport
48
The white boxes and garbage collecting points are also moved to the closest corner.
4.2.4
The direction of the tugger train
As we choose a specific route we also need to choose a fixed direction. If we look at the highest pallet flows we see that they go to the FG warehouse and come from the molding, header and EBC/BCP department. The best direction is then clockwise, because this results in the shortest path from the molding and header to the FG warehouse.
4.3
Simulation of the found route
The program that was used to simulate the situation with the fork lift can also do a simulation for a tugger train. The pick up and drop off points were adjusted according to the changes mentioned in the previous section. The program needs the following extra information: the number of trailers, the loading and unloading time.
With the simulation the sensitivity of both parameters is examined.
The results are discussed in section 4.4.
4.4
Comparison of the current state for a fork lift and a train tugger
A comparison is made between this two situations: fork lift with (un)loading time of 10 sec. Tugger train with 4 trailers and (un)loading time of 30 sec.
The (un)loading time of the tugger train is 20 s higher than the (un)loading time of the fork lift because the tugger driver needs to leave his position to (un)load the carrier. The results are in the advantage of the fork lift (an utilization of 0,48 compared to 0,70 as shown in table 4.1), this is almost 50% lower for the tugger. The cause is the difference in loading time. A comparison of the movement time is in the advantage of the tugger train, 11219 sec for the fork lift versus 7340 sec for the tugger train. Even a tugger with 3 trailers has a lower movement time but the material handling time is three times higher. The implementation of a tugger train does has advantages:
49
Chapter 4. Design and validation of a tugger train to handle the transport
Total time: Available time: Occupancy: Traffic congestion:
INPUT 8,00 h 60,00 min/h 100,00% 0,00%
8,00 h 60,00 min/h 100,00% 0,00%
8,00 h 60,00 min/h 100,00% 0,00%
Transportsystem Loading capacity: Speed (loaded): Pick up time: Drop off time:
4 1,67 m / s 120,00 s 120,00 s
4 1,67 m / s 180,00 s 180,00 s
4 1,67 m / s 240,00 s 240,00 s
OUTPUT Totale times (s) Handling time:
15129,24
22693,84
30258,46
Movement time:
7340,51
7340,51
7340,51
Needed time: Available time:
22469,74 28800
30034,35 28800
37598,97 28800
Total number of carriers Estimated value
0,7
1,07
1,64
Table 4.1: Summary of the simulation results for a loading time of 30 sec,45 sec and 60 sec for each carrier. The values mentioned in the table are for all carriers.
50
Chapter 4. Design and validation of a tugger train to handle the transport
Total time: Available time: Occupancy: Traffic congestion:
8,00 h 60,00 min/h 100,00% 0,00%
INPUT 8,00 h 60,00 min/h 100,00% 0,00%
Transportsystem Loading capacity: Speed (loaded): Pick up time: Drop off time:
3 1,67 m / s 90,00 s 90,00 s
4 1,67 m / s 120,00 s 120,00 s
8,00 h 60,00 min/h 100,00% 0,00%
8,00 h 60,00 min/h 100,00% 0,00%
5 1,67 m / s 150,00 s 150,00 s
6 1,67 m / s 180,00 s 180,00 s
OUTPUT Totale times (s) Handling time:
15129,24
15129,24
15129,24
15129,24
Movement time:
9787,34
7340,51
5872,41
4893,67
Needed time: Available time:
24916,57 28800
22469,74 28800
21001,64 28800
20022,9 28800
Total number of carriers Estimated value
0,82
0,7
0,63
0,59
Table 4.2: Summary of the simulation results for a different number of trailers
Chapter 4. Design and validation of a tugger train to handle the transport
51
The supply of in-plant transport will be very regular (continuously). If there is a need for in-plant transport the tugger driver will quickly notice this. The fork lift driver can only know this by driving around which is lost time. It is much safer so maybe the maximum speed of 6 km/h due to safety reasons could be changed.
However there are disadvantages too: Every transport zone needs its own loading equipment. Because there are a lot of transport zones this will probably be a high investment. Usually those systems have bad ergonomics so special attention is necessary. There are different pallets in Tyco according to the wishes of the customers. These differences are easier to handle for a fork lift. The trailers of the train and the loading equipment are usually less flexible If layout changes (what happens often at Tyco Electronics Oostkamp) there will be costs for the tugger trains and not for the forklifts.
The decision to pick the right in-plant transport system is a management decision that will depend on things like corporate culture. How severe are certain disadvantages for the factory?
Chapter 5
Layout improvements to reduce the current in-plant forklift transport 5.1 5.1.1
Layout Types Basic types
There are four basic layout types: Fixed product location departments This layout differs in concept from the other three. In the other layouts, the product is brought to the workstations. Here the workstations are brought to the product. A typical example is building a ship. If a ship is build it usually stays at the same position, the different workstations (welding, piping, ducting, cabling, painting,. . . ) are brought to the shipyard. Other examples: buildings, aircrafts, . . .
Figure 5.1: Illustration of the fixed product location layout
Production line departments This layout is based on the processing sequence for the parts being produced on the line. The equipment or work processes are arranged according to the progressive steps by which the part is made. The products/parts typically flow from one workstation directly to the next adjacent one. The path here is, in effect, a straight line. This
52
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
53
type of layout is very common for mass production for parts/products with low variety. Examples of this layout are chemical plants and car washes.
Figure 5.2: Illustration of the production line layout
Product family departments The layout for a product family department is based on the grouping of parts to form product families. Nonidentical parts may be grouped into families based on common processing sequences, shapes, material composition, tooling requirements, handling/storage/control requirements,. . . ??. Every product family is treated like a product and a product layout is developed. The processing equipment required for every product family is grouped together and placed in a manufacturing cell. This layout typically has a lot of intradepartmental flow and little interdepartmental flow.
Figure 5.3: Illustration of the product family layout
Process departments This layout typically groups similar processes together and places individual process departments relative to one another based on flow between departments. In contradiction with the product family layout, there is a lot of interdepartmental flow and little intradepartmental flow. This layout is used when the volume for individual parts or groups of parts is not sufficient to justify a product layout or product family layout.
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
54
Figure 5.4: Illustration of the process layout
In practice the layout type isn’t always exactly one of the above types, you’ll often find a hybrid or combination. Figure 5.5 shows a table with a comparison of the above types.
5.1.2
Situation at Tyco
The layout structure in Tyco is a process department layout. All the molding, plating and stamping machines are grouped (see figure 1.2). The assembly machines are not completely grouped. Groups of assembly machines are scattered all over the factory. One such small group consists of assembly machines producing similar products and have therefore common components. Grouping these machines has some clear advantages for storage and transport.
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
55
Fixed Product Layout • • • • •
Advantages Material movement is reduced. When a team approach is used, continuity of operations and responsibility results. Provides job enrichment opportunities. Promotes pride and quality because an individual can complete the “whole job.” Highly flexible; can accommodate changes in product design, product mix and production volume.
• •
Limitations Personal and equipment movement is increased. May result in duplicate equipment.
• •
Requires greater skill for personnel. Requires general supervision.
•
May result in increased space and greater work-inprocess.
•
Requires close control and coor-dination in scheduling production.
Product Layout • • • • • • •
Advantages Smooth, simple, logical and direct flow lines result. Small work-in-process inventories should result. Total production time per unit is short. Material handling requirements are reduced. Les skill is required for personnel. Simple production control is possible. Special purpose equipment can be used.
• •
Limitations Machine stoppage stops the line.
•
Product design changes cause the layout to become obsolete. Slowest station paces the line.
•
General supervision is required.
•
Higher equipment investment usually results.
Group Layout • • • •
•
Advantages By grouping products, higher machine utilization can result. Smoother flow lines and shorter travel distances are expected. Team atmosphere and job enlargement benefits often result. Has some of the benefits of product layout and process layouts; it is a compromise between the two.
• • • •
•
Encourages consideration of generalpurpose equipment.
•
Limitations General supervision required. Greater labor skills required for team members to be skilled on all operations. Critically dependent on production control balancing the flows through the individual cells. If flow is not balanced in each cell, buffers and work-in-process storage are required in the cell to eliminate the need for added material handling to and from the cell. Has some of the disadvantages of product layouts and process layouts; is a compromise between the two. Decreases the opportunity to use special-purpose equipment.
Process Layout • • • • •
Advantages Increased machine utilization. General-purpose equipment can be used. Highly flexible in allocating personnel and equipment. Diversity of tasks for personnel. Specialized supervision is possible.
• • • • •
Limitations Increased material handing requirements. More complicated production control required. Increased work-in-process. Longer production lines. Higher skills required to accommodate diversity of tasks required.
Figure 5.5: Advantages and limitations of the four basic layout types
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
5.2 5.2.1
56
Algorithmic Approaches to find the optimal Layout The most common methods: CRAFT and SSLP
We first discuss the two most common algorithms that are used to find optimal layout structures. CRAFT This abbreviation stands for Computerized Relative Allocation of Facilities Technique. CRAFT requires a load matrix, a distance matrix and a cost per unit of distance travelled as initial inputs. CRAFT tries to improve the relative placement of the departments as measured by total material handling cost for the layout. 1 Rectilinear distance is the calculation of distances by adding the horizontal and the vertical distance between these points. The CRAFT method makes improvements by exchanging pairs of departments iteratively until no further cost reductions are possible. That is, the program calculates the effect on total cost of exchanging departments. If this yields a reduction, the exchange is made, which constitutes an iteration. Since most departments are linked a simple pairwise exchange will have a great influence. SSLP [?] In certain types of layout problems, numerical flow of items between departments either is impractical to obtain or does not reveal the qualitative factors that may be crucial to the placement decision. This last argument can be the case in supermarkets where it can be important to have the toys department close to the candy department, or the vital products as far as possible from the entrance so customers will walk through the whole supermarket. In these situations, the technique of simplified systematic layout planning (SSLP) can be used. It involves developing a relationshipchart showing the degree of importance of having each department located adjacent to every other department. Because we won’t use this technique in our case we will refer to an example in the further explanation of this technique. Figure ?? shows the relationship chart for an example with six departments. The relationships are easy to understand, for example the breakroom of the workers can’t be close to the offices so people at work aren’t disturbed by workers who have a break. 1
Material handling cost between departments = Number of loads × Rectilinear distance between department centroids × Cost per unit distance.
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
57
Figure 5.6: Illustration to visualise a relationship chart
From this chart, an activity relationship diagram is developed (see figure 5.6), the different relationships are represented with different connection symbols. This diagram is then adjusted by trial and error until a satisfactory adjacency pattern is obtained.
(a) Original layout
(b) Proposed layout
Figure 5.7: Illustrations of two activity relationship diagrams
To evaluate these layouts, the approach needs to be quantified. This entails assigning numerical weights to the closeness preferences and then trying different layout arrangements. The layout with the highest total closeness score is selected. The choice of this weight structure is rather ad hoc, but the logic is that the most undesirable preference weighting (-80 for ”X”) is five times worse than the most desirable weighting of 16 for ”A.” In figure 5.7 you can find an activity relationship from an initial and a proposed layout, together with the calculation of the closeness score.
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
58
Figure 5.8: Calculation of closeness score for the two layouts in figure 5.7
5.2.2
Tyco situation: CRAFT
In this case the data of how many pallets transported between any two points is available, just like the distances between those points. Therefore the CRAFT method will be used to try improving the current layout. In section /NewLayout a computer program is used that utilizes the CRAFT method to find a different layout. During this explanation some advantages and disadvantages of the technique and the program will be discussed.
5.3
Creating a new Layout
The program that is used is an Excel facility layout add-in, developed by Paul A. Jensen. Although the CRAFT method is already explained, the way of working of the program is shortly discussed.
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
5.3.1
59
Some introduction about the Excel add-in program
The program requires the following input: Number of departments: n. Physical area of each department, Ai for i = 1 . . . n Is the location of the department fixed or variable? Physical dimensions of the plant in which the departments should be placed: Length L and Width W . Product flow between every pair of departments: fij f or i = 1 . . . n, j = 1 . . . n Material handling cost between every pair of departments: cij f or i = 1 . . . n, j = 1 . . . n As a fork lift is used in every situation there is no difference in this and we assume they are all 1. cij = 1 ∀ i, j
The information of Tyco needs to be inserted in the program. The product flow between the departments can be retrieved from table 3.7. Compared with chapter 3, there are no special points or departments that represent the white boxes and garbage points. Only the two collecting points are added and the respective pallets come from those departments where these points are located. This is realistic, because if a department would change place, the zones for garbage and white boxes would move as well. This leads to the following zones (see figure 5.9)
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
60
Figure 5.9: Different zones in the factory
If we look at the factory (plating excluded) then the physical dimensions of the plant are L × W = 156m × 94m. This is a problem because the program limits the maximum facility dimensions to a width of 50 cells and a length of 100 cells. This can be solved by making the cells two by two in stead of one by one. This is the reason why the cells on figure 5.9 are equal to the area divided by four. Due to this limitation, some areas will need to be round off and it’s important to make sure that the total distance remains the same. The size of the areas was calculated by measuring the ground plan and round off these values afterwards. There are also zones in the factory that aren’t relevant (f.e. desks, etc . . . ), these zones are marked with the number 0 which means its a ‘dead’ zone. The program will not put anything else there. This is good because some of those areas are separated from the rest of the factor with walls and we only want to give a new layout that will improve the in-plant transport without huge investments. The program needs to know if a deparment is fixed or not. The fixed departments are: Plating: for safety reasons this is seperated from the rest of the factory. Special safety rules apply for this deparment. Since it is fixed it can be replaced by one cell at the upside of the matrix and this won’t have any influence on the optimal solution because
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
61
the distance to all relevant departments will diminish with the same number. This can easily be seen if we look at the initial layout figure 5.10. The purchased goods pick up point: this needs to be close to the shipping department, its also represented by one cell. The finished goods warehouse: It will be clear for the reader that this needs a place close to the shipping department, since there is no internal transport from this warehouse to the packing and shipping department. The garbage collecting point. Molding warehouse: Here the white boxes are collected and there’s a special system installed to deliver the granules to the molding machines.
With the above information the program will create a blank matrix where the user then has to put an initial layout. It is evident that we will take the current layout as initial layout, see figure 5.10.
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 0 0
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 15 15 15 15 15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 14 14 14 14 14 14 14 14 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 14 14 14 14 14 14 14 14 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 14 14 14 14 14 14 14 14 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 2 2 2 0 0 13 13 13 13 13 13 13 13 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 21 21 21 21 21 21 21 21 21 21 21 2 2 2 3 3 13 13 13 13 13 13 13 13 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 21 21 21 21 21 21 21 21 21 21 21 2 2 2 3 3 13 13 13 13 13 13 13 13 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 21 21 21 21 21 21 21 21 21 21 21 2 2 2 3 3 13 13 13 13 13 13 13 13 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 21 21 21 21 21 21 21 21 21 21 21 2 2 2 3 3 13 13 13 13 13 13 13 13 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 21 21 21 21 21 21 21 21 21 21 21 2 2 2 3 3 13 13 13 13 13 13 13 13 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 21 21 21 21 21 21 21 21 21 21 21 2 2 2 3 3 13 13 13 13 13 13 13 13 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 21 21 21 21 21 21 21 21 21 21 21 2 2 2 3 3 13 13 13 13 13 13 13 13 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 21 21 21 21 21 21 21 21 21 21 21 2 2 2 3 3 13 13 13 13 13 13 13 13 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 21 21 21 21 21 21 21 21 21 21 21 2 2 2 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 19 19 19 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 19 19 19 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 19 19 19 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 19 19 19 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 19 19 19 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 19 19 19 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 19 19 19 4 4 12 12 12 12 12 12 12 12 12 12 12 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 5.10: The layout like it looks now
62
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
63
One can choose to use the rectilinear or Euclidean distance. Given the transport going via aisles parallel to the borders of the factory in stead of going in a glance from one department to the other, rectilinear is the best choice. A disadvantage is that the program uses the departments’ centroids to calculate the distances between them. In reality the transport zones are always at the border of the department so actually one should take these points in consideration in reducing the material handling cost. The program tries to find an optimal solution with pair wise exchange. The initial solution will have a big influence on the final solution. An optimal solution is the solution with the lowest material handling cost. Any pair wise exchange will result in a material handling cost that is higher then the then resulting optimal solution. It’s not necessary to minimize the total cost as there is no difference in the transporting costs between the different departments. It is sufficient to do this for the total distance covered to transport all pallets. The resulting function that needs to be minimized is then the sum of all the interdepartmental distances dij multiplied by the amount fij that needs to be transported. z=
n X n X
fij · dij
(5.1)
i=1 j=1
The optimal solution is the on that is obtained by doing pair wise exchanges till no further reduction of this function is obtained. Each pair wise exchange will have an influence on dij . The optimal solution that was obtained with the program is represented in figure 5.11. The different zones in the factory lost their rectangular form and this solution was modified to a more realistic layout shown in figure 5.12. When Tyco was contacted with a proposition of this optimal lay out they said that it would be very expensive to reallocate the molding department. A second layout holding the molding department fixed, was made. It should be mentioned that the output zone for the EBC/BCP is in both situations on the right side of the department, close to the Finished Goods Warehouse. Because this is one of the largest material flows this has great influence on the movement time. The two situations are simulated with the simulation program we previously used and the results are discussed in the next section.
64
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 10 10 10 10 10 10 10 10 10 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 16 16 16 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 10 10 10 10 10 10 10 10 10 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 16 16 16 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 10 10 10 10 10 10 11 11 11 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 16 16 16 16 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 11 11 11 11 11 11 11 11 11 0 0
10 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 16 16 16 16 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 11 11 11 11 11 11 11 11 11 0 0
11 0 0 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 24
12 0 0 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
13 0 0 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
14 0 0 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
15 0 0 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
16 0 0 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 23
17 0 0 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
18 0 0 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
19 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
20 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
21 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 16 16 16 21 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
22 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 16 16 16 21 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
23 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 16 16 16 21 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 0 0
24 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 4 4 16 16 16 16 21 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 0 0
25 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 4 4 16 16 16 16 21 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 6 6 11 11 11 11 11 11 11 11 11 11 11 11 0 0
26 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 18 18 18 18 18 18 18 18 18 18 18 18 18 18 4 4 16 16 16 16 16 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 6 6 6 6 6 6 6 6 6 6 6 11 11 11 0 0
27 0 0 19 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 4 4 16 16 16 16 16 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 6 6 6 6 6 6 6 6 6 6 6 11 11 11 0 0
28 5 0 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 4 4 16 16 16 16 16 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 6 6 6 6 6 6 6 6 6 6 6 11 11 11 0 0
29 0 0 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 4 4 16 16 16 16 16 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 6 6 6 6 6 6 6 6 6 6 6 11 11 11 0 0
30 0 0 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 4 4 16 16 16 16 16 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 6 6 6 6 6 6 6 6 6 6 6 11 11 11 0 0
31 0 0 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 4 4 16 16 16 16 16 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 6 6 6 6 6 6 6 6 6 6 6 11 11 11 0 0
32 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 4 4 16 16 16 16 16 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 6 6 6 6 6 6 6 6 6 6 6 11 11 11 0 0
33 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 4 4 16 16 16 16 16 9 9 9 12 12 12 12 12 12 12 12 12 12 12 12 6 6 6 6 6 6 6 6 6 6 6 11 11 11 0 0
34 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
35 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
36 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
37 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
38 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
39 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
40 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
Figure 5.11: The optimal layout according to the add-in
41 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
42 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
43 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
44 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
45 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
46 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
47 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 18 18 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
65
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21 21 21 3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9 9 9 9 9 19 19 19 19 19 19 19 8 8 8 8 8 8 8 8 8 8 8 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21 21 21 3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9 9 9 9 9 19 19 19 19 19 19 19 8 8 8 8 8 8 8 8 8 8 8 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21 21 21 3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9 9 9 9 9 19 19 19 19 19 19 19 8 8 8 8 8 8 8 8 8 8 8 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21 21 21 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21 21 21 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21 21 21 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21 21 21 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21 21 21 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21 21 21 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 0 0
10 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 21 21 21 21 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 0 0
11 0 0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 24
12 0 0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
13 0 0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
14 0 0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
15 0 0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
16 0 0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 23
17 0 0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
18 0 0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
19 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
20 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
21 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
22 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
23 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
24 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
25 0 0 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0 0 11 11 11 11 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
26 0 0 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 11 11 4 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
27 0 0 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 11 11 4 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
28 5 0 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 11 11 4 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
29 0 0 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 11 11 11 4 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
30 0 0 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 11 11 11 4 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
31 0 0 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 11 11 4 4 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
32 0 0 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 11 11 4 4 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
33 0 0 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 11 11 11 11 11 11 4 4 4 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
34 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
35 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
36 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 0 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
37 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 0 4 4 4 4 4 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
38 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
Figure 5.12: Realistic version of the optimal layout
39 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
40 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
41 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
42 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
43 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
44 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 0 0 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
45 0 0 17 17 17 17 17 17 17 17 17 17 17 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
46 0 0 17 17 17 17 17 17 17 17 17 17 17 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
47 0 0 17 17 17 17 17 17 17 17 17 17 17 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
66
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 19 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 19 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 19 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 19 19 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 19 19 19 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 19 19 19 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 19 19 19 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 19 19 19 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 19 19 0 0
10 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 19 19 0 0
11 0 0 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 10 10 10 0 24
12 0 0 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 10 10 10 0 0
13 0 0 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 10 10 10 0 0
14 0 0 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 10 10 10 0 0
15 0 0 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 10 10 10 0 0
16 0 0 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 10 10 10 0 23
17 0 0 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 10 10 10 0 0
18 0 0 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 10 10 10 0 0
19 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 10 10 10 0 0
20 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 10 10 10 0 0
21 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
22 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
23 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
24 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
25 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
26 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
27 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
28 5 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
29 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
30 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
31 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
32 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
33 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 0 0
34 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
35 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
36 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
37 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
38 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
39 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
Figure 5.13: Optimal layout where also molding is fixed
40 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
41 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
42 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
43 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
44 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 21 21 21 21 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
45 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
46 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
47 0 0 18 18 18 18 18 18 18 18 18 18 18 18 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
5.4
67
Simulation of the proposed states
The results are summarized in the table 5.1. The first column is the simulation of the current situation of chapter 3. The second column is the simulation of the proposed layout where the molding department is reallocated. The third column is the simulation of the proposed layout where the molding department is fixed.
The handling time is the same for all three the situations as the loading time is equal. The difference between the three situations has to be found in the moving time. In the current situation this takes 11219 s, in the optimal situation where the molding is variable this is 9714 sec. With the molding department as a fixed department, the moving time is even less, namely 8948 seconden. This is a reduction of 20% compared with the original situation. At first sight, it is strange that the situation with the molding department being fixed is better than the situation with a variable molding department. Extra variability in the choice of the place of the departments should lead to a more optimal solution. This suprisingly discrepancy can be explained by the difference between the layout add-in and the other simulation program. The add-in calculates the distances between the centroids of the departments The simulation program works with the real location of the output zones. These are always at the borders of a department close to the transport paths.
Chapter 5. Layout improvements to reduce the current in-plant forklift transport
Total time: Available time: Occupancy: Traffic congestion:
INPUT 8,00 h 60,00 min/h 100,00% 0,00%
8,00 h 60,00 min/h 100,00% 0,00%
8,00 h 60,00 min/h 100,00% 0,00%
Transport system Loading capacity: Speed (loaded): Speed (unloaded): Pick up time: Drop off time:
1 1,67 m / s 1,67 m / s 10,00 s 10,00 s
1 1,67 m / s 1,67 m / s 10,00 s 10,00 s
1 1,67 m / s 1,67 m / s 10,00 s 10,00 s
OUTPUT Total times (s) Pick up time: Drop off time: Handling time:
1260,77 1260,77 2521,54
1260,77 1260,77 2521,54
1260,77 1260,77 2521,54
Movement time (loaded): Movement time (unloaded):
6872,5 4346,86
6125,72 3588,24
5484,13 3464,54
Movement time:
11219,36
9713,96
8948,68
Needed time: Available time:
13740,9 28800
12235,5 28800
11470,22 28800
Total number of carriers Estimated value
0,48
0,42
0,4
Table 5.1: Summary of simulation results for different layout propositions
68
Chapter 6
Conclusions In this thesis the in-plant transport at Tyco Electronics in Oostkamp is investigated. In the current situation this transport is handled by one fork lift. This thesis examines if a tugger train could do this transport in a more optimal way instead of a fork lift. There are problems with inventory near the lines and there is a lot of variability in the demand for in-plant transport. These issues were solved by the development of a future state in chapter 2. This state can be achieved with the following propositions: The two controls that happen with the assembled products should happen at the same time. The registration of the products in SAP shoud be done together with another process. The whole procedure in case of a quality problem should be changed. The goal of the new procedure should be to get a decision (of what to do) in maximum one shift.
Because no measurements on the transport could be done due to the economical crisis, the material flows are calculated. A simulation is performed to check the consistency and reliability of the calculations and to use as a reference point. In chapter IV a route is created and validated for a tugger train. The obtained results were in the advantage of a fork lift. The tugger train was more efficient in moving the pallets but as the loading time is three times as high (30 s for the fork lift vs 10 s for the tugger train) there was a big difference noticed. The utilization of the tugger train was 50% higher then that of a forklift. The implementation of a tugger train has following advantages: more continuous supply of in-plant transport, if there is a need for transport the tugger train driver will quickly notice this,
69
Chapter 6. Conclusions
70
it is safer.
However there are also disadvantages: higher utilization compared with fork lift. every transport zone needs its own (un)loading equipment and there are a lot of transport zones, the loading systems have bad ergonomics for the operator, if layout changes it will be more difficult to adjust to the new situation
Finally a new layout was created for the fork lift transport. This layout reduced the covered distance with 20% and no huge investments were needed to do this. The choice between the two transport systems, proposed and explored here, will depend on the value of each advantage and limitation set by the management of Tyco.
List of Figures 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Logo of Tyco Electronics . . . . . . . . . . . . . . . . . . . Ground plan of the factory . . . . . . . . . . . . . . . . . Illustration of the principle of injection molding . . . . . . Illustrations to visualize the in- and output of the molding Illustrations to visualize stamping . . . . . . . . . . . . . . Plating line, notice the series of baths . . . . . . . . . . . Plating of a spoon with a layer of silver . . . . . . . . . . Example of standard assembly part . . . . . . . . . . . . .
. . . . . . . . . . . . . . . process . . . . . . . . . . . . . . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
2 3 4 5 5 6 7 7
2.1 2.2 2.3 2.4 2.5 2.6 2.7
7 Types of waste . . . . . . . . . . . . . . . . . . . . . Current state value stream . . . . . . . . . . . . . . . . Groundplan to illustrate the location of warehouse 35 Zoom on the molding process . . . . . . . . . . . . . . Zoom on the stamping and plating process . . . . . . . Zoom on the assembly and following processes . . . . . Current state value stream . . . . . . . . . . . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
8 10 11 12 12 13 16
3.1 3.2 3.3 3.4 3.5 3.6 3.7
Transport to finished goods warehouse . . . . . . . . . . . . The material flow to the FG warehouse . . . . . . . . . . . The material flow from the molding department . . . . . . . The material flow from the stamping department . . . . . . The material flow from the plating department . . . . . . . The material flow of the purchased parts . . . . . . . . . . . Groundplan with all transport zones, numbers can be linked
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . table ??
. . . . . . .
. . . . . . .
19 21 23 24 25 26 30
4.1 4.2 4.3 4.4 4.5 4.6
fork lift . . . . . . . . . . . . . . . . . . . . . Illustrations to visualize the in- and output of Chainconveyor . . . . . . . . . . . . . . . . . Driven rollerconveyor . . . . . . . . . . . . . . Illustration of the different AGV types . . . . The principle of laser navigation . . . . . . .
. . . . . .
. . . . . .
34 35 36 37 39 40
71
. . . . . . .
. . . . . . .
. . . . . . . the molding . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . . . . . . . . . . . . . with
. . . . . . .
. . . . . process . . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
72
List of Figures 4.7 4.8 4.9 4.10
Tugger train . . . . . . . . . . . . . . . . . . . . . . . . figure to illustrate reallocations . . . . . . . . . . . . . figure to illustrate reallocation of GET transport zone Illustration of the elimination of the central path . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
43 44 45 47
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13
Illustration of the fixed product location layout . . . . . . . . Illustration of the production line layout . . . . . . . . . . . . Illustration of the product family layout . . . . . . . . . . . . Illustration of the process layout . . . . . . . . . . . . . . . . Advantages and limitations of the four basic layout types . . Illustration to visualise a relationship chart . . . . . . . . . . Illustrations of two activity relationship diagrams . . . . . . . Calculation of closeness score for the two layouts in figure 5.7 Different zones in the factory . . . . . . . . . . . . . . . . . . The layout like it looks now . . . . . . . . . . . . . . . . . . . The optimal layout according to the add-in . . . . . . . . . . Realistic version of the optimal layout . . . . . . . . . . . . . Optimal layout where also molding is fixed . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
52 53 53 54 55 57 57 58 60 62 64 65 66
List of Tables 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
Number of pallets/year that go to the FG warehouse . . . . . . . . . . . . Number of pallets/year that come from the molding department . . . . . Number of pallets/year that come from the stamping department . . . . . Number of pallets/year that come from the plating department . . . . . . Number of pallets/year that come from the shipping dock . . . . . . . . . Inputdata transportpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . Material flows between the transport zones . . . . . . . . . . . . . . . . . Summary of the simulation results for a loading time of 10 s, 15 s and 20 s
. . . . . . . .
21 22 24 25 26 28 29 32
4.1 4.2
Summary of the simulation results for a loading time of 30 sec,45 sec and 60 sec for each carrier. The values mentioned in the table are for all carriers. . . . . Summary of the simulation results for a different number of trailers . . . . . .
49 50
5.1
Summary of simulation results for different layout propositions . . . . . . . .
68
B.1 List of machine codes and the transport zone they deliver to . . . . . . . . . .
89
73
. . . . . . . .
Appendix A
Nederlandstalige samenvatting
74
Nederlandstalige Samenvatting
75
Inhoudsopgave 1 Introductie 1.1 De productieafdelingen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 3
2 Analyseren van de nood aan intern transport bij Tyco Electronics 2.1 Current State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Future State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 4 5
3 Het intern transport in de huidige situatie
7
4 Onderzoek en ontwerp van een tugger train
9
5 Bestuderen van de Layout
11
Nederlandstalige Samenvatting
1
76
Introductie
De titel van deze thesis is het ontwerp en het valideren van een ander intern transport systeem bij een automotive toeleverancier. Aan de hand van een value stream map wordt in eerste instantie geprobeerd om te begrijpen waarom er nood is aan intern transport. Een vraag van het bedrijf uit was om ook op zoek te gaan naar bepaalde discontinu¨ıteiten in de materiaalstroom die ervoor zorgden dat de vraag naar het intern transport enorm discontinu was. Dit leidde tot een onregelmatige belasting van het intern transport en dus ook tot een hogere maximum capaciteit. Verder zorgde dit soms voor heel wat voorraad naast de lijnen. Hiervoor werd een current state value stream gemaakt. Op basis daarvan is dan een future state value stream ontwikkeld waarop de oorzaken van discontinuiteiten waren weggewerkt . Daarna wordt dieper ingegaan op de samenstelling van het intern transport. Normaal gezien ging er een meting komen van het transport in de fabriek. De heftruckchauffeur ging moeten bijhouden welke palletten hij naar waar ging vervoeren door elke keer hij een pallet had afgezet een streepje te zetten in een matrix met daarop alle ophaal en afzet punten. Door de economische crisis draaide de fabriek slechts op een lage capaciteit en was het dus niet mogelijk om die metingen uit te voeren. De materiaalstrome werden dan berekend. De huidige situatie werd dan gesimuleerd om te kijken of het resultaat van de berekeningen wel realistisch is en om een referentiepunt te hebben om verbeteringsvoorstellen te evalueren. In de vierde sectie wordt de mogelijkheid onderzocht om het intern transport dat nu via een heftruck gebeurt te vervangen door een tugger train. De vraag om dit te onderzoeken voor een tugger train kwam er expliciet van de fabriek. Nadat in een aantal stappen de route voor de tugger wordt vastgelegd, wordt deze situatie ook gesimuleerd en vergeleken met de situatie voor de heftruck.Het voorlaatste hoofdstuk gaat dan op zoek naar layout aanpassingen om het transport op zich te verminderen. Een aantal situaties worden gesimuleerd en vergeleken met elkaar. De laatste sectie zet nog eens alle voor- en nadelen van heftruck en tugger train voor de verschillende situaties op een rijtje. Ook worden de belangrijkste aanpassing om de current state van de tweede sectie te bekomen, nog eens herhaald. Vooraleer we overgaan naar de tweede sectie introduceren we even kort de fabriek aan de hand van de plattegrond (zie figuur 1.2 1 ). Op de figuur ?? zie je de verschillende afdelingen: Molding, plating, stamping en assembly die straks in meer detail worden besproken. De fabriek zelf is gesitueerd in de grote centrale hal (aangeduid door de zwarte rechthoek) uitgezonderd de plating afdeling. Die afdeling bevind zich op het eerste verdiep in een gebouw dat wat naast de fabriek staat. Dit gebouw is wel verbonden met de grote hal en het is ook geen probleem om daar met een heftruck naar toe te rijden. In de afdeling zelf gelden wel speciale veiligheidsvoorzieningen omwille van de toxische producten 1
De figuren kunnen in de feitelijke thesis gevonden worden
Nederlandstalige Samenvatting 77 die daar gebruikt worden.Op de figuur zijn ook de magazijnen in de fabriek aangeduid. Het grootste magazijn is dat van de afgewerkte producten (finshed goods) en dit bevindt zich dicht bij de verpakkingsafdeling waar de eindproducten naar de klanten worden gestuurd. Het molding en plating magazijn zorgen voor de bevoorrading van hun respectievelijke departementen. De bevoorrading van de stamping machines gebeurt door een externe firma, enkel het zeldzame bandmateriaal wordt opgeslaan in het stamping magazijn. Verder heb je ook nog de assembly magazijnen waar die onderdelen worden in opgeslaan die gebruikt worden door de assemblage machines. Het is de taak van de magazijniers om ervoor te zorgen dat die onderdelen op tijd naast de machines staan. Aangezien de assemblage machines verspreid zijn over de ganse productiehal zijn de magazijnen dat ook.
1.1
De productieafdelingen
Molding Hier worden de plastieken onderdelen gemaakt. De grondstoffen voor dit proces zijn granulaten die aangevoerd worden uit het molding magazijn d.m.v. een pneumatisch buizensysteem. De granulaten worden samengeperst en opgewarmd in een matrijs die ervoor zorgt dat de stukken hun uiteindelijke vorm krijgen. Nadat deze stukken gemaakt zijn, worden ze gebruikt als onderdeel voor de assemblage of rechtsteeks verkocht aan externe klanten. Deze klanten kunnen ook andere fabrieken binnen het Tyco concern zijn. Stamping Hier worden de stalen connectoren die je in de meeste contacten vindt gemaakt. Het basismateriaal hier zijn dunne metalen rollen die worden afgewikkeld en waar de juiste vormen worden ingestampd. De onderdelen hangen nog lichtjes aan elkaar zodat het afgewerkte product opnieuw kan worden opgewikkeld. Dit zorgt ervoor dat ze makkelijker kunnen getransporteerd worden en gemakkelijker kunnen worden gebruikt als onderdeel voor eindproducten. Het is immers makkelijker voor een machine om een metalen rol af te wikkelen en de connectoren daarvan los te maken dan dergelijke kleine deeltjes te gaan nemen uit een bak. Plating Meestal worden de contacten waarvan sprake was in de vorige paragraaf niet meteen gebruikt in een connector maar wordt er eerst een laagje ander materiaal opgelegd (galvaniseren). Dit zorgt ervoor dat de contacten een betere connectiviteit en geleidingsvermogen zullen hebben. Een typisch voorbeeld van een plating proces is het verzilveren van metalen bestek. De onderdelen die hier worden geproduceerd, worden bijna allemaal gebruikt voor interne toepassingen. Assemblage De assemblage machines maken de echte afgewerkte producten met onderdelen afkomstig uit de verschillende afdelingen. Aangezien er veel verschillende eindproducten zijn (meer dan 3000 unieke part nummers) zijn er ook veel assemblage machines. Niet alle onderdelen komen van in de fabriek zelf, er worden er ook aangekocht. Zoals eerder al vermeld wordt elke machine bevoorraad uit een assemblage magazijn. Niet producerende afdelingen Naast deze traditionele productie afdelingen heb je ook nog de verpakking en de laad en los kaai. Hier worden de producten verpakt en getransporteerd
Nederlandstalige Samenvatting 78 naar de klanten. Ook de aangekochte onderdelen komen hier binnen en worden dan naar de rest van de fabriek gebracht door het intern transport.
2
Analyseren van de nood aan intern transport bij Tyco Electronics
Als een nieuw transportsysteem moet worden ontworpen, is het nodig om de vraag naar het intern transport te begrijpen. Verder willen we ook kijken hoe het zit met de variabiliteit van de vraag naar dit transport. Uit interviews met de mensen verantwoordelijk voor het intern transport is immers die grote variabiliteit naar voor gekomen. Dit werd ook bevestigd tijdens de bedrijfsbezoeken die door de auteur van deze thesis zijn gedaan. Om dit te doen werd een value stream opgesteld van een standaard eindproduct. Met een standaard eindproduct bedoelen we een product dat geassembleerd is op een assemblage machine met als onderdelen een stuk uit de molding en ´e´en of meerdere contacten die na het stampen ook naar de plating zijn gegaan.
2.1
Current State
De current state value stream vind je op (zie figuur 2.2). Hoewel een value stream wordt getekend door te beginnen bij de klant en dan zo stroomopwaarts te werken naar de leveranciers toe, bespreken we ze hier startend bij de leveranciers om het voor de lezer gemakkelijk te maken om te volgen. De figuur is opgesplitst in de assemblage van de eindonderdelen en de productie van de half afgewerkte onderdelen. Die onderdelen zijn dan nog eens verder opgesplitst in molding en stamping met plating. Productie van molding onderdelen De granulaten worden door een leveranciers geleverd in het magazijn 35. Dit magazijn bevindt zich in een gebouw net naast het hoofdgebouw. Van hieruit worden de grote dozen vol granulaten met een grote heftruck naar het molding magazijn gebracht. Dit transport hoort niet bij het interne transport dat door een andere heftruck wordt gedaan. Het is vanuit het molding magazijn dat een pneumatisch aangedreven buizensysteem de granulaten naar de machines brengt. Het vervangen van die grote dozen in het molding magazijn gebeurt volgens het 2 bin principe. Er staan altijd twee dozen: als de ene doos leeg is, wordt de andere gebruikt en wordt een nieuwe doos uit magazijn 35 gebracht. Op die manier is er nooit een tekort aan granulaten. Vooraleer de paletten met plastieken onderdelen naar de uitleverzone gaan worden ze nog eens gecontroleerd. Aangezien deze controle niet continu gebeurt met het produceren zorgt dit al voor een eerste discontinu¨ıteit. Het is namelijk pas na deze controle dat de paletten naar de uitleverzonde worden gebracht. Productie van gegalvaniseerde onderdelen De ijzeren banden die dienen als onderdeel voor de stamping machines worden rechtstreeks door een externe firma (Europal) aan de lijnen geleverd. Deze firma verzorgt verder ook het aanleveren van de verpakkingen aan alle machines
Nederlandstalige Samenvatting 79 maar is verder niet relevant in deze thesis. Nadat deze banden gestampt zijn, worden ze naar het plating magazijn gebracht. Van hieruit worden ze door de magazijnier naar de plating aanleverzone gebracht. Na het galvaniseren worden de banden getransporteerd naar de relevante assemblage magazijnen.
Assemblage van de eindproducten De magazijnier van het magazijn (meestal het dichtste) dat de nodige onderdelen bevat, is verantwoordelijk voor het aanleveren van die paletten aan de assemblagemachines. De werknemer die de machine bedient en de producten in dozen steekt, voert een eerste controle uit (ZK genoemd). Hierna gebeurt er nog een andere controle per pallet (meestal door een andere werknemer, FK genoemd) alvorens de paletten naar de uitleverzone worden gebracht. Ook deze controle leidt tot een discontinu¨ıteit aangezien die controle meestal ook niet op hetzelfde moment van de productie gebeurt. De controle en de productie werken zelfs vaak volgens een ander shiftensysteem. Voor de heftruckchauffeur de paletten mag meenemen, moeten deze eerst nog ingeboekt worden in het SAP planningssysteem. Dit gebeurt door een persoon die dit moet doen voor alle eindproducten. Dit gebeurt dan ook meestal maar ´e´en keer per shift. Dit is dan ook een grote oorzaak voor de discontinu¨ıteit in dit transport. Als dit gebeurd is, worden de paletten naar het eindproducten magazijn gebracht vanwaar ze verpakt en verzonden worden naar de klanten. Op de value stream map staat niet afgebeeld wat er gebeurt als een pallet wordt afgekeurd door de controle. Op die paletten wordt een rood papier gekleefd om aan te geven dat er een probleem is. Naargelang de waarde van de afgekeurde producten duurt het ´e´en tot soms zeven dagen vooraleer een beslissing wordt genomen. Mogelijke beslissingen zijn om alle onderdelen afzonderlijk te controleren of meteen het ganse pallet te vernietigen. Hoewel er speciale zones zijn voor afgekeurde producten zijn deze vaak te klein en staan die paletten ook in de transport zones. Dit zorgt er ook voor dat er nogal wat paletten naast de machines blijven (in de weg) staan.
2.2
Future State
Figuur 2.7 toont de value stream van een mogelijke future state. De problemen die werden vermeld in de voorgaande paragraaf zijn weg en voor sommigen is een oplossing vermeld. Controle assemblage (en andere productie afdelingen) Current state Nu gebeuren er twee verschillende controles van de afgewerkte eindproducten door verschillende werknemers op een verschillend moment. Dit leidt tot extra voorraad langs de lijn. De laatste controle is niet echt een continu proces maar gebeurt meer in pieken. Dit zorgt ervoor dat de nood aan intern transport ook in pieken verloopt. Future state De tweede controle gebeurt terzelfdertijd met de eerste. Om dit te bereiken kunnen de twee werknemers samen werken of kan de werknemer die verantwoordelijk is voor de machine een extra opleiding krijgen. Hetzelfde kan worden toegepast op de controles in de andere afdelingen.
Nederlandstalige Samenvatting Registreren in SAP en de vervoerpapieren
80
Current state Dit werd gedaan door het manueel intypen van nummers in een computer maar gebeurt nu al door scannen. Het wordt wel nog steeds gedaan door ´e´en persoon die dit moet doen voor de volledige fabriek. Aangezien die persoon meestal maar ´e´en ronde doet per shift zorgt dit ervoor dat de nood aan intern transport voor de assemblage ook in pieken zal verlopen. Future state Er zijn verschillende mogelijkheden: • Werknemers die de controles doen, kunnen ook scannen. Op deze manier zijn er wel veel scanners nodig • De heftruckchauffeur kan de paletten scannen als hij ze oppikt. Als de barcodes groot genoeg zijn kan hij dit doen zonder veel tijd te verliezen. • De magazijniers van de magazijnen van de eindbestemmingen kunnen de paletten ook inscannen. Kwaliteitscontrole Current state Als er nu een probleem is met de kwaliteit, dan blijven de afgekeurde paletten een dag tot een week langs de lijn staan afhankelijk van hun kost. Hoe hoger de kost hoe meer handtekeningen er nodig zijn om te beslissen wat er moet gebeuren. Tijdens sommige bezoeken heeft de auteur van deze thesis gemerkt dat soms de helft van de paletten in de transportzones kwaliteitsproblemen hadden en daardoor niet konden worden getransporteerd. Future state De volledige procedure in geval van een kwaliteitsprobleem zou moeten veranderd worden. Het doel van deze procedure zou moeten zijn om een beslissing te nemen in maximum 1 shift. Fabriek met minder voorraad Current state Nu zijn er heel wat magazijnen in de fabriek maar dit is eigenlijk nog niet genoeg. Wanneer deze thesis is begonnen (de zomer van 2008) was er een extern magazijn dat werd gehuurd van een ander bedrijf. Heel wat half afgewerkte producten gingen eerst naar een assemblage magazijn. Daar merkte de magazijnier dat er te weinig plaats was en werden die paletten naar de laad en loszone gebracht vanwaar zij naar dat magazijn gingen. Aangezien die componenten nogal gevoelig zijn om te verouderen, gebeurde het zelfs dat bepaalde producten uit dat externe magazijn moesten komen (om te gebruiken) terwijl andere identieke componenten daar naartoe moesten. Op het moment van schrijven zijn er concrete plannen om dit te verhelpen.
Nederlandstalige Samenvatting 81 Future state Alle magazijnen zijn vervangen door supermarkten. Voor elk product zou het ideale stock niveau moeten berekend worden. In de getekende future state (figuur ??) gebruiken de klanten van elke supermarkt een fysieke pull om producten te verkrijgen. Dit kan evengoed aangestuurd worden door een kanban kaart die ervoor zorgt dat de producten geleverd worden. In elk geval de klanten (zowel extern als intern) pullen wat ze nodig hebben wanneer ze het nodig hebben. De leverancier krijgt een signaal om te produceren zodanig dat hetgeen wat weg is, vervangen wordt. Deze aanpassingen zullen geen invloed hebben op het intern transport en worden daarom niet in detail uitgewerkt.
3
Het intern transport in de huidige situatie
Het was oorspronkelijk de bedoeling om een meting uit te voeren om de hoeveelheid getransporteerde paletten tussen de verschillende oppik- en afzetpunten te bepalen. Dit ging gedaan worden door de heftruckchauffeur elke keer een streepje te laten trekken in een matrix met alle ophaal- en afzetpunten bij het afzetten van een palet. Door de economische crisis was dit niet mogelijk aangezien de fabriek op een lage capaciteit werkte op het moment dat de metingen moesten worden gedaan. Het intern transport bestaat uit de volgende onderdelen: • Alle producten die naar het eindmagazijn worden gebracht • Halfafgewerkte producten die naar de assemblage magazijnen worden gebracht – van stamping – van molding – van plating • aangekochte onderdelen die naar de magazijnen in de fabriek worden gebracht • Een afval ronde en een witte boxen ronde elke shift De onderdelen zijn additief. Het is dus mogelijk om elk onderdeel apart te berekenen. De berekening hiervan gebeurt aan de hand van een Excel lijst die het volgende vermeldt: • unieke part nummer • of het in de fabriek wordt geproduceerd of wordt aangekocht • een code die staat voor de machine waarop het gemaakt is (als het intern wordt geproduceerd) • het magazijn waar het wordt opgeslagen • de totale hoeveelheid die is geproduceerd of aangekocht in 2008
Nederlandstalige Samenvatting 82 Ondergetekende moest zelf uitzoeken hoeveel onderdelen op een pallet lagen en welke machine bij welke transportzone hoorde.
Uiteindelijk is dan het aantal paletten per jaar getransporteerd tussen elke ophaal en elke afzet zone bekomen. De resultaten kunnen terug gevonden worden in de tabellen in hoofdstuk 3 van de thesis. Het is nodig om te kijken of de bekomen resultaten wel realistisch zijn. Daarom is het nodig om deze toestand eens te simuleren. Zo kan ook de gevoeligheid van bepaalde parameters en het effect van voorstellen ter verbetering van het intern transport worden onderzocht. Voor het simuleren wordt gebruik gemaakt van een simulatieprogramma ontwikkeld aan de Hogeschool West Vlaanderen (REFERENTIE INVOEGEN). De materiaalstromen worden herrekend naar het aantal paletten dat een heftruck moet transporteren per shift. Op die manier kan het transport van de witte bakken en het afval ook makkelijk worden toegevoegd. Het programma zal als resultaat het aantal heftrucks geven dat minimaal nodig is om het ingegeven transport uit te voeren. Dit is tevens de capaciteit waarop de heftruck in de huidige situatie wordt belast. Stel dat dit groter is dan ´e´en, dan weten we dat er een fout is gemaakt bij het berekenen van het huidige transport aangezien dat dit door ´e´en heftruck wordt gedaan. Om de materiaalstroom om te rekenen naar het aantal paletten per heftruck shift moeten we weten hoeveel shifts de heftruck verantwoordelijk voor het intern transport jaarlijks heeft. Een gesprek met de verantwoordelijke voor het intern transport bracht het volgende aan het licht: • tijdens de week wekt de heftruck gemiddeld 11uur • de zaterdag werkt de heftruck 4uur • er word dus 59uur per week gewerkt door een heftruck en als we rekenen met shifts van 8u dan komen we aan ongeveer 7.5 shifts per week • er wordt 50 weken gewerkt per jaar Het totaal aantal heftruckshifts per jaar wordt dan 375. Het volgende is ingegeven in het programma: • De naam van alle op en afhaalpunten • De materiaal stroom tussen die punten • De karakteristieken van de heftruck • De locatie van de op en afhaalpunten. Dit kan grafisch op een gebruiksvriendelijke manier worden ingegeven. Een plattegrond van de fabriek kan worden geladen door het programma waarop de gebruiker dan alle punten kan aanduiden. Hierop moeten ook de paden waarop de heftruck kan rijden worden aangeduid. Deze grafische voorstelling kan dan worden gelinkt met de re¨ele situatie door te defini¨eren hoeveel meter 1 pixel is.
Nederlandstalige Samenvatting 83 Zoals eerder al gezegd, is het uiteindelijke resultaat de capaciteit waarop de heftruck zal belast zijn. De resultaten staan in tabel 3.6 2
Deze capaciteit lijkt op het eerste gezicht aan de lage kant maar dit kan eenvoudig verklaard worden. • het gebruikte simulatieprogramma houdt geen rekening met variabiliteit en gaat ervan uit dat er altijd werk is voor de heftruck. • deze gegevens waarmee is gewerkt zijn van 2008 en er was toen ook veel transport naar het externe magazijn. Dit betekent dat de heftruckchauffeurs veel van de halfafgewerkte producten naar de uitleverzone heeft moeten brengen en terug naar de assemblagemagazijnen.
4
Onderzoek en ontwerp van een tugger train
Het eerste deel van dit hoofdstuk in de thesis geeft een korte uiteenzetting over de meest voorkomende transportsystemen en hun voor- en nadelen. De volgende systemen komen kort aan bod: • Heftrucks • Transportbanden • Automated guided vehicle • Electrified monorail system • Bemand trein Vanuit Tyco kwam een verzoek om te onderzoeken of het mogelijk was om de vorklift te vervangen door een bemand treintje (tugger train or tow tractor). Er werd gekozen voor een bemand treintje met vier aanhangwagentjes en een snelheid van 6 km/h. Dit is ook de maximum snelheid waarmee een heftruck in de fabriek mag rijden omwille van veiligheidsredenen. In de volgende sectie wordt onderzocht of een route kan gecre¨eerd worden die alle oppik en afzetstations aandoet. Op intuitieve manier wordt een route stap voor stap gecre¨eerd. Figuur 3.7 toont nogmaals de plattegrond van de fabriek. Een eerste probleem is dat een bemande trein niet kan draaien in de doodlopende paden, dit is een probleem voor de volgende ophaal en afhaalpunten. • maxi fuse • assemblage magazijnen 2 en 61 2
• GET Zie feitelijke thesis
Nederlandstalige Samenvatting 84 Deze op- en afhaalpunten worden verzet zoals op de figuren 4.7 en 4.8 is te zien. Uit de figuur 4.9 zou kunnen worden afgeleid dat ook het pad naar het plating departement doodloopt maar daar is er genoeg plaats voor het magazijn om een tugger te laten draaien. Op de figuur is ook duidelijk te zien dat het plating pick up and dropp off point ver verwijderd zijn van de rest van de fabriek. Uit sectie 3 weten we dat er per shift gemiddeld gezien 2.5 paletten naar en 2.5 van de plating afdeling komen. Om ervoor te zorgen dat het standaardtraject niet naar de plating gaat, is het volgende mogelijk:
• een lamp op de hoek voor het bewuste pad. De plating werknemers kunnen die aan en uitzetten met een schakelaar. Als er iets moet opgehaald worden brand de lamp en gaat de heftruckchauffeur een omleiding maken. • Er kan ook ´e´en maal per shift een speciale platingronde gedaan worden waarbij enkel producten van en naar de plating worden opgehaald en afgezet. Aangezien er gemiddeld gezien maar 2.5 paletten in en uitstromen en onze tugger 4 trailers heeft moet dit volstaan. Het centrale pad kan worden ge¨elimineerd of worden gebruikt om drie verschillende routes te maken. E´en route die de bovenste kring maakt, ´e´en die de onderste kring maakt en ´e´en route die de grote kring doorloopt. Aangezien het eindmagazijn in de onderste kring zit zal er niet zoveel transport met de bovenste kunnen worden gedaan. De tijd nodig om de grote kring te doorlopen bedraagt iets minder dan 6min. De bovenste lus is 86 sec korter en de onderste 91sec. Verschillende routes zouden het transport heel wat complexer maken en ervoor zorgen dat het minder continu verloopt. Er wordt dan ook geopteerd om ´e´en grote lus te maken en het centrale pad dan ook te elimineren. Volgende transportzones worden hiervoor verlegd: (zie ook figuur 4.9) ??) • de Delphi uitleverzone wordt verplaats naar de dichtste hoek • De aanleverzone voor magazijn 40 verhuist naar de andere kant • Het verzamelpunt voor witte boxen en afval verhuist naar de hoek aan de overkant. Dan moet enkel nog de richting waarin de trein zal rijden worden bepaald. Uit sectie 3 weten we dat de grootste materiaalstromen naar het eindmagazijn gaan en van de molding, headers, EBC en BCP komen. De trein zal dus in wijzerzin rijden zodat de afstand tussen de molding en de headers de kortst mogelijke is (even kort als bij heftruck). Deze situatie kan opnieuw worden gesimuleerd met het eerder vermelde programma. Hieronder vind je een tabel die de resultaten voorstelt voor een tugger met 4 trailers en een laad- en lostijd van een halve minuut. (De tijden vermeld in de tabel zijn die voor het laden en lossen van 4 trailers). We onderzoeken ook het effect van iets langere laad en lostijden voor 4 trailers. Ook de situatie met laad- en lostijden van een halve minuut voor een tugger met een vari¨erend aantal trailers wordt gesimuleerd. De resultaten zijn samengevat in tabellen 4.1 en 4.2
Nederlandstalige Samenvatting 85 Bespreking van de resultaten De resultaten zijn in het voordeel van de forklift(een bezetting van 0,48 tov 0,70). De reden hiervoor is het verschil in laad en lostijd. Zoals in de tabel kan worden gezien is de tijd nodig voor het verplaatsen van de palletten kleiner bij de tugger maar de tijd voor het laden en lossen is drie keer hoger. Een tugger trein heeft wel een aantal voordelen:
• Het aanbod van transport is continuer. • Als er een pallet moet vervoerd worden zal dit sneller worden gemerkt door de chauffeur van het treintje. • Het is veel veiliger, hierdoor is het misschien mogelijk om de maximum snelheid van 6 km/h in de fabriek te verhogen. Er zijn natuurlijk ook nadelen, naast de hogere bezetting van het een tugger zoals hierboven vermeld. • Elke transportzone heeft nood aan zijn eigen laad en losmateriaal. • De laad en lossystemen zijn meestal niet zo ergonomisch voor de werknemers. • Als de layout veranderd zal dit voor aanpassingskosten zorgen De keuze van het transportsysteem zal afhangen van het belang dat het management van Tyco hecht aan de verschillende voor- en nadelen van beide systemen.
5
Bestuderen van de Layout
In het eerst deel van deze sectie worden de verschillende Layout types kort besproken: • situatie waarin het product op dezelfde plaats blijft (vb. scheepsbouw, gebouwen, vliegtuigen, . . . ) • productielijnen • afdelingen gegroepeerd volgens productfamilie • afdelingen gegroepeerd per productieproces Bij Tyco zijn de afdelingen gegroepeerd volgens productieproces. De assemblage machines staan wel gegroepeerd in de fabriek. Bijvoorbeeld alle machines die veren maken staan samen, alle machines die modulen maken, . . . In het tweede deel worden twee algoritmes om optimale layouts te bekomen besproken: de CRAFT methode en de SSLP methode. Aangezien gebruik gemaakt wordt van de CRAFT methode leggen we deze hier nog eens kort uit. Voor een uitleg van de SSLP verwijzen we de lezer naar de thesis zelf. De CRAFT methode optimaliseert de totale transportkost. Die totale transportkost is immers de som van de kost van alle materiaalstromen. De kost van
Nederlandstalige Samenvatting 86 ´e´en materiaalstroom is de afstand tussen die twee punten vermenigvuldigd met de kost per lengte eenheid vermenigvuldigd met het totaal aantal paletten. Via paarsgewijze uitwisseling van departementen wordt een optimale oplossing gezocht. Zorgt dergelijke uitwisseling voor een reductie, dan gaat ze door, anders niet. Het algoritme stopt als een layout wordt bekomen waar geen enkele paarsgewijze uitwisseling nog leidt tot een verdere reductie van de transportkost.
Voor het toepassen van dit algoritme maken we gebruik van een Excel add-in. De initi¨ele toestand wordt in het programma gestopt (zie figuur 5.10). De vaste departementen zijn: • plating • uitleverzone aangekochte goederen • eindproducten magazijn • afval magazijn • molding magazijn: het zou duur zijn om dit te verplaatsen aangezien er een pneumatisch buizensysteem naar die machines loopt om de granulaten naar de machines te brengen. Om die reden worden er twee optimale situaties gesimuleerd. E´en waarbij het molding departement vast is en een andere waarbij dat niet het geval is. Zie figuur 5.10 voor de initi¨ele toestand. Figuur 5.11 toont de optimale oplossing door de add-in gegenereerd. We zien hier dat de departementen geen rechthoekige vorm meer hebben. Op die figuur zijn ook de materiaalstromen voorgesteld tussen de departementen. Hoe dikker de lijn hoe meer paletten er tussen die zones worden getransporteerd. Figuur 5.12 toont dan een realistischere layout die gebaseerd is op de voorgaande. Figuur 5.13 tenslotte toont een aangepaste layout waarbij de molding nu ook vast is. De twee realistische verbeteringsvoorstellen worden gesimuleerd. Tabel 5.1 vergelijkt de oorspronkelijke toestand met de twee voorstellen. Het zal de lezer niet verbazen dan de tijd voor het oppikken en afzetten is gelijk in de drie situaties. Het enige verschil is de afstand die wordt afgelegd om de palletten te transporteren. We zien dat de situatie met het molding departement vast de meest optimale is. De totale transporttijd daar ligt 20% lager dan in het oorspronkelijke geval. Bovendien is door het vergelijken van figuur 5.13 met 5.10 af te leiden dat er geen grote investeringen gepaard gaan met deze veranderingen. Het is wel opvallend dat de situatie waar het molding departement een vaste plaats heeft beter is dan wanneer die variabel is. Hoe meer vrijheid zou immers tot optimalere resultaten moeten lijden. Dit verschil kan wel verklaard worden door de manier waarop beide programmas (de add-in en het simulatieprogramma van Tom Moonen) de afstanden tussen de departementen berekenen. • De add-in berekendt de afstanden tussen de departementen als de afstand tussen de middelpunten
Nederlandstalige Samenvatting 87 • Het simulatie programma maakt gebruik van de reele uitleverzones om de afstanden te berekenen. Aangezien die zones altijd aan de rand van een departement liggen heeft dat een invloed op de correctheid van de CRAFT methode waarmee de add-in werkt.
88
89
Appendix B. Appendix
Appendix B
Appendix Table B.1: List of machine codes and the transport zone they deliver to
Machine
Pick up zone
Machine
Pick up zone
792-2000
22
788-1000
19
795-1000
22
788-2000
19
792-1000
22
781-2000
19
781-1000
22
781-2020
19
781-1010
22
781-2010
19
781-3000
22
787-1000
19
580-9522
21
788-3000
19
576-9683
21
573-1000
15
576-9560
21
573-2000
15
503-0000
21
573-3000
15
566-9607
21
573-4000
15
782-1000
11
569-9599
15
794-1000
11
979-9520
15
785-9751
23
427-0303
16
785-9688
23
427-0302
16
785-9685
23
427-0301
16
785-9684
23
797-1000
32
785-9682
23
797-2000
32
785-1000
23
797-3000
32
791-1000
23
797-4000
32
570-1000
23
786-2000
32
780-976I
13
786-1000
32
780-976G
13
799-9758
33
780-9699
13
796-1000
33
780-976J
13
790-1000
33
780-976H
13
784-2000
20
780-976F
13
784-1000
20
780-9763
13
574-1000
20
780-9762
13
577-9567of5
23
Bibliography [1] Kevin P Chugh. A pc based virutal reality simulation for forklift safey training. apr 2009. [2] David Drickhamer. Equipment update: Tugger power. jul 2006. [3] Egemin. Industrial automation solutions for material handling. http://egemin.com. [4] Vision Lean. 7 mudas. jan 2009. htttop://vision-lean.com/lean-manufacturing/7-mudas/. [5] John Shook Mike Rother. Learning to see: value stream mapping to create value and eliminate muda. mai 1998. [6] Roll Shagger. Fork lift attachment. 2009. http://rollshagger.com. [7] Moonen Tom. Uitwerken van een simulatietool ter optimalisatie van de interne logistieke flow, master thesis 2008-2009. mai 2009.
90