Biopolimerek 1
Dr. Tábi Tamás Tudományos Munkatárs
MTA–BME Kompozittechnológiai Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar, Polimertechnika Tanszék
2016. Május 3.
Mi is az a polimer és a műanyag? Polimer: Olyan hosszúláncú vegyület (makromolekula) amelyben sok ezer építőegység kapcsolódik össze egymással. Lehet természetes, mint például a keményítő vagy a cellulóz vagy pedig mesterséges. Műanyag: Mesterséges polimer, sok esetben adalékanyagokkal társítva. A műanyagok kiváló mérnöki alapanyagok, nélkülük elképzelhetetlen a modern kor emberének élete. Alkotóelemeik azonosak az emberével… Szén, hidrogén, oxigén, stb…Sőt, az emberi testben is bőven vannak polimerek, pl. a fehérje (aminosav polimerje).
- A műanyagokat ugyan kőolajszármazékokból állítják elő, de a kőolaj fő felhasználója nem a műanyagipar, hanem a közlekedés és energiaipar, - Újrahasznosíthatóak (a hőre lágyulóak),
- Eldobálásuk a környezetben nem környezetszennyezés, hanem szemetelés. Fontos az új generáció újrahasznosításra való nevelése.
Probléma a „hagyományos” műanyagokkal
Egy lehetséges megoldás
Egy lehetséges megoldás
Biológiailag lebomló (lebontható) polimerek (röviden lebontható polimerek vagy biopolimerek) alatt olyan, általában természetes alapú, megújuló erőforrásból előállított polimereket értünk, amelyek a talajban komposztálva, vagy biotikus környezetbe helyezve a gombák, baktériumok vagy algák enzimatikus bontó képességének hatására hónapok, esetleg néhány év alatt szemmel nem látható részekre (humusz, víz, szén-dioxid) bomlanak és a bomlástermékek nem szennyezik a környezetet vagy a komposztot.
Lebomlással kapcsolatos fogalmak Komposztálható polimer: Olyan polimer, amely biológiai bomlásra képes a komposztban. Lebomlása során vízzé, szervetlen anyagokká és biomasszává alakul, szén-dioxid és – oxigénmentes környezetben – metán képződése mellett továbbá a lebomlási folyamat hónapok, maximum egy év alatt végbemegy.
Biológiailag lebomló (lebontható) polimer: Olyan polimer, amely biotikus környezetben vagy komposztban a mikroorganizmusok enzimatikus bontó hatásának következtében képes vízzé, szervetlen vegyületekké és biomasszává lebomlani szén-dioxid és – oxigénmentes környezetben – metán képződése mellett továbbá a lebomlási folyamat hónapok, maximum egy év alatt végbemegy. Bio-erodálható polimer Olyan polimer, amely nem enzimatikus úton képes lebomlani. Ezek a polimerek általában hő- és/vagy, oxigén- és/vagy UV öregedés hatására széttöredeznek, de a töredékek további lebomlásra nem képesek. Nem lebomlóak a hagyományos értelemben, csak „szétesőek”.
Szacharidok, mint az műanyagipar új építőkövei
Megújuló erőforrásból milyen polimerek állíthatóak elő?
8
Lebontható polimerek csoportosítása
Agro-polimerek
Lebontható poliészterek
Lebontható polimerekkel szemben támasztott követelmények Követelmények a lebontható polimerekkel szemben: Hagyományos hőre lágyuló műanyagok feldolgozási technológiáival feldolgozhatónak, valamint újrafeldolgozhatónak kell lennie, azaz legyen hőre lágyuló -
A kiváltani kívánt anyag mechanikai tulajdonságaihoz hasonló tulajdonságokkal kell rendelkezzen
-
Nedvességgel szemben legyen ellenálló (ne legyen vízoldható, vagy éppen legyen vízoldható bizonyos alkalmazásoknál)
-
Minden egyes alkotóeleme és az ezekből előállított lebomló polimer legyen biológiailag lebontható, beilleszthető legyen a természet körforgásába
Lebomlással kapcsolatos fogalmak
A lebontható poliészterek esetében a fő lebomlási mechanizmus a hidrolízis, amely lehet enzimatikus (baktériumok által segített) vagy nem enzimatikus (kémiai). A biológiai lebomlás folyamán csökken a polimer molekulatömege, és a lánctöredékeket és az oligomereket a bontó baktériumok már fel tudják dolgozni. A lebomlás során víz, humusz (szerves anyagokban gazdag föld), és szén-dioxid, egyes esetekben pedig metán is képződik (levegőtől elzárt, anaerób bomlás). Mikroorganizmusok bontó hatását (bomlás sebességét) befolyásoló tényezők: Hőmérséklet Páratartalom (vagy víztartalom) Napfény Oxidáció Hidrolízis Polimer molekulaszerkezete (molekulatömeg-, eloszlás, kristályosság, stb.) Lebomlást elősegítő környezet: Komposzt (ipari vagy házi: aerób-anaerób bomlás!) Talaj (elásva) Talaj (felszínen) Tenger Szennyvíz (szennycsatorna)
Hidrolízis
12
A kondenzációs polimerek, mint például a PA, PET, PC, PUR esetében a polimer molekulalánc gerince nem csak C-C kötéseket tartalmaz, hanem amid, észter, karbonát vagy uretán csoportokat is. Ezek a csoportok hidrolizálhatóak (megfordul a kondenzációs reakció). Akár 0.01% víztartalom is jelentősen csökkentheti a molekulatömeget a feldolgozási hőmérsékleten, így szárítási előkészültek szükségesek feldolgozás előtt. A hidrolízis felhasználás közben is létrejöhet, de jóval kisebb mértékben, mint feldolgozáskor. Továbbá a kondenzációs polimereknel kisebb a molekulatömege, mint az addíciós polimereknek, így egy esetleges molekulatömeg csökkenés drasztikusabb hatásokkal bír a polimer tulajdonságaira.
A lebontható polimerek többsége Poliészter, így a hidrolizálhatóságuknak köszönhető a lebonthatóságuk.
Termikus stabilitás
13
A polimer molekulaláncban található atomok közti kötések erőssége jelentősen befolyásolja a polimer termikus stabilitását azaz nagy hőmérsékletnek való ellenálló-képességét, a bomlás megindulásához szükséges hőmérsékletet (oxigén nélkül!). A termikus stabilitása Termogravimetriával (TGA) lehet mérni. A TGA mérés során egy kis mintát (5-15 mg) konstans fűtési sebességgel (pl. 10°C/perc) melegítenek és méri a minta tömegcsökkenését (és annak sebességét), amiből a degradációra (vagy pl. illékony adalékanyag távozására) lehet következtetni. Szokás levegő, oxigén és nitrogén (inert) atmoszféra alatt mérni. További lehetőség izotermikus (állandó hőmérsékletű) mérés, aholis célszerű a mintát a feldolgozási hőmérsékleten hőn tartani, így lehet következtetni arra, hogy mennyi ideig képes elviselni a minta az adott hőmérsékletet komolyabb degradáció nélkül (tartózkodási idő fontos fröccsöntésnél).
Oxidáció
14
Az oxidációt leginkább a harmadrendű (tercier) szénatomról leváló hidrogén hatására a szénláncban szabadgyök képződik, amely reagál az oxigénnel és előbb peroxi gyök, majd karbonil csoport (C=O kötés jön létre), azaz megkötődik az oxigén. Mivel az oxigén megkötésekor kettős kötés alakul ki, így a C-C kötés felbomlik, tehát a folyamat degradációhoz vezet. Leginkább emelt hőmérsékleten megy végbe a folyamat, de nagyon lassan akár szobahőmérsékleten is. Fourier Transzformációs Infravörös Spektroszkópiával (FTIR) kimutatható a megkötött oxigén mennyisége. Az oxidáció ellen antioxidáns adalékanyag használata szükséges, amely „önfeláldozó” módon reagál a szabadgyökkel, legalábbis amíg van antioxidáns tartalom.
Ennek megfelelően a legveszélyesebb pillanat a polimer életében a feldolgozás (emelt hőmérséklet) és az alkalmazás emelt hőmérsékleten. Ha elfogy az antioxidáns tartalom, onnatól a polimer ki van téve az oxidációnak. Legfőképpen a PE, PP hajlamos oxidációs degradációra.
Oxidáció
15
A világban megvalósult pár biopolimer alkalmazás
ICO Zrt. PLA termékcsalád
Biopolimer gyártókapacitás
Lebontható polimerek előnyei - Alapanyaguk megújuló erőforrás (biomassza) nem pedig kőolaj, - Életciklusuk végén biológiai úton lebonthatóak humuszra, vízre, szén-dioxidra, így beilleszthetőek a természet körforgásába és a fenntartható fejlődés eszméjébe, - Nem jelentős a földterület igény a gyártásukhoz, így nem veszélyeztetik az élelmezést (szennyezett biomassza is megfelelő), - Használatukkal csökkenhet a szemétlerakók mennyisége, - Előállításuknak kisebb az energiaigénye, mint a hagyományos műanyagoknak és lebomlásukkal kisebb mennyiségű üvegházhatásért felelős gázt juttatnak a légkörbe, - CO2 nyelővé is válhat a használatuk ahogy sikerül egyre többféle biomassza termékből lebontható polimert előállítani, - Lebomlásukkor keletkező metán felhasználható biogázként (energiatermelés), - Hagyományos műanyag feldolgozási technológiákkal feldolgozhatóak, - Többféle módszerrel is újrafeldolgozhatóak, - Mechanikai tulajdonságai a hagyományos műanyagokhoz hasonlóak, - Egyes lebontható polimerek ára a hagyományos – műszaki – műanyagokéval összevethető, nincs nagyságrendnyi különbség, - Egyes lebontható polimerek bizonyos körülmények között stabilak (pl. szobahőmérséklet), lebomlásuk nem indul meg, csak komposztálva,
Lebontható polimerek előnyei - Nem csak csomagolásként jelenthetnek meg, de orvostechnikai (felszívódó implantátum), vagy műszaki termékek anyagaként (biokompozit), - Házi komposztálással is lebonthatóak, - Az egyik additív gyártástechnológia új alapanyagaként jelent meg a közelmúltban (FDM – Fused Deposition Modelling).
Lebontható polimerek hátrányai - Jelenleg kevés vagy téves ismerettel rendelkeznek a végfelhasználók, vásárlók a lebontható polimerekről, - Irreális elvárások a lebontható polimerekkel szemben (legyen tartósan használható és egy bizonyos idő után azonnal bomoljon le), - Kicsit bonyolultabb feldolgozás; általában hiányos ismeret a műanyagfeldolgozó részéről a lebontható polimer tulajdonságait illetően, ami kezdeti sikertelenséghez vezethet, - Széleskörű elterjedésük esetén kezdetben fokozottabbá válhat a szemetelés a tévhit miatt, hogy a lebontható polimer termék „eltűnik”, - Emblémával kell jelölni a lebontható polimer termékeket, hogy a szerves hulladékkal együtt kezeljék, és ne keveredjenek más műanyagokkal, - Házi komposztáláskor levegőtől elzárva metán is keletkezik (üvegház hatás), - Házi komposztálás nem mindenki számára elérhető, - Komposztálási feltételek minősítése, főként az otthoni komposztálás szabványosítása még megoldásra váró feladat, - Feltételezhetően szükséges növelni a komposztálási kapacitást, valamint be kell kapcsolni a lebontható polimer termékek hulladékgazdálkodásába,
Lebontható polimerek hátrányai - Lassú ütemben terjed a használatuk. 2020-ra várhatóan a világ polimer gyártásának 1-4%-át teszik ki a lebontható polimerek, - Bioerodálható polimerek is vannak a piacon (csak széteső, de nem lebomló!), - Nem minden lebontható polimer megfelelő az adott célra (pl. talajtakaró fólia esetében a komposztálható nem, csak a biotikus környezetben is lebontható a megfelelő), - Áruk egyelőre még meghaladja a legtöbb esetben általuk kiváltani szándékozott tömegműanyagok árát.
A lebontható polimerek fő képviselői