BINOVATIF
LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD
[email protected]
2
BAB 4 KAPASITOR Kapasitas, Kapasitor Pelat Sejajar, Kapasitor Bola, Kapasitor Silinder, Kapasitor Pengganti Seri dan Paralel, Energi Kapasitor, Dielektrik
Hani Nurbiantoro Santosa, PhD (
[email protected])
3
Kapasitor Kapasitor adalah alat yang terdiri dari dua pelat konduktor yang dipisahkan oleh isolator. Fungsi utama kapasitor adalah menyimpan muatan listrik energi listrik. Pada umumnya, kedua pelat kapasitor menyimpan muatan yang sama besar tapi berlawanan tanda. Kapasitor digunakan dalam: Baterai kamera, taser, defibrillator, dll (alat-alat yang membutuhkan arus yang besar dalam waktu yang singkat) Penstabil tegangan High pass filter Bersama dengan induktor digunakan sebagai rangkaian penala (tuning) frekuensi radio Hani Nurbiantoro Santosa, PhD (
[email protected])
Diagram Kapasitor
Hani Nurbiantoro Santosa, PhD (
[email protected])
4
5
Kapasitor
Hani Nurbiantoro Santosa, PhD (
[email protected])
Diagram Rangkaian Radio Kristal
Hani Nurbiantoro Santosa, PhD (
[email protected])
6
Rangkaian Radio Kristal
Hani Nurbiantoro Santosa, PhD (
[email protected])
7
Sekilas Baterai
8
Baterai ideal: alat yang selalu bisa menimbulkan beda potensial konstan di antara kedua kutubnya. Kutub positif katoda, kutub negatif anoda. Ketika dihubungkan dengan rangkaian luar, baterai cenderung mengalirkan arus dari kutub positif ke negatif (dengan kata lain mengalirkan elektron dari kutub negatif ke positif).
Hani Nurbiantoro Santosa, PhD (
[email protected])
9
Mengisi Kapasitor C B
ΔVB
B
C
S
S Cara mengisi kapasitor dengan muatan: hubungkan kedua pelatnya ke baterai (lihat gambar kiri). Diagram rangkaian pengisian kapasitor diperlihatkan pada gambar di kanan (perhatikan baik-baik simbol kapasitor dan baterai). Pelat ℎ (high) dihubungkan ke kutub positif baterai, dan pelat 𝑙 (low) dihubungkan ke kutub negatifnya. Hani Nurbiantoro Santosa, PhD (
[email protected])
Mengisi Kapasitor, 𝑡 = 𝑡0 = 0 𝐼
𝐸
𝑉𝑏+ > 0 ∆𝑉𝑏 = 𝑉𝑏+ − 𝑉𝑏−
𝑉𝑏− < 0
𝑆
𝐼
𝑞=0 −𝑞 = 0
ℎ
𝑉ℎ = 0
𝑙
𝑉𝑙 = 0
10
∆𝑉𝐶 = 𝑉ℎ − 𝑉𝑙 = 0
𝐸
Ketika saklar 𝑆 ditutup saat 𝑡 = 0, muatan di kapasitor 𝑞 sama dengan nol (kedua pelat netral). Potensial kedua pelat 𝑉ℎ dan 𝑉𝑙 juga sama dengan nol. Potensial kutub positif baterai 𝑉𝑏+ lebih tinggi daripada pelat ℎ, sehingga ada medan listrik 𝐸 yang mengarah dari kutub positif ke pelat ℎ. Demikian juga, ada medan listrik yang mengarah dari pelat 𝑙 ke kutub negatif baterai. Medan listrik ini akan “mencabuti” elektron dari pelat ℎ ke pelat 𝑙, sehingga timbul arus 𝐼 dari pelat 𝑙 ke pelat ℎ. Hani Nurbiantoro Santosa, PhD (
[email protected])
Mengisi Kapasitor, 𝑡 = 𝑡1 > 0 𝐼
𝐸
𝑉𝑏+ > 0 ∆𝑉𝑏
𝑉𝑏− < 0
𝑞>0
+++
𝑉𝑏+ > 𝑉ℎ > 0
–––
𝑉𝑏− < 𝑉𝑙 < 0
−𝑞 < 0
𝑆
𝐼
𝐸
11
0 < ∆𝑉𝐶 < ∆𝑉𝑏
Pada saat 𝑡 = 𝑡1 > 0, kapasitor sedang terisi muatan. Muatan positif/negatif di pelat ℎ/𝑙 makin bertambah. Hal ini mengakibatkan potensial pelat ℎ bertambah (makin positif), dan potensial pelat 𝑙 berkurang (makin negatif). Medan listrik dalam rangkaian makin lemah, karena beda potensial kutub positif/negatif baterai dengan pelat ℎ/𝑙 berkurang (ingat ∆𝑉 = 𝐸 ⋅ dℓ, jika ∆𝑉 berkurang, maka 𝐸 juga berkurang). Karena medan listrik makin lemah, maka arus juga makin lemah. Hani Nurbiantoro Santosa, PhD (
[email protected])
Mengisi Kapasitor, 𝑡 = 𝑡𝑓 ≫ 0 𝐼=0
𝐸=0
+𝑄
𝑉ℎ = 𝑉𝑏+
++++++++
𝑉𝑏+ > 0 ∆𝑉𝑏
𝑉𝑏− < 0 𝑆
––––––––
−𝑄 𝐼=0
12
∆𝑉𝐶 = 𝑉ℎ − 𝑉𝑙 = ∆𝑉𝑏
𝑉𝑙 = 𝑉𝑏−
𝐸=0
Akhirnya, saat 𝑡 = 𝑡𝑓 ≫ 0, potensial pelat ℎ/𝑙 sama dengan potensial kutub positif/negatif baterai Tegangan di kapasitor sama dengan tegangan baterai ∆𝑽𝑪 = ∆𝑽𝒃. Ketika ini tercapai, medan listrik dalam rangkaian sama dengan nol, sehingga arus berhenti mengalir Kapasitor dikatakan “sudah penuh”.
Hani Nurbiantoro Santosa, PhD (
[email protected])
Mengisi Kapasitor
Klik di sini untuk menonton video asli dari Youtube.
Hani Nurbiantoro Santosa, PhD (
[email protected])
13
14
Kapasitas Kapasitas adalah kemampuan kapasitor menyimpan muatan. Definisi kapasitas:
𝑄 𝐶= ∆𝑉 Dimana 𝐶 adalah kapasitas, 𝑄 adalah besar muatan pada masing-masing pelat, dan ∆𝑉 adalah tegangan (beda potensial) kedua pelat. Satuan kapasitas adalah coulomb per volt = farad Nilai kapasitas bergantung pada geometri kedua pelatnya (luas, jarak antar pelat, dsb), bukan pada 𝑄 maupun ∆𝑉. Ini mirip dengan definisi massa jenis 𝜌 = 𝑚 𝒱, tetapi massa jenis tidak bergantung pada 𝑚 (massa) atau 𝒱 (volume). Hani Nurbiantoro Santosa, PhD (
[email protected])
15
Kapasitas Kapasitor Pelat Sejajar 𝑑
𝐴 ≫ 𝑑2
𝑄 = 𝐴𝜎
𝑑
𝜎 𝐸= 𝜀0
𝜎 𝑄 𝜎𝐴 𝜀0 𝐴 ∆𝑉 = 𝐸. 𝑑 = 𝑑 ⟹ 𝐶 = = = 𝜀0 ∆𝑉 𝜎𝑑 𝜀0 𝑑 Hani Nurbiantoro Santosa, PhD (
[email protected])
––––––––––––––––
Luas = 𝐴
++++++++++++++++
𝜀0 𝐴 𝐶= 𝑑
16
Kapasitas Kapasitor Bola 𝑏
−𝑄
∆𝑉 =
𝐸 +𝑄
𝑎
𝑏
𝑏
𝐸 ∙ d𝑟 = 𝑎
𝑎
𝑘𝑄 ∙ d𝑟 2 𝑟
𝑘𝑄 𝑘𝑄 = − 𝑎 𝑏 𝑄 𝑄 4𝜋𝜀0 𝑎𝑏 𝐶= = = 𝑘𝑄 𝑘𝑄 ∆𝑉 𝑏−𝑎 − 𝑎 𝑏
4𝜋𝜀0 𝑎𝑏 𝐶= 𝑏−𝑎 Hani Nurbiantoro Santosa, PhD (
[email protected])
Kapasitas Kapasitor Silinder
17
𝑎
ℓ ≫ 𝑎, 𝑏
𝑏
𝑏
−𝑄
𝐸 +𝑄
∆𝑉 = 𝑎
𝑄 𝐶= = ∆𝑉
𝑎 𝑏
𝑄 𝑏 𝐸 ∙ d𝑟 = ln 2𝜋𝜀0 ℓ 𝑎 𝑄
2𝜋𝜀0 ℓ = 𝑄 𝑏 ln 𝑏 𝑎 ln 𝑎 2𝜋𝜀0 ℓ
2𝜋𝜀0 ℓ 𝐶= ln 𝑏 𝑎
Hani Nurbiantoro Santosa, PhD (
[email protected])
18
Kapasitor Pengganti Paralel ∆𝑉𝑏
+𝑄2
+𝑄1 −𝑄1
𝐶1
−𝑄2
∆𝑉𝑏
𝐶2
+𝑄𝑝 −𝑄𝑝
𝐶𝑝
Beberapa kapasitor yang disusun paralel memiliki tegangan yang sama. Muatan di kapasitor pengganti sama dengan jumlah muatan pada masing-masing kapasitor.
𝑄1 + 𝑄2 = 𝑄𝑝 𝐶1 . ∆𝑉𝑏 + 𝐶2 . ∆𝑉𝑏 = 𝐶𝑝 . ∆𝑉𝑏 𝐶1 + 𝐶2 = 𝐶𝑝 Hani Nurbiantoro Santosa, PhD (
[email protected])
19
Kapasitor Pengganti Seri 𝐶1 +𝑄
𝐶𝑠
𝐶2 −𝑄
∆𝑉1
+𝑄
−𝑄
+𝑄
−𝑄
∆𝑉2 ∆𝑉𝑏
∆𝑉𝑏
Beberapa kapasitor yang disusun seri memiliki muatan yang sama (muatan pada pelat negatif 𝐶1 berasal dari pelat positif 𝐶2 ). Tegangan di kapasitor pengganti sama dengan jumlah tegangan pada masing-masing kapasitor.
∆𝑉1 + ∆𝑉2 = ∆𝑉𝑏 𝑄 𝑄 𝑄 1 1 1 + = ⟹ + = 𝐶1 𝐶2 𝐶𝑠 𝐶1 𝐶2 𝐶𝑠 Hani Nurbiantoro Santosa, PhD (
[email protected])
20
Energi Kapasitor 𝐶
+𝑞
∆𝑉𝐶
Pada suatu saat, tegangan kapasitor adalah ∆𝑉𝑐 < ∆𝑉𝑏 dan muatan kapasitor adalah ±𝑞. Kemudian, baterai memindahkan muatan d𝑞 dari pelat negatif ke positif. Usaha baterai: − 𝑞 + 𝑑𝑞 𝑞 d𝑊 = d𝑞. ∆𝑉𝑐 = d𝑞. 𝐶 Usaha total baterai (sama dengan energi potensial dalam kapasitor) untuk mengisi penuh kapasitor adalah: d𝑞
𝑄
𝐸𝑃 = 𝑊 = 0
∆𝑉𝑏
𝑞 𝑄2 .d𝑞 = 𝐶 2𝐶
Dimana 𝑄 adalah muatan kapasitor ketika sudah terisi penuh: 𝑄 = 𝐶. ∆𝑉𝑏 . Jadi, energi yang tersimpan dalam kapasitor adalah:
𝑄 2 𝐶 ∆𝑉𝑏 𝐸𝑃 = = 2𝐶 2
2
Hani Nurbiantoro Santosa, PhD (
[email protected])
𝑄. ∆𝑉𝑏 = 2
Rapat Energi Medan Listrik Energi yang tersimpan pada kapasitor sama dengan: 𝑄2 𝐶 ∆𝑉𝑏 2 𝑄∆𝑉𝑏 𝐸𝑃 = = = 2𝐶 2 2 Untuk kapasitor pelat sejajar: kapasitasnya 𝐶 = 𝜀0 𝐴 𝑑, medan listrik di antara dua pelat adalah 𝐸 = 𝜎 𝜀0 = 𝑄 𝐴𝜀0 , dan volume celah antar dua pelat adalah 𝒱 = 𝐴. 𝑑, sehingga energi per satuan volume (rapat energi) adalah: 𝐸𝑃 𝑄2 𝑄2 𝜎2 𝜀0 𝜎 𝑢= = = = = 2 𝒱 2𝐶𝐴𝑑 2𝜀0 𝐴 2𝜀0 2 𝜀0
2
1 = 𝜀0 𝐸 2 2
Walaupun hasil di atas diturunkan dalam kasus kapasitor pelat sejajar, sebenarnya hasil di atas berlaku untuk semua situasi. Jadi, rapat energi yang tersimpan dalam medan listrik adalah:
1 𝑢 = 𝜀0 𝐸 2 2 Hani Nurbiantoro Santosa, PhD (
[email protected])
21
22
Dielektrik
Pada dasarnya adalah isolator: elektron-elektronnya terkunci pada masing-masing molekul atau atom, tidak bisa bergerak bebas seperti konduktor. Dielektrik yang diletakkan dalam medan listrik luar akan terpolarisasi (memiliki momen dipol). Medan listrik “tandingan” yang ditimbulkan oleh polarisasi ini berlawanan dengan medan listrik luar, sehingga medan listrik di dalam dielektrik lebih lemah daripada medan listrik luar. Bandingkan dengan konduktor: konduktor yang diletakkan dalam medan listrik luar akan memiliki muatan induksi pada permukaannya. Muatan induksi tersebut menghasilkan medan listrik “tandingan” yang sepenuhnya meng-cancel medan listrik luar, sehingga dalam konduktor tidak ada medan listrik. Dielektrik terdiri dari dua jenis: dielektrik polar dan non-polar. Kapasitas dari suatu kapasitor bisa diperbesar dengan menyisipkan dielektrik dalam celah di antara kedua pelatnya. Hani Nurbiantoro Santosa, PhD (
[email protected])
Dielektrik Non-Polar
23
Dielektrik non-polar: bahan yang molekul-molekulnya tidak memiliki momen dipol permanen. Jika tidak ada medan listrik luar, molekul-molekulnya tidak memiliki momen dipol. Jika ada medan listrik luar 𝐸0 , molekul-molekulnya terpolarisasi sehingga memiliki momen dipol yang arahnya sejajar dengan medan listrik luar 𝑝 . Momen-momen dipol tersebut akan menimbulkan medan listrik “tandingan” 𝐸′ yang melawan medan listrik luar. Akibatnya medan listrik resultan di dalam dielektrik 𝐸 lebih lemah daripada medan listrik luar. 𝑝
Hani Nurbiantoro Santosa, PhD (
[email protected])
Dielektrik Polar Dielektrik polar: bahan yang molekul-molekulnya memiliki momen dipol permanen. Jika tidak ada medan listrik luar, arah momen-momen dipol tersebut acak. Jika ada medan listrik luar, momen-momen dipol tersebut akan berusaha menyejajarkan dirinya dengan medan listrik luar. Kemudian, momen-momen dipol tersebut akan menimbulkan medan listrik “tandingan” yang melawan medan listrik luar, sehingga medan listrik di dalam dielektrik lebih lemah daripada medan listrik luar.
Hani Nurbiantoro Santosa, PhD (
[email protected])
24
Perbandingan Dielektrik dan Konduktor
𝐸′ 𝐸=0
𝑝
𝐸0 𝐸
𝐸′
++++++++++
––––––––––
++++++++++
––––––––––
𝐸0
25
Konduktor 𝐸 ′ = −𝐸0 𝐸 = 𝐸 ′ + 𝐸0 = 0
Dielektrik 𝐸 ′ < −𝐸0 𝐸 = 𝐸 ′ + 𝐸0 < 𝐸0 𝐸0 > 𝐸 > 0
Hani Nurbiantoro Santosa, PhD (
[email protected])
Contoh Dielektrik Polar: Air
Hani Nurbiantoro Santosa, PhD (
[email protected])
26
Medan Listrik dalam Dielektrik Jika sebuah bahan dielektrik mengisi penuh ruang di antara dua permukaan ekuipotensial, maka medan listrik di dalam dielektrik bisa dicari dengan mengubah semua 𝜀0 menjadi 𝜀:
𝜀 = 𝜅𝜀0
Pada rumus di atas, 𝜀 adalah permitivitas bahan dielektrik dan 𝜅 adalah konstanta dielektrik. Nilai 𝜅 selalu lebih besar dari satu, dan menyatakan seberapa lemah medan listrik dalam dielektrik dibandingkan dengan tanpa dielektrik. Sebuah muatan titik +𝑄 dibenamkan dalam bahan dielektrik infinite dengan konstanta dielektrik 𝜅
𝑄 𝑄 𝐸= = 2 4𝜋𝜅𝜀0 𝑟 4𝜋𝜀𝑟 2 Hani Nurbiantoro Santosa, PhD (
[email protected])
27
28
Kapasitor dengan Dielektrik 𝑑
𝑄 𝜎𝐴 𝜅𝜀0 𝐴 𝐶= = = = 𝜅𝐶0 ∆𝑉 𝜎𝑑 𝜅𝜀0 𝑑
Jadi, jika dielektrik mengisi penuh celah di antara dua pelat kapasitor, maka kapasitasnya menjadi:
𝐶 = 𝜅𝐶0 dengan 𝐶0 adalah kapasitas tanpa dielektrik. Karena 𝜅 > 1, maka kapasitas dengan dielektrik selalu lebih besar daripada tanpa dielektrik
Luas pelat = 𝐴
Kapasitas menjadi:
𝜎 𝐸= 𝜅𝜀0
––––––––––––––––––––
𝜎 𝜎 𝐸= ⟹ ∆𝑉 = 𝐸. 𝑑 = 𝑑 𝜅𝜀0 𝜅𝜀0
++++++++++++++++++++
Medan listrik dan tegangan di antara kedua pelat menjadi:
Bahan dielektrik mengisi penuh celah di antara dua pelat kapasitor
Hani Nurbiantoro Santosa, PhD (
[email protected])
Contoh Soal 1. Perhatikan gambar di samping. Tegangan baterai adalah 𝑉 = 12 volt. Kapasitas masing-masing kapasitor adalah: 𝐶1 = 60 μF, 𝐶2 = 40 μF, 𝐶3 = 36 μF. Tentukan muatan dan tegangan yang ada pada masing-masing kapasitor. 2. Perhatikan gambar di samping. Tegangan baterai adalah 𝑉 = 10 volt. Kapasitas semua kapasitor sama, yaitu 𝐶 = 6 μF. Tentukan muatan dan tegangan yang ada pada 𝐶1 dan 𝐶2 . Hani Nurbiantoro Santosa, PhD (
[email protected])
29
Contoh Soal 3. Perhatikan gambar di bawah. Kapasitor 𝐶1 = 60 μF dihubungkan dengan baterai 10 volt, kemudian dipasangkan pada rangkaian. Kapasitor 𝐶2 = 100 μF dihubungkan dengan baterai 15 volt, kemudian dipasangkan pada rangkaian. Jika saklar 𝑆1 dan 𝑆2 kemudian ditutup, tentukan tegangan dan muatan akhir pada masing-masing kapasitor.
Hani Nurbiantoro Santosa, PhD (
[email protected])
30
Contoh Soal 4. Perhatikan gambar di samping. Sebuah kapasitor pelat sejajar memiliki luas pelat 𝐴 dan lebar celah 𝑑. Setengah celah bagian kiri diisi dengan bahan berkonstanta dielektrik 𝜅1 dan bagian kanan dengan 𝜅2 . Tentukan kapasitas kapasitor tersebut!
5. Perhatikan gambar di samping. Sebuah kapasitor pelat sejajar memiliki luas pelat 𝐴 dan lebar celah 𝑑. Setengah celah bagian bawah diisi dengan bahan berkonstanta dielektrik 𝜅1 dan bagian atas dengan 𝜅2 . Tentukan kapasitas kapasitor tersebut! Hani Nurbiantoro Santosa, PhD (
[email protected])
31
32
Contoh Soal
𝜅
𝑑 2 Hani Nurbiantoro Santosa, PhD (
[email protected])
–––––––––––––––––––––
+++++++++++++++++++++
6. Perhatikan gambar di kanan. Sebuah kapasitor pelat sejajar memiliki luas pelat 𝐴 dan lebar celah 𝑑. Setengah celah bagian kiri diisi dengan bahan berkonstanta dielektrik 𝜅 dan bagian kanan dibiarkan tetap kosong. Tentukan kapasitas kapasitor tersebut!
Luas pelat = 𝐴
𝑑
33
Contoh Soal
Hani Nurbiantoro Santosa, PhD (
[email protected])
Luas pelat = 𝐴
Besi ℓ
––––––––––––––––––––––
++++++++++++++++++++++
7. Perhatikan gambar di samping. Sebuah kapasitor pelat sejajar memiliki luas pelat 𝐴 dan lebar celah 𝑑. Sepotong besi selebar ℓ kemudian disisipkan dalam celah. Berapa kapasitas kapasitor tersebut?
𝑑
34
Contoh Soal 8. Perhatikan gambar di samping. Sebuah kapasitor bola memiliki jari-jari pelat dalam 𝑎 dan jari-jari pelat luar 𝑐. Daerah 𝑎 < 𝑟 < 𝑏, diisi dengan bahan dielektrik dengan konstanta 𝜅. Tentukan kapasitas kapasitor tersebut!
−𝑄
+𝑄
𝑎 𝑏
Hani Nurbiantoro Santosa, PhD (
[email protected])
𝑐
Contoh Soal
35
9. Sebuah kapasitor pelat sejajar berkapasitas 𝐶 dihubungkan dengan baterai bertegangan 𝑉𝑏 . Berapa muatan yang ada pada kapasitor ketika sudah penuh? Kemudian, bahan dielektrik dengan konstanta 𝜅 disisipkan pada celah di antara kedua pelat tanpa melepas baterai. Tentukan tegangan, muatan, dan kapasitas akhir pada kapasitor.
10. Sebuah kapasitor pelat sejajar berkapasitas 𝐶 dihubungkan dengan baterai bertegangan 𝑉𝑏 . Berapa muatan yang ada pada kapasitor ketika sudah penuh? Kemudian, baterai dilepas, dan bahan dielektrik dengan konstanta 𝜅 disisipkan pada celah di antara kedua pelat. Tentukan tegangan, muatan, dan kapasitas akhir pada kapasitor.
Hani Nurbiantoro Santosa, PhD (
[email protected])