BAB IV PROSES, HASIL, DAN PEMBAHASAN
A. Desain Mesin Desain konstruksi Mesin pengaduk reaktor biogas untuk mencampurkan material biogas dengan air sehingga dapat bercampur secara maksimal. Dalam proses perancangannya ditentukan dari beberapa pertimbangan diantaranya : 1. Spesefikasi mesin yang ergonomis dengan dimensi yang nyaman yaitu panjang 750x lebar 750x tinggi 800 mm. 2. Sirip
pengaduk
dibuat
mudah
dipasang
dan
dilepas
sehingga
mempermudah proses perbaikan mesin. 3. Rangka dengan bentuk sederhana, tetapi dapat menopang berat konstruksi mesin yaitu 40 Kg. 4. Semua komponen mesin dibuat sendiri sehingga harganya lebih terjangkau. B. Proses Perancangan Mesin Pengaduk Reaktor Biogas 1. Perancangan Mesin pengaduk reaktor biogas Proses perancangan mesin pengaduk reaktor biogas, mempunyai langkah – langkah perencanaan sebagai berikut seperti diagram alir dibawah ini
35
36
PENGADUK
MOTOR BENSIN
PULLY DAN SABUK V
POROS
BANTALAN Gambar 6. Proses perancangan 2. Mekanisme Pengadukan Mesin pengaduk reaktor biogas mempunyai transmisi sebagai berikut. Gerak putar motor di transmisikan ke pulley I, kemudian pulley I ditransmisikan ke pulley II dengan menggunakan belt. Pulley II yang seporos dengan ulir cacing kemudian memutar roda gigi cacing dengan perbandingan 1:23. Roda gigi cacing ini disambung dengan poros utama yang langsung mengaduk material biogas. C. Analisis Teknik yang digunakan dalam perancangan 1. Perencanaan Pengaduk Pengaduk ini terbuat dari plat eiser dengan ketebalan 2mm dengan luas 22500 mm dan terdiri dari 4 sirip pengadukdengan berat
tiap sirip yaitu 5 kg. Untuk mengetahui besarnya gaya yang harus
37
dilawan oleh sirip dilakukan pengujian empiris yaitu dengan menekan sirip kedalam air. Dari pengujian tersebut diperoleh gaya 10 kg. Karena material biogas adalah campuran air dengan kotoran sapi dan viskositasnya lebih tinggi, maka gaya yang harus dilawan oleh sirip diperoleh 20 Kg.
60 mm
1 : 23 mm 180 mm
Beban yang harus dilawan sirip = 20 kg/sirip Berat sirip 5 kg/sirip Jadi gaya total sirip = 100 kg
F = 20 kg / sirip
Gambar 7. Konstruksi mesin Sehingga T = F.r T = 100 kg . 112,5 mm T = 11250 kg.mm
38
Daya motor yang digunakan untuk mengaduk reaktor adalah T = 9,74 . 10
P n
11250 = 9,74 . 10 P=
11250 .20 9,74 . 10
P 20
P = 0,23 KW = 230 Watt P = 0,31 HP
Jadi daya yang dibutuhkan untuk mengaduk material biogas yaitu 0,31 HP 2. Motor Pemilihan motor sebagai penggerak utama dalam mesin ini harus mempunyai daya yang mampu menggerakkan sirip pengaduk. a. Daya yang diperlukan untuk proses pengadukan adalah 0,31 HP Daya pada transmisi puli v dengan efisiensi (η) = 85 % yaitu Pr =
Pr =
P
η
x 100%
0,31 x 100% 85
Pr = 0,365 HP
Jadi daya motor yang sesuai untuk digunakan pada mesin yaitu 0,5 HP b. Efisiensi motor η= η=
0,31 x 100% 0,5 0,31 x 100% 0,5
η = 62 %
39
Dalam pelaksanaanya pada saat dilapangan motor yang digunakan harus lebih besar untuk proses pengadukan. Saat uji kinerja motor yang digunakan yaitu motor bensin dengan daya 4HP, putaran 1400 rpm. 3. Perancangan Sistem Transmisi Mesin pengaduk ini harus dapat mentransmisikan putaran 1400 rpm menjadi 20 rpm.sistem transmisi yang digunakan pada mesin ini adalah pulley dan roda gigi cacing berpasangan. D1 x N motor = 466,7 D2 Kemudian ditransmisikan melewati roda gigi dan ulir cacing berpasangan N2 =
dengan perbandingan 1 : 23 1 x 466,7 = 20,29 rpm 23 Maka putaran pada sirip pengaduk yaitu 20 rpm N pengaduk =
40
4. Puli dan Sabuk V
Gambar 8. Diagram Alir Perencanaan Transmisi sabuk V digunakan untuk menurunkan putaran dari 1400 rpm menjadi 466,7 rpm. Faktor koreksi yang digunakan untuk perhitngan yaitu daya normal 1 (Sularso, Hal.7). a. Perhitungan daya pada puli Pd = fc x P Pd = 1 x 0,365 Pd =0,365 kW
41
b. Beban torsi pada pulley yang digerakkan Pd N 0,365 T = 9,74 x 10 466,7 T = 9,74 x 10
T = 761,76 Kgmm
c. Kecepatan sabuk
π Dp N 60x1000 3,14 . 180 . 1400 v= 60x1000 v=
v = 5,86 m/s
d. Beban Pulley
102 Dp V 102 .0,365 F= 5,86 F=
F = 6,353 Kg
e. Panjang keliling (L)
2
2 ƴ
C π
L1 = 2C + (d L1 = 2C +
,
+ D )+
(60 + 180) +
(d + D )2
(60 + 180)2
42
(60 + 180)2
L1 = 2C + 376,8 +
(60 + 180)2
L1 = 2 x 300 +376,8 +
(60 + 180)2
L1 = 753,6 + L1 = 801,6 mm
f. Nomor nominal sabuk-V, yaitu: 801,6 mm 1) Rumus: b = 2L1– π (Dp2 + dp1) b = 2 x 801,6 – 3,14 (180+60) b = 1029,6 mm 2) Rumus (
C= C=
,
) ,
(
)
C = 250,2 mm g. Besar sudut kontak v-belt dengan puli
θ = 1800 –
(
θ = 1800 –
(
) )
θ = 157,20= K0 = 0,99
43
h. Jadi pemilihan type sabuk dalam mesin pengaduk reactor biogas ini adalah type A dengan nomor nominal sabuk V : 32, L =801,6 (Sularso, hal. 168) 5. Poros Dalam mesin pengaduk reaktor biogas ini Poros merupakan bagian transmisi yang berfungsi meneruskan putaran dari roda gigi cacing untuk mengaduk material biogas dengan kecepatan 20 rpm. Bahan yang digunakan untuk poros yaitu ST 37. a. Momen yang dihasilkan P N
T = 9,74 x 10 T = 9,74 x 10
T = 761,76 Kg
0,365 466,7
b. Tegangan geser yang terjadi pada poros τ
=
τ
=
τ
=
16 T πd
16 .761,76 3,14 . 20 ,
.
.
,
= 193,82 kg/mm Beban sirip
Beban poros
Torsi pengaduk
100mm
200mm
40 mm
Gambar 9. Pembebanan poros
44
c. Daya yang ditransmisikan P =0,5 HP N puli 2= 466,7 rpm Maka torsi yang dihasilkan T = 9,74 x 10 T = 9,74 x 10
0,5 N
0,5 466,7
T = 1043,496 kg. mm
d. Faktor koreksi diambil f = 1,2 untuk daya normal,maka daya rencana untuk hitungan poros yaitu Pd = fc . P = 1,2 x 0,5 = 0,6 HP e. Momen puntir rencana T = 9,74 x 10 T = 9,74 x 10
0,6 N
0,5 466,7
T = 1252,196 kg. mm
f. Pembebanan pada poros roda gigi cacing 1) Puli = 1,5 kg 2) Ulir cacing 5 kg (asumsi dari berat ulir) 3) Gaya tarik V belt = F1 = x 1,5 = 0,5 kg
45
VB = 5 kg
11250 kg mm
B
A
RVB
RVA 100 mm
200 mm
40 mm
Gambar 10. Diagram benda bebas pembebanan poros Gaya reaksi bantalan ΣMB = 0 VA (240) – (11250) – 40 (5) = 0 240 VA = 11230 VA = 46,7 kg (keatas) ΣMA = 0 VB(240)-5(200)-100(33,01)=0 240VB= 1000-100 (33,01) VB= 9,6 kg (kebawah) g. Momen pada poros bolong penerus putaran roda gigi cacing. Pembebanan pada poros pipa pengaduk dengan bahan ST 37 memiliki kekuatan tarik 37 kg/mm dan moment puntir 15 kg/mm (Neimann, Hal 319) 40kg
350 mm
40kg
200 mm
50 mm
Gambar 11. Poros pipa pengaduk
46
T. r J
τ
=
τ
=
τ
= 8,67Kg. mm
(40.250) + (40.50) π
Jadi τ
kg.mm
10,9
yang terjadi pada poros sirip pengaduk yaitu 8,67 kg.mm ≤ 15
h. Pembebanan pada sirip pengaduk 20 kg/ mm
R 315 mm
Gambar 12. Poros pada sirip
σ = σ =
M. y I
20 . 157,5 .6 π
12
σ = 9,292 kg. mm
Jadi τ yang terjadi pada poros sirip pengaduk yaitu 9,292 kg.mm ≤37 kg.mm (aman)
47
i. Bahan Poros Berdasarkan analisis, beban maksimal yang harus dilawan poros yaitu 9,292 kg/mm,tegangan poros 193,82kg/mm, maka bahan poros pada mesin pengaduk ini menggunakan ST 37 dengan kekuatan tarik ( σb ) = 37 kg/mm2.Ada 2 faktor koreksi yang diperhitungkan yaitu Sf1 dan Sf2. Ditinjau dari batas kelelahan puntir diambil Sf1 = 6, Sf2 = 2. Berdasarkan pertimbangan tersebut maka poros mesin pada roda gigi cacing menggunakan : Sf2 = 2 karena diberi alur pasak, poros bertingkat, dan pertimbangan pengaruh kekasaran permukaan. j. Tegangan geser yang diijinkan Tegangan geser yang diijinkan σg(kg/mm2) adalah: σg = σb / (Sf1 x Sf2) = 50 / (6 x 2 ) = 2,78 kg/mm2 k. Faktor koreksi puntiran dan lenturan Faktor koreksi yang ditinjau dari keadaan momen puntir dinyatakan dengan Kt dengan harga 1,0 – 3,0. Faktor tersebut ditinjau apakah poros dikenai beban secara halus, sedikit kejutan/tumbukan, atau kejutan atau tumbukan yang besar. Faktor koreksi yang ditinjau dari keadaan momen lentur dinyatakan dengan Km dengan harga 1,5 – 3,0. Faktor tersebut ditinjau
48
apakah poros berputar dengan pembebanan momen lentur yang tetap, mengalami tumbukan ringan, atau mengalami tumbukan berat. Berdasarkan pertimbangan tersebut maka poros pengaduk menggunakan : Kt = 3,0 karena dikenai kejutan besar Km = 3,0 karena mengalami tumbukan berat i. Diameter Poros pejal ,
ds≥
(K . M) + (K . T)
τ
ds≥
,
,
(3. 193,82) + (3.1252,196 )
ds≥ 19,105 mm ≈19 mm
maka diameter yang dibuat harus lebih besar yaitu 20 mm. j. Diameter poros bolong τ
=
16 T d π (d − d )
8,67 =
16 .10000 d 3,14 (d − d )
d = 25.4 mm ,
6. Bantalan
d = 22,5 mm
Perancangan bantalan pada mesin pengaduk reaktor biogasini menggunakan bantalan gelinding dengan alasan bantalan gelinding pada umumnya
lebih
cocok
untuk
beban
kecil,
dan
pelumasannya
49
sederhana.Selain itu, bantalan gelinding mempunyai keuntungan dari segi gesekan gelinding yang sangat kecil dibandingkan dengan bantalan luncur. Bantalan ini berfungsi untuk tumpuan poros utama agar lebih stabil. Diameter poros yang digunakan adalah 20 mm dengan arah pembebanan radial. Berdasarkan tabel bantalan yang digunakan adalah tipe 6005 dengan pertimbangan bantalan mampu menerima beban statis sebesar 530 kg. Pada mesin pengaduk ini terdapat empat buah bantalan dengan gaya yang ditumpu oleh bantalan adalah reaksi terbesar yaitu 46,7 kg. Sehingga bantalan yang digunakan adalah sebagai berikut : -
Diameter kecil 20 mm.
-
Diameter besar 47 mm.
-
Kapasitas nominal dinamik 790 kg
-
Kapasitas nominal statik 530 kg
a. Baban ekuivalen dinamis : Pr= X V . Fr + Y Fa Dimana : Pr
: Beban gilas ekuivalen dinamis (kg)
Fr
: Beban radial yang bekerja pada tumpuan terbesar yaitu Rc = 46,7 kg
Fa
: Beban aksial = 0 kg
X,Y,V : faktor yang dimiliki bantalan
50
Diketahui : X = 0,56 Y = 1,45 V =1 Pr = 0,56 . 1 . 46,7 + 1,45 . 0 = 26,152 kg b. Umur bantalan : Faktor kecepatan (fn) fn = (33,3/ n)1/3 = (33,3/20)1/3= 1,185 Faktor umur (fh) : fh = fn . C/p = 1,185
,
= 35,79
Umur nominal (Ln) : Lh = 500 fh3 = 500. 35,793 = 22922136,8 jam = 955089 hari = 26,09 tahun Jadi umur bantalan sesuai dengan perhitungan adalah 26,09 tahun
51
7. `Pemilihan bahan rangka Berdasarkan klasifikasi baja maka bahan diatas digolongkan pada baja karbon rendah dengan sebutan ST 37. Sifat plat siku ini secara umum adalah ulet, kuat, mampu dikerjakan dengan mesin, mampu dikerjakan dengan las. baja siku sama kaki. Sifat-sifat mekanis baja struktural untuk maksud perencanaan ditetapkan sebagai berikut: Modulus geser (G)
= 80.000 MPa
Modulus elastisitas bahan (E) = 210 GPa = 210 x 10 Pa
Luas Penampang (A)
= 29,1 cm = 29,1 x 10 m
Beban (W)
= 313,92 Kg
Momen inersia bahan (I)
= 305,4 mm2= 3,054 . 10 -4 m2.
Gambar 13. Hasil analisis ansys Dari analisis diatas diperoleh pergeseran titik maksimal adalah 0.2212 mm, Y =
w .a .b 3.E I L
52
I=
313,92 kg. (3,2 cm). (4,3 cm)
(0.02212 cm). (7,5)
(3) 2100000
I = 0,063 cm
Momen inersia pada analisis lebih kesil dari momen inersia bahan maka, konstruksi dinyatakan aman. D. Analisis ekonomi Macam Biaya
Macam Pekerjaan
A. Biaya Desain Survey Analisis Gambar
Macam Biaya B. Biaya Pembeli an Kompon en
Macam Biaya C. Biaya Pembuat an kompon en
Bahan( Alat Rp) (Rp) 20000
10000
20000
50000
Biaya Pembelian (BP) 80000 40000 400000 40000 15000 10000 550000
Macam Komponen Bearing Mur Baut Motor Pully Belt Shock Ulir Pipa PVC Tabung
Macam Elemen Poros RG cacing Rangka Poros Pengaduk
Bahan Baku
30000 21000 0 5000 50000
Tenaga (Rp)
Jumlah
10000 20000 20000 Jumlah
40000 20000 90000 150000
Biaya Perakitan
Jumlah
8000 4000 45000 4000 1500 1000 55000 Jumlah
88000 44000 495000 44000 16500 11000 605000 113200
Baha Tenaga Kerja n Langsung Peno (125%*TKL) long
Biaya Overhe ad
Jumlah
0
50000
62500
152500
0 0 0
100000 15000 50000
125000 18750 62500
447000 43750 187500
53
Roda gigi Cacing Ulir Cacing Pipa Pengaduk Nilon
50000 20000 30000 10000
0
50000
62500
182500
0
50000
62500
142500
0 0
30000 10000
37500 12500
107500 37500
Jumlah
1203750
D. Biaya non Produksi Biaya Gudang Pajak perusahaan
5% * C 5% * C Jumlah
58187.5 58187.5 116375
E. Laba
10% (A+B+C+D)
F. Harga tafsiran produk
(A+B+C+D+ E)
250932.5
2820257.5
E. Hasil dan Pembahasan 1. Poros Hasil perancangan untuk poros utama pada mesin pengaduk reaktor biogasini diperoleh diameter minimal poros yang diijinkan, yaitu 19,1 mm dengan bahan yang digunakan adalah ST 37, maka diameter poros yang digunakan adalah 20 mm.Panjang poros utama mesin pengaduk reaktor biogas yaitu 340 mm 2. Bantalan Bantalan yang digunakan pada poros utama sesuai dengan hasil analisis yaitu menggunakan bantalan gelinding jenis bola dengan nomor
54
6204 dengan dimensi d = 20 mm, D = 47 mm, B = 14, r = 1,5 mm, kapasitas dinamis spesifik (C) = 1000 kg, dan kapasitas statis spesifik (Co) = 635 kg.(Robet L. Mott, Hal : 569) 3. Sabuk dan Puli Motor yang digunakan pada mesin pengaduk ini memiliki daya 0,5 HP dengan putaran 1400 rpm. Putaran yang direncanakan pada transmisi sabuk V adalah sebesar 20 rpm, sehingga dari hasil perhitungan diperoleh ukuran puli yang digunakan yaitu untuk puli pada poros motor 2 inchi, puli pada poros tengah 6 inchi, kmudian dari 6 inchi dihubungkan dengan roda gigi cacing 1:23. Sedangkan untuk sabuk yang digunakan adalah sabuk-V tipe A no. 32 dengan jarak poros 300 dan panjang belt 801,6 mm F. Kelemahan- kelemahan Berdasarkan hasil desain dan analisis konstruksi mesin pengaduk reaktor biogas, kelemahan produk terdapat pada : 1. Desain konstruksi. Desain konstruksi kurang ergonomis untuk operator, jarak posisi disel yang terlalu tinggi dan posisi ditengah rangka, sehingga untuk menyalakan disel perlu beberapa kali dalam menarik handlenya. Untuk itu diperlukan tempat khusus untuk operator. 2. Sirip pengaduk Sirip merupakan komponen yang paling rawan terjadinya korosi dari hasil fermentasi biogas didalam reaktor, tetapi sudah disiasati dengan
55
komponen mudan dilepas dan dipasang kembali agar mamperlancar proses perbaikan dan perawatannya. 3. Tabung reaktor terlalu kecil, sehingga gas yang dihasilkan juga sedikit. 4. Kurang runtutnya proses perancangan yang dilakukan, maka terdapat sedikit kesulitan dalam penyetingan mesin.