52
DAFTAR PUSTAKA 1. Iwanaga, H., Yoshie, T., Yamaguchi, T., & Shibata, N. (1980), Effects of electric field on the growth of Cds crystals, J. Cryst. Growth, 49, 541-546. 2. Yi, S.H., Choi, S.K., Jang, J.M., Kim, J.A., Jung, W.G. (2007), Lowtemperature growth of ZnO nanorods by chemical bath deposition, J. Colloid Interface Sci., 313, 705-710. 3. Ho, G.W., & Wong, A.S.W. (2007), One step solution synthesis toward ultra-thin and uniform single-crystalline ZnO nanowires, Appl. Phys. A, 86, 457-462. 4. Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., & Morkoc, H. (2005), A Comprehensive review of Zno materials and devices, J. Appl. Phys., 98, 041301. 5. Vayssieres, L. (2003), Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater., 15 (5), March 4. 6. Yang, J., Lang, J., Yang, L., Zhang, Y., Wang, D., Fan, H., Liu, H., Wang, Y & GAo, M. (2008), Low-temperature growth and optical properties of ZnO nanorods, J. Alloys Comp., 450, 521-524. 7. Peng, W., Qu, S., Cong, G., & Wang, Z. (2006), Synthesis and structures of morphology-controlled ZnO nano and microcrystals, Cryst. Growth Des., 6 (6), 1518-1522. 8. Vayssieres, L., Keis, K., Lindquist, S., & Hagfeldt, A. (2001), Purposebuilt anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, J. Phys. Chem. B, 105, 3350-3352. 9. Sugunan, A., Warad, H.C., Boman, M. (2006), Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine, J. Sol-Gel Sci. Techn., 39, 49-56. 10. Hirose, C., Matsumoto, Y., Yamamoto, Y., & Koinuma, H. (2004), Electric field effect in pulsed laser deposition of epitaxial ZnO thin film, Appl. Phys. A, 79, 807-809. 11. Klabunde, K.J. (2001), Nanoscale material in chemistry, New York, USA, John Wiley & Sons Inc, 1-5. 12. Mikrajuddin, Abdullah. (2007), Catatan kuliah: Topik Khusus Fisika Material Elektronik Material Nanostruktur. ITB, Jurusan Fisika, Bandung.
53
13. Pileni, M.P. (2001). Semiconductor Nanocrystals, dalam Nanoscale materials in chemistry, Bab 3, Klabunde, K.J, Editor, John Wiley & Sons, 61-62. 14. Subramanian, V. (2004). Photoelectrochemical and Photocatalytic Aspects of Semiconductor – Metal Nanocomposites. Notre Dame: Graduate Program In Chemical Engineering. 15. Fox, M. (2001), Optical properties of solids, Oxford Press, Oxford, 76-77. 16. Teke, A., Ozgur, U., Dogan, S., Gu, X., Morkov, H., Nemeth, B., Nause, J., & Everitt, H.O. (2004), Phys. Rev. B, 70, 185207. 17. Xu, J. (2004). Luminescence in ZnO. Master Thesis, Virginia Commonwealth University, Electrical and Computer Engineering and Department of Physics, Richmond, Virginia. 18. Van de Walle, C.G. (2001), Phys. B, 899, 308-310. 19. Jolivet, J.P., Henry, M., Livage, J. (2000), Metal oxide chemistry and synthesis, Bescher, E., Translater, England, John Wiley & Sons, Ltd. 20. Alonso, M., & Finn, E. J. (1994), Dasar-dasar Fisika Universitas, jilid 2 Medan dan Gelombang. Penerbit Erlangga, Jakarta. 21. Miyake, A., Kominami, H., Tatsuoka, H., Kuwabara, H., Nakanishi, Y., & Hatanaka, Y. (2000), Luminescent properties of ZnO thin film grown epitaxially on Si substrate, J. Cryst. Growth, 214/215, 294-298. 22. Narazaki, A., Hirano, T., Sasai, J., Katsuhisa, T., Hirao, K., Sasaki, T., & Koshizaki, N. (2001), DC-electric field effect on CdSe nanocrystal embedded in indium tin oxide film and its second-order nonliniearity, Scripta Mater., 44, 1219-1223. 23. West, Anthony R. (1996), Basic Solid State Chemistry and Its Applications, England. John Wiley & Sons Ltd. , West Sussec. 24. Manual Alat SEM/EDX JEOL JSM 53-60LA, 2005, Pusat Survey Geologi, Bandung. 25. Rusmiati. (2007), Sintesis Dan Penentuan Sifat Dari LSGM, Tesis Program Magister, Institut Teknologi Bandung. 26. PCPDFWIN v. 20.1 database, (1998), JCPDS-International Center for Diffraction Data, Newtown Square. 27. Teng, X., Fan, H., Pan, S., Ye, C., & li, G. (2007), Abnormal photoluminescence of ZnO thin film on ITO glass, Mater. Lett., 61, 201204.
54
28. Vayssieres, L. (2004), On the design of advanced metal oxide nanomaterials, Int. J. Nanotechnol., 1, 1-41. 29. Grigorjeva, L., Millers, D., Pankratov, V., Kalinko, A., Grabis, J., & Monty, C. (2007), Blue luminescence in ZnO single crystals, nanopowders, ceramic, J Phys: Conference series, 93, 012036. 30. Fonoberov, V. A., Alim, K. A., & Balandin, A. A. (2006), Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanosrystals, Phys. Rev. B, 73, 165317. 31. Osaki, H., Yasuda, H., Wakatsuki, T., Kanemitsu, Y., Fukunaka, Y., Kuribayashi, K. (2007), Optical properties of electrochemically processed ZnO nanowire array in quasi-microgravity condition, Space Utiliz. Res., 23, 36-39. 32. Liu, C., Masuda, Y., Wu, Y., & Takai, O. (2006), A Simple route for growing thin film of uniform ZnO nanorods arrays on functionalized Si surfaces, Thin Solid Film, 503, 110-114.
55
LAMPIRAN A
CONTOH GAMBAR SEM DAN CARA PENGUKURAN BUTIRAN
Garis ini adalah skala yang digunakan pada contoh pencitraan SEM diatas dengan perbesaran 10.000 kali. Jadi panjang garis tersebut 1 µm. Untuk mengukur diameter satu butir kristal rata-rata adalah :
d x1µm l d = diameter rata-rata butiran kristal hasil pengukuran (mm) l = panjang garis skala (mm) maka untuk ukuran butiran kristal dari hasil SEM diatas antara 700 nm hingga 900 nm.
56
LAMPIRAN B
DATA DISTRIBUSI DIAMETER NANORODS ZnO PADA KONSENTRASI PREKURSOR 100 mM
Medan listrik eksternal (V/cm)
0 V/cm
2500 V/cm konfigurasi A (elektroda positif di bawah substrat)
2500 V/cm konfigurasi B (elektroda positif di atas substrat)
Distribusi diameter nanorods (nm) 100-300 300-500 500-700 700-900 900-1100 1100-1300 100-300 300-500 500-700 700-900 900-1100 1100-1300 100-300 300-500 500-700 700-900 900-1100 1100-1300
Jumlah (satuan) 7 16 29 3 7 4 0 0 2 0 13 12 0 4 35 64 0 0