16
BAB IV HASIL DAN PEMBAHASAN 4.1
Karakteristik Data Untuk mengetahui karakteristik data yaitu dengan memperoleh gambaran
posisi dari masing-masing objek, dalam hal ini negara dan vektor peubah seperti IMR, PEM, CWR, CP, TFR, AHH, CVAG, K3, B2, dan GRR akan dilakukan plot data dengan menggunakan analisis biplot. Dengan memilih α = 0, diperoleh G=U, H = LA. Akibatnya X'X = (GH')'(GH') = HIr H' (n 1)S ; karena itu panjang vektor hj pada biplot menggambarkan keragaman xj. Selain itu, nilai kosinus antara hi dan hj merepresentasikan korelasi antara peubah xi dan xj.
Biplot
distribusi data dari 40 negara dengan peubah IMR, PEM, CWR, CP, TFR, AHH, CVAG, K3, B2, dan GRR seperti disajikan pada Gambar 2. Keterangan: AHH = Angka Harapan Hidup IMR = Infant Mortality Rate PEM = Percentage Ever married Women CWR = Child Woman Ratio CP = Rasio anak dibawah 5 tahun TFR = Total Fertility Rate K3 = Kumulant ke-3 B2 = Ukuran ketebalan distribusi umur CVAG = Koefesien variasi distribusi umur wanita GRR = Gross Reproduction Rate
Objek ke-1 sampai dengan objek ke-40 adalah nama-nama negara seperti terlihat pada Lampiran 2.
Gambar 2 Biplot sebaran data 40 negara dengan peubah IMR, PEM, CWR, CP, TFR, AHH, CVAG, K3, B2, dan GRR Ukuran kesesuaian data 73,74 % pada Gambar 2 merupakan konsukuensi pereduksian, dari dimensi 10 ke dimensi 2, sehingga terjadi distorsi informasi sebesar 26,26%. Namun demikian besaran kesesuaian data ini dipandang masih cukup representatif.
17
Kedekatan Antar Objek Pemetaan negara sebagai objek berdasarkan peubah IMR, PEM, CWR, CP, TFR, AHH, CVAG, K3, B2, dan GRR akan menempatkan negara dalam beberapa kelompok. Dengan melihat kedekatan antar objek dan kedekatan objek dengan peubah seperti yang ditunjukkan pada Gambar 2, maka objek-objek tersebut dapat dibagi menjadi 4 kelompok berikut. Kelompok A, berdasarkan ciri bahwa letak objek mendekati vektor peubah AHH dan B2 yang terdiri dari tujuh negara yaitu : Australia (2), France (10), Ireland (15), Israel (16), Malaysia (23), Norwegia (27), dan Polandia (28). Kelompok B, berdasarkan ciri bahwa letak objek mendekati vektor peubah AHH yang terdiri dari enam belas negara yaitu : Canada (4), Cyprus (6), Czech Repubulik (7), Denmark (8), Finlandia (11), Greece (12), Italy (17), Japan (18), Korea (20), Netherland (25), Portugal (29), Singapura (33), Slovenia (35), Spain (36), Swedia (37), dan USA (40). Kelompok C, berdasarkan ciri bahwa letak objek mendekati vektor peubah yang PEM terdiri dari dua belas negara yaitu : Armenia (1), Austria (3), Croatia (5), Estonia (9), Hungary (13), India (14), Latvia (21), Lithuania (22), Moldova (24), Rumania (30), Rusia (31), dan Slovakia (34) Kelompok D, berdasarkan ciri bahwa letak objek mendekati vektor peubah IMR, CWR, CP, TFR, K3, dan CVAG yang terdiri dari lima negara yaitu : Kazakhastan (19), Nepal (26), Saint Lucia (32), Turki (38), dan Uruguay (39).
Keeratan Hubungan Antar Peubah Sebelum melihat keeratan hubungan antar peubah akan dilihat terlebih dahulu keragaman masing-masing peubah. Pada Gambar 2 ditunjukkan bahwa peubah AHH, CWR, dan PEM mempunyai keragaman yang lebih besar dibandingkan TFR, CP dan IMR karena mempunyai vektor yang lebih panjang. Demikian pula dengan peubah CVAG, K3, B2, dan GRR mempunyai keragaman lebih kecil dibandingkan dengan AHH, CWR, dan PEM
karena mempunyai
vektor yang lebih pendek. Selanjutnya untuk melihat keeratan hubungan antar peubah akan dianalisis juga bentuk sudut antar peubah tersebut. Pada Gambar 2 terlihat bahwa hubungan
18
erat dan positif terjadi antara peubah yaitu: TFR dengan CWR, TFR dengan CP, TFR dengan IMR, GRR dengan CVAG, dan GRR dengan K3 karena membentuk sudut lancip. Selain itu, terjadi korelasi positif antara peubah TFR dengan PEM, tetapi tidak terlalu berarti jika dilihat nilainya pada Tabel 2. Sebaliknya antara peubah GRR dan AHH terjadi korelasi erat tetapi negatif karena terbentuk sudut lancip apabila dilihat berlawanan arah. Untuk lebih jelasnya, keeratan hubungan berdasarkan tabel korelasi Pearson dapat dilihat pada Tabel 2 dan Tabel 5 di halaman berikutnya. Untuk melihat keterkaitan objek dengan peubah dapat dilihat dari letak objek dengan peubah yaitu sepihak, di tengah-tengah, atau berlawanan. Dari Gambar 2 terlihat beberapa negara seperti Estonia (9) dan Greece (12) mempunyai nilai di bawah rata-rata terhadap peubah TFR, tetapi mempunyai nilai di atas rata-rata untuk peubah AHH. Sebaliknya untuk negara-negara seperti Saint Lucia (32) dan Nepal (26) mempunyai nilai di atas rata-rata terhadap peubah IMR, CWR, CP dan TFR tetapi mempunyai nilai di bawah rata-rata untuk peubah AHH. Pengelompokan Gugus Data Seperti telah dijelaskan sebelumnya, bahwa pada penelitian ini akan dibuat dua gugus data untuk melakukan fitting (pengepasan) model dan validasi model dengan
menggunakan
metode
Palmore
dan
Gunasekaran-Palmore
serta
modifikasinya. Untuk itu, dibentuk gugus data I digunakan fitting model dan gugus data II digunakan validasi model.
Langkah berikutnya
adalah
mengelompokkan dua gugus data berdasarkan proporsi letak negara yang mewakili beberapa benua dari empat kelompok A, B, C dan D. Untuk gugus data I terdiri dari 20 negara yaitu : 3 negara dari kelompok A, 8 negara dari kelompok B, 4 negara dari kelompok C dan 5 dari kelompok D. Gugus data II terdiri dari 20 negara yaitu : 2 negara dari kelompok A, 8 negara dari kelompok B, 3 negara dari kelompok C dan 7 dari kelompok D. Hasilnya seperti terlihat pada Lampiran 3.
4.2
Model Palmore dan Modifikasinya Sebelum melakukan fitting menggunakan metode Palmore, terlebih dahulu
dianalisis bentuk hubungan masing-masing peubah bebas IMR, PEM, CWR dan
19
CP dengan peubah takbebas TFR. Pada Lampiran 10 disajikan grafik scatter plot (diagram pencar) menggunakan Software Mathematica 7.0. Berdasarkan diagram pencar tersebut terlihat plot antara peubah TFR dengan IMR, peubah TFR dengan CWR, peubah TFR dengan CP, dan peubah TFR dengan PEM yang tidak semua berbentuk linear. Ada beberapa kecenderungan bentuk hubungan yang terjadi, di antaranya kuadratik dan logaritmik. Setelah dilakukan analisis regresi hasilnya adalah antara peubah IMR dengan TFR dan peubah PEM dengan TFR terlihat kecenderungan bentuk kuadratik. Sebaliknya antara peubah CWR dengan TFR dan CP dengan TFR terlihat kecenderungan bentuk logaritmik. Untuk lebih jelasnya, hasil R2 antara peubah TFR dengan IMR, PEM, CWR , dan CP dapat dilihat pada Tabel 1 berikut : Tabel 1 Hasil R2 antara peubah TFR dengan IMR, PEM, CWR, dan CP Peubah
IMR
PEM
CWR
CP
Linear
0,25
0,09
0,65
0,47
Kuadratik
0,27
0,12
0,54
0,38
Logaritmik
0,16
0,05
0,71
0,53
Fungsi
Tabel berikut menjelaskan keeratan hubungan antar peubah berdasarkan rumus korelasi Pearson. Tabel 2 Hubungan antara peubah IMR, PEM, CWR, CP dengan peubah TFR dengan korelasi Pearson Peubah
IMR
PEM
CWR
CP
IMR
1,00
PEM
0,42
1,00
CWR
0,65
0,22
1,00
CP
0,53
0,20
0,76
1,00
TFR
0,50
0,27
0,81
0,68
TFR
1,00
Berdasarkan Tabel 2 dapat dilihat hubungan erat dan positif terjadi antara peubah TFR dengan CWR, sebesar 0,81; TFR dengan CP sebesar 0,68; dan TFR dengan IMR sebesar 0,50. Sebaliknya hubungan erat tetapi negatif terjadi pada
20
peubah TFR dengan AHH sebesar -0,44. Sementara untuk hubungan yang kurang erat terjadi antara peubah TFR dengan PEM yaitu sebesar 0,27. Berdasarkan hasil analisis tersebut, diperoleh empat model sebagai berikut - Model 1 merupakan model yang dikembangkan oleh Palmore diperoleh bentuk fungsi TFR f ( IMR, CWR, CP, PEM ) . - Model 2 berdasarkan pola hubungan terbaik dari hasil eksplorasi diperoleh bentuk fungsi TFR f ( IMR2 ,ln CWR,ln CP, PEM 2 ) . - Model 3 merupakan pengembangan model 2 berdasarkan hasil analisis korelasi Pearson yaitu dengan menghilangkan peubah CP. Modifikasi tanpa CP dilakukan berdasarkan pola keeratan hubungan
pada Tabel 2. Dari tabel
tersebut menunjukkan hubungan signifikan antara peubah CWR dengan CP dengan koefesien korelasi sebesar 0,76. Demikian juga jika berdasarkan Gambar 2 terlihat hubungan erat antara peubah CWR dengan CP yang ditandai dengan terbentuk sudut lancip. Dengan demikian salah satu peubah dapat dihilangkan untuk menghindari terjadinya multikolinearitas, yaitu ada hubungan linear antara sesama peubah bebas. Seperti diketahui, jika multikolinearitas tinggi maka mengakibatkan koefesien-koefesien regresi dugaan cenderung memiliki keragaman besar yang berakibat tidak diperoleh informasi
tepat
mengenai
koefesien
regresi
sebenarnya.
Pemilihan
menghilangkan peubah CP dibandingkan dengan peubah CWR karena CWR mempunyai korelasi lebih tinggi dengan peubah TFR. Sehingga diperoleh model dalam bentuk fungsi TFR f ( IMR2 ,ln CWR, PEM 2 ) . - Model 4 berdasarkan analisis eksplorasi bentuk fungsi setiap peubah bebas dalam bentuk linear, kuadratik, dan logaritmik maka diperoleh bentuk fungsi TFR f (ln CWR,ln PEM ) dengan metode stepwise regression.
Berdasarkan penjelasan tersebut, dengan menggunakan gugus data I diperoleh empat model sebagai berikut : Model 1 TFR 0,2909 0,0239 IMR 2,9822 CWR 0,1445CP 0,0030 PEM ( R2adj 0,937)
(4.1)
21
Hal ini menunjukkan bahwa dengan data baru untuk 20 negara dengan model Palmore didapat kesesuaian sebesar 93,7% dari model. Model 2 TFR 3,1156 0,0002 IMR2 1,3557ln CWR 0,3447ln CP 0,0001 PEM 2
(4.2)
( R2 adj 0,955)
Hal ini menunjukkan bahwa dengan data baru untuk 20 negara dengan modifikasi model Palmore didapat kesesuaian sebesar 95,5% dari model. Model 3 TFR 4,1878 0,0002 IMR2 1,6848 ln CWR 0,0001PEM 2 ( R2 adj 0,956)
(4.3) Hal ini menunjukkan bahwa dengan data baru untuk 20 negara dengan modifikasi model Palmore didapat kesesuaian sebesar 95,6% dari model. Model 4 TFR 3,9539 1, 4168ln CWR 0,0781ln PEM ( R2 adj 0,954)
(4.4)
Hal ini menunjukkan bahwa dengan data baru untuk 20 negara dengan modifikasi model Palmore didapat kesesuaian sebesar 95,4% dari model. Keempat model tersebut merupakan model yang cukup baik untuk modifikasi model Palmore, tetapi yang paling baik adalah Model 4. Selain itu, pada Model 4 tidak terdapat korelasi yang tinggi antar peubah bebas seperti yang ditunjukkan pada Lampiran 8. Setelah diperoleh empat model Palmore tersebut maka dilakukan validasi model dengan menggunakan gugus data II. Hasilnya dapat dilihat pada Tabel 3.
Tabel 3 Validasi Model Palmore dan modifikasinya Model
Model Palmore
Model 1
Model 2
Model 3
Model 4
Original
(%)
(%)
(%)
(%)
R2 adj
-
93,7
95,5
95,6
95,4
MAPE(int)
-
7,1
6,1
6,3
7,6
MAPE(eks)
51,2
36,1
33,6
33,5
30,6
Validasi
22
Dari Tabel 3, terlihat bahwa Model 4 adalah modifikasi model Palmore yang terbaik. Model tersebut menghasilkan nilai MAPE internal (pada gugus data I) sebesar 7,6% dan MAPE eksternal (pada gugus data II) terkecil sebesar 30,6%. Artinya Model 4 sudah cukup baik jika menggunakan metode Stepwise Regression. Berikut akan dibandingkan antara nilai TFR duga dengan nilai TFR
3.5 3 2.5 2 1.5 1 0.5 0
tfr asli tfr duga Armenia Croatia Czech Rep Greece Hungary India Israel Kazakhastan Korea Lithuania Malaysia Moldova Norwegia Portugal Rusia Singapore Slovenia Swedia Turky USA
Total Fertility Rate
asli pada Model 4 seperti ditunjukkan pada Gambar 3.
Negara
Gambar 3 Perbandingan antara nilai TFR duga dan TFR asli Model 4 pada gugus data II Secara umum, nilai TFR duga dengan menggunakan Model 4 sudah mendekati nilai TFR asli dari negara-negara seperti terlihat pada Gambar 3. Namun masih ada beberapa negara yaitu Kazakhastan, Korea, dan Norwegia yang mempunyai nilai galat lebih besar dibanding negara lainnya. Hal ini dapat disebabkan karena perbedaan pola tingkat kelahiran dan kematian pada ketiga tersebut berbeda dibandingkan dengan negara-negara lain. Perbedaan itu dapat terjadi karena beberapa faktor yang memengaruhi diantaranya faktor sosial, ekonomi, dan budaya. 4.3
Model Gunasekaran-Palmore dan Modifikasinya Model berikutnya adalah pengembangan dari model Palmore yaitu model
Gunasekaran-Palmore. Model ini menitikberatkan pada distribusi umur penduduk khususnya wanita untuk mendapatkan nilai peubah CVAG, K3 dan B2 yang
23
memengaruhi nilai peubah GRR. Demikian juga peubah AHH akan digunakan sebagai faktor kematian yang memengaruhi tingkat kelahirannya, dalam hal ini GRR. Berdasarkan diagram pencar pada Lampiran 10, terlihat plot antara peubah AHH, CVAG, B2 dan K3 dengan GRR yang tidak semua berbentuk linear. Ada beberapa kecenderungan bentuk hubungan yang terjadi di antaranya kuadratik dan logaritmik. Setelah dilakukan analisis regresi diperoleh hasil yaitu: antara peubah GRR dengan AHH dan antara peubah GRR dengan B2 mempunyai kecenderungan bentuk logaritmik. Sebaliknya antara peubah GRR dengan CVAG mempunyai kecenderungan bentuk linear. Sementara antara peubah GRR dengan K3 mempunyai kecenderungan bentuk kuadratik. Untuk lebih jelasnya, hasil R2 antara peubah GRR dengan AHH, CVAG, K3 dan B2 dapat dilihat pada Tabel 4. Tabel 4 Hasil R2 antara peubah GRR dengan AHH, CVAG, K3, dan B2 Peubah
AHH
CVAG
K3
B2
Linear
0,208
0,582
0,531
0,019
Kuadratik
0,195
0,580
0,546
0,016
Logaritmik
0,221
0,580
0,377
0,061
Fungsi
Setelah melakukan eksplorasi, dilakukan analisis biplot untuk model Gunasekaran-Palmore dengan peubah ln AHH, ln CVAG, ln K3, ln B2, dan GRR untuk objek empat puluh negara seperti ditunjukkan pada Lampiran 4. Berdasarkan tabel analisis korelasi Pearson seperti ditunjukkan pada Tabel 5, dapat disimpulkan yaitu antara peubah GRR dengan ln AHH mempunyai hubungan cukup erat tetapi negatif sebesar -0,47. Selain itu, hubungan erat dan positif terjadi antara: peubah GRR dengan CVAG dengan nilai korelasi 0,75, peubah GRR dengan ln K3 dengan nilai korelasi 0,60 dan peubah GRR dengan K32 dengan nilai korelasi 0,73. Sebaliknya, antara peubah GRR dan ln B2 mempunyai hubungan tidak erat dengan nilai korelasi sebesar 0,25. Untuk lebih jelas, hasil seperti yang disajikan pada Tabel 5 berikut.
24
Tabel 5 Hubungan antara peubah ln AHH, ln CVAG, CVAG, ln K3, ln B2, K32 dengan korelasi Pearson Peubah
ln AHH
CVAG
ln CVAG
ln K3
K3kuadrat
ln B2
ln AHH
1,00
CVAG
-0,67
1,00
ln CVAG
-0,66
1,00
1,00
ln K3
-0,40
0,81
0,83
1,00
K3kuadrat
-0,54
0,93
0,93
0,81
1,00
ln B2
-0,65
0,77
0,75
0,53
0,74
1,00
GRR
-0,47
0,75
0,74
0,60
0,73
0,25
GRR
1,00
Berdasarkan dari analisis tersebut diperoleh enam model sebagai berikut: - Model 5 merupakan model yang dikembangkan oleh Gunasekaran-Palmore dengan bentuk fungsi ln GRR f (ln AHH ,ln CVAG,ln K3 ,ln B2 ) . - Model 6 berdasarkan analisis eksplorasi bentuk fungsi peubah bebasnya dalam bentuk linear, kuadratik, dan logaritmik dengan peubah GRR maka diperoleh bentuk fungsi ln GRR f (ln CVAG) dengan metode Stepwise Regression. - Model 7 adalah pengembangan Model 5 dengan peubah takbebas GRR dalam bentuk linear berdasarkan analisis korelasi Pearson bahwa GRR bentuk linear memiliki nilai korelasi lebih tinggi dibandingkan dengan GRR bentuk logaritmik.
Sehingga
model
diperoleh
dalam
bentuk
fungsi
GRR f (ln AHH ,ln CVAG,ln K3 ,ln B2 ).
- Model 8 berdasarkan analisis korelasi Pearson seperti pada Tabel 4 yaitu peubah CVAG mempunyai kecenderungan bentuk linear dan peubah K3 digunakan bentuk logaritmik karena berdasarkan Tabel 5, peubah CVAG dan ln K3 mempunyai nilai korelasi sebesar 0,81. Artinya lebih baik dalam uji multikolinearitas dibandingkan jika digunakan peubah CVAG dan K32 yang mempunyai nilai koefesien korelasi lebih tinggi sebesar 0,93. Model diperoleh dalam bentuk fungsi GRR f (ln AHH , CVAG,ln K3 ,ln B2 ).
25
- Model 9 merupakan pengembangan Model 8 dengan menghilangkan peubah ln B2. Modifikasi dilakukan berdasarkan gambar biplot pada Lampiran 4 yang menunjukkan peubah ln B2 membentuk sudut tumpul dengan peubah GRR. Artinya mempunyai hubungan tidak erat sehingga dapat dihilangkan. Demikian juga berdasarkan Tabel 5 menunjukkan antara peubah GRR dengan ln B2 mempunyai nilai korelasi sebesar 0,25. Model ini ditulis dalam bentuk fungsi GRR f (ln AHH , CVAG,ln K3 ).
- Model 10 berdasarkan analisis eksplorasi bentuk fungsi peubah bebasnya dalam bentuk linear, kuadratik, dan logaritmik maka diperoleh bentuk fungsi GRR f (CVAG 2 , K32 ) dengan metode Stepwise Regression.
Berdasarkan penjelasan tersebut dan dengan menggunakan gugus data I diperoleh enam model sebagai berikut : Model 5 ln GRR 0, 4155 0, 2531ln AHH 2, 4934ln CVAG 0,0553ln K3 0,0155ln B2
( R2 adj 0,581)
(4.5)
Hal ini menunjukkan bahwa dengan data baru untuk 20 negara dengan model Gunasekaran-Palmore didapat kesesuaian sebesar 58,1% dari model. Model 6 ln GRR 0,8250 1,9940ln CVAG( R2 adj 0,633)
(4.6)
Hal ini menunjukkan bahwa dengan data baru untuk 20 negara dengan modifikasi model Gunasekaran-Palmore didapat kesesuaian sebesar 63,3% dari model.
Model 7 GRR 3,6678 0, 2664 ln AHH 2, 2388 ln CVAG 0,0609 ln K3 0,0413ln B2 ( R2 adj 0,64)
(4.7)
Hal ini menunjukkan bahwa dengan data baru untuk 20 negara dengan modifikasi model Gunasekaran-Palmore didapat kesesuaian sebesar 64,0% dari model.
26
Model 8 GRR 0,1805 0, 2222ln AHH 3,3635 CVAG 0,0442 ln K3 0,0498ln B2 ( R2 adj 0,637)
(4.8)
Hal ini menunjukkan bahwa dengan data baru untuk 20 negara dengan modifikasi model Gunasekaran-Palmore didapat kesesuaian sebesar 63,7% dari model. Model 9 GRR 0,0476 0,1743ln AHH 3,3126 CVAG 0,0432 ln K3 *
(4.9)
( R2 adj 0,659)
Hal ini menunjukkan bahwa dengan data baru untuk 20 negara dengan modifikasi model Gunasekaran-Palmore didapat kesesuaian sebesar 65,9% dari model. Model 10 GRR 0,547 4, 205CVAG 2 0, 000000001208K32 ( R2 adj 0, 745)
(4.10)
Hal ini menunjukkan bahwa dengan data baru untuk 20 negara dengan modifikasi model Gunasekaran-Palmore didapat kesesuaian sebesar 74,5% dari model. Dari enam model tersebut dilakukan validasi model dengan menggunakan gugus data II. Hasilnya dapat dilihat pada Tabel 6.
Tabel 6 Validasi Model Gunasekaran-Palmore dan modifikasinya
Model Validasi
Model original
R2adj (%)
-
MAPE(int) (%) MAPE(eks) (%)
23,7
Model 5 Original dengan Data terbaru
Model 6
Model 7
Model 8
Model 9
Model 10
58,1
63,3
64,0
63,7
65,9
74,5
10,7
10,5
9,4
9,5
9,4
7,7
18,8
18,9
17,5
17,5
17,4
20,4
Dari Tabel 6, terlihat
bahwa Model 9 adalah model modifikasi
Gunasekaran-Palmore terbaik. Model tersebut memperoleh nilai R 2 adj sebesar 65,9%, nilai MAPE internal sebesar 9,4% dan MAPE eksternal terkecil sebesar 17,4%. Berikut dibandingkan antara nilai GRR duga dengan GRR asli Model 9 seperti ditunjukkan pada Gambar 4.
27
Gross Reproduction Rate
1.60 1.40 1.20 1.00 0.80 0.60
grr asli
0.40
grr duga
0.20 Armenia Croatia Czech Rep Greece Hungary India Israel Kazakhastan Korea Lithuania Malaysia Moldova Norwegia Portugal Rusia Singapore Slovenia Swedia Turky USA
0.00
Negara
Gambar 4 Perbandingan antara nilai GRR duga dengan GRR asli Model 9 pada gugus data II Berdasarkan Gambar 4, secara umum nilai GRR duga sudah mendekati nilai GRR asli dengan nilai galat cukup kecil pada hampir semua negara. Namun beberapa negara masih memiliki nilai galat cukup besar diantaranya Norwegia, Moldova, dan Israel dengan selisih galat masing-masing sebesar 49%, 41%, dan 34%. Hal ini dapat disebabkan adanya kemungkinan pola kelahiran dan kematian negara-negara tersebut tidak mengikuti tren yang ada. Untuk lebih jelasnya, tabel perolehan nilai galat dapat dilihat pada Lampiran 9. Modifikasi Model Gabungan Palmore dengan Gunasekaran-Palmore Setelah mendapatkan model modifikasi metode Palmore dan GunasekaranPalmore maka dicobakan gabungan antara model Palmore dan GunasekaranPalmore sebagai model yang dasarkan: pertama analisis biplot (Gambar 2) menunjukkan peubah CWR mempunyai hubungan erat dengan peubah TFR dan GRR, kedua analisis eksplorasi peubah CVAG mempunyai kecenderungan bentuk linear, ketiga peubah K3 dipilih bentuk logaritmik (ln) agar tidak terjadi multikolinearitas serta keempat peubah ln B2 dihilangkan karena berdasarkan analisis biplot (Lampiran 4) tidak berhubungan erat dengan peubah GRR.
28
Berdasarkan analisis tersebut, model
dapat ditulis dalam bentuk fungsi
GRR f (ln AHH , CVAG,ln K3 ,ln CWR) sebagai berikut :
Model 11 GRR 0, 2184 0, 4063ln AHH 0,3743CVAG 0,0259ln K3 0,8007 ln CWR ( R2 adj 0,943)
(4.11)
Hal ini menunjukkan Model 11 sudah meningkatkan R2 terkoreksi dengan menambahkan peubah ln CWR sehingga didapat keragaman sebesar 94,3% dari model menggunakan gugus data I. Jika menggunakan gugus data II maka didapat nilai MAPE eksternal sebesar 14,3% yaitu nilai terkecil dari semua model sebelumnya. Untuk lebih jelasnya, gambar berikut menyajikan nilai perbandingan antara GRR asli dengan GRR duga Model 11 pada gugus data II.
Gross Reproduction Rate
1.60 1.40 1.20 1.00 0.80 0.60
grr asli
0.40
grr duga
0.20 USA
Turky
Swedia
Slovenia
Rusia
Singapore
Portugal
Norwegia
Moldova
Malaysia
Korea
Lithuania
Kazakhastan
India
Israel
Greece
Hungary
Croatia
Czech Rep
Armenia
0.00
Negara
Gambar 5 Perbandingan antara nilai GRR duga dengan GRR asli Model 11 pada gugus data II Berdasarkan Gambar 5 secara umum GRR duga sudah mendekati GRR asli dengan nilai galat cukup kecil untuk semua negara pada gugus data II. Kecuali beberapa negara yang memiliki nilai galat cukup besar seperti Korea, Rusia, dan Norwegia.
29
Model 12 Model 12 adalah alternatif modifikasi lain. Dengan menggunakan metode stepwise regression didapat fungsi GRR f (ln CWR) . Dari gugus data I, Model ini dapat ditulis sebagai berikut :
GRR 1,8434 0, 7000ln CWR( R2 adj 0,934)
(4.12)
Hal ini menunjukkan tingkat kelahiran diduga hanya dengan menggunakan rasio anak usia balita dengan wanita usia produktif yang mewakili struktur umur penduduk dengan kesesuaian 93,4% dari model. Model ini dapat digunakan seandainya keterangan mengenai angka harapan hidup atau tingkat kematian pada negara tersebut belum tersedia dengan lengkap.
4.4
Modifikasi Model Gabungan Gunasekaran-Palmore dengan Fungsi Distribusi Umur Penduduk dalam Bentuk Kontinu
4.4.1 Model Kontinu Fungsi Distribusi Umur Penduduk Pada penelitian ini fungsi bentuk kontinu dalam distribusi umur penduduk wanita yang digunakan adalah fungsi distribusi Gamma. Sebagai contoh disajikan grafik distribusi umur penduduk wanita Malaysia pada tahun 1991.
Proporsi jumlah pend.wanita
0.03 0.025 0.02 0.015 0.01 0.005
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
0 umur
Gambar 6 Grafik distribusi umur penduduk wanita Malaysia tahun 1991
30
Distribusi Gamma dicirikan oleh adanya dua parameter yaitu α dan β. Untuk suatu nilai parameter α dan β tertentu, grafik distribusi Gamma yang mempunyai fungsi kepekatan peluang
(
exp
adalah sebagai berikut :
f
X Gambar 7 Grafik distribusi Gamma dengan nilai parameter α dan β tertentu Dengan melihat grafik bentuk distribusi umur penduduk wanita (Gambar 6) dan grafik distribusi gamma (Gambar 7) terdapat kemiripan. Kedua grafik distribusi tersebut menunjukkan bahwa data pada awal kejadian rendah kemudian meninggi dan selanjutnya menurun menuju nol seiring bertambahnya waktu. Untuk selanjutnya dibahas penggunaan metode Gamma dalam mencari momen pertama, kedua, ketiga dan keempat dalam fungsi distribusi umur penduduk wanita. 4.4.2 Mencari nilai
, dan
Diketahui fungsi kepekatan peluang dari distribusi Gamma adalah f x
1 x ( x) 1 exp( ) Г ( )
dengan menggunakan fungsi pembangkit momen persamaan (4.13) menjadi
M x t etx 0
1 x ( x) 1 exp( )dx Г ( )
(4.13)
, maka
31
1 M x t ( x) 1 e Г ( ) 0 x(1 t )
pilih y
x (1 t )
(4.14)
dx
1
dengan t
(4.15)
dan
x
y 1 t
dx
(4.16)
dy 1 t
(4.17)
sehingga dengan mensubstitusi persamaan (4.15), (4.16), dan (4.17) ke dalam persamaan (4.14) akan diperoleh persamaan sebagai berikut :
M x t 0
0
0
1 x 1e x (1 t )/ dx Г ( )
1 y 1 y ( ) e dy Г ( ) 1 t 1 t 1 y 1 y ( ) e dy Г ( ) 1 t 1 t
/ (1 t ) y 1 y ( ) e dy Г ( ) 1 t 0
1 1 ( ) y 1e y dy 1 t 1 t Г ( ) 0 1
1
y 1 t 1 t Г 1
1 y
e dy
0
1
1 ( ) (1 t ) Г ( )
1
(1 t )
,
t
1
(4.18)
Jadi M x t (1 t )
(4.19)
dengan menurunkan persamaan (4.19) maka diperoleh persamaan sebagai berikut M ' x t 1 t
1
32
(1 t ) 1
(4.20)
sehingga untuk E ( X ) 1 M ' (0) (1 0) 1
(4.21)
dengan menurunkan persamaan (4.20) maka diperoleh persamaan sebagai berikut
M " t
d (1 t ) 1 dt
1 ( )(1 t ) 2 ( 2 ) 2 (1 t ) 2
(4.22)
sehingga untuk E ( X 2 ) 1 M '' 0 ( 2 ) 2 (1 0) 2
( )2 2
(4.23)
dengan menurunkan persamaan (4.22) maka diperoleh persamaan sebagai berikut:
M ''' t
d 2 ( ) 2 (1 t ) 3 dt
( 2 ) 2 2 (1 t ) 3 ( 2 2 2 ) 2 (1 t ) 3 ( 3 3 3 2 3 2 3 )(1 t ) 3
sehingga untuk E ( X 3 ) 3 M ''' (0) 3 3 3 2 3 2 3
(4.24) (4.25)
dengan menurunkan persamaan (4.24) maka akan diperoleh persamaan sebagai berikut :
M (4) (t )
d 3 3 ( 3 2 3 2 3 )(1 t ) 3 dt
( 3 3 3 2 3 2 3 )( 3)( )(1 t ) 4 ( 4 4 6 3 4 11 2 4 6 4 )(1 t ) 4
(4.26)
untuk E( X 4 ) 4 M (4) (0) 4 4 6 3 4 11 2 4 6 4
(4.27)
Empat nilai harapan di atas yaitu persamaan (4.21), (4.23), (4.25) dan (4.27) digunakan untuk mencari nilai kumulant ke-1 sampai dengan kumulant ke-4 pada fungsi distribusi umur penduduk wanita dalam metode Gunasekaran-Palmore dan
33
modifikasinya. Perhitungan nilai kumulant ke-1 sampai dengan ke-4 dapat dilihat pada Lampiran 1. 4.4.3 Pendugaan Parameter Distribusi Gamma Fungsi Gamma memiliki fungsi kepekatan peluang : x
( ) 1 1 f ( x) ( x ) e ( )
(4.28)
Berikut ini tahapan pendugaan parameter. n
1. L , f ( X i , ) i 1
(
n 1 n ) ( ( X i ) 1 )e ( ) i 1
n
Xi i 1
2. log L( , ) n log n log i 1 log X i i 1log[ X i ] n
n
n
Xi
i 1
Untuk memperoleh nilai penduga bagi α dan β yang memaksimumkan fungsi log-likehood, turunan pertama dari log L(α,β) terhadap α dan log L(α,β) terhadap β harus sama dengan 0, sehingga: 1.
logL( , )
n n log n log i 1log[ X i ] i 1log[ X i ] n
n
n log n log i 1log[ X i ] i 1log[ X i ] n
n
2
n
2
n
Xi
i 1 2
n log n log i 1 log X i i 1 log X i 2 2 2 2 n
n log
2
n log
2
n
i 1 log X i i 1 log X i n
n
2
2
0
34
n
Xi
i 1 2
n
2
0
n
Xi
i 1 2
0
n
X i n i 1
n
Xi
i 1
n
Jadi
n
Xi
i 1
(4.29)
n
n log n PolyGamma 0, i 1[U i ] logL( , ) 2. 0 n
Hasil turunan parsial sehingga
= 0 tidak dapat disajikan dalam bentuk analitik,
tidak dapat diperoleh secara eksplisit. Dengan bantuan software
Mathematica 7.0 diperoleh hasil secara numerik. 4.4.5 Modifikasi Model Dari data distribusi penduduk wanita 40 negara didapat masing-masing nilai α dan β dengan menggunakan metode Kemungkinan Maksimum seperti terlihat pada Lampiran 6. Selanjutnya nilai α dan β tersebut digunakan pada persamaan (4.21), (4.23), dan (4.25) untuk mendapatkan nilai peubah CVAG dan K3 bentuk kontinu seperti pada Lampiran 3. Tahap berikutnya adalah melakukan fitting model seperti pada Model 11 dengan menggunakan gugus data I. Model dapat ditulis sebagai berikut : Model 13 GRR 0,0268 0,3564ln AHH 0,0873 CVAG 0, 4333ln K3 0,7969ln CWR ( R2 adj 0,940)
(4.30)
Hal ini menunjukkan Model 13 dengan fungsi distribusi umur bentuk kontinu diperoleh keragaman sebesar 94,0% dari model menggunakan gugus data I. Demikian juga jika menggunakan gugus data II maka didapat nilai MAPE
35
eksternal sebesar 14,0% yaitu lebih kecil dibandingkan Model 11 dengan fungsi distribusi umur bentuk diskrit. Dari uraian di atas, maka dibandingkan Model 11 dan Model 13 seperti disajikan pada Tabel 7 berikut : Tabel 7 Perbandingan Nilai R2 adj dan MAPE Model 11 dan Model 13 Model
Model 11
Model 13
(%)
(%)
R2 adj
94,3
94,0
MAPE (int)
3,1
3,3
MAPE(eks)
14,3
14,0
Validasi
Berdasarkan Tabel 7, terlihat bahwa Model 11 dan Model 13 adalah model modifikasi terbaik. Model 11 dengan fungsi distribusi umur penduduk wanita diskrit menghasilkan nilai R2 adj sebesar 94,3% dari model, nilai MAPE internal sebesar 3,1% dan MAPE eksternal sebesar 14,3%. Model 13 dengan fungsi distribusi umur penduduk wanita kontinu menghasilkan nilai R 2 adj sebesar 94,0%, nilai MAPE internal sebesar 3,3% dan MAPE eksternal sebesar 14,0%. Berikut disajikan selisih nilai dari GRR asli dengan GRR duga pada Model 13. Tabel 8 Nilai galat Model 13 pada gugus data II No
Negara
GRR duga
GRR asli
Error
1
Armenia
0,72798
0,70
0,02554
2
Croatia
0,67878
0,72
0,03829
3
Czech Rep
0,57042
0,66
0,09298
4
Greece
0,73074
0,73
0,00096
5
Hungary
0,69188
0,65
0,03822
6
India
1,20119
1,41
0,21344
7
Israel
1,29372
1,44
0,15018
8
Kazakhastan
0,94297
1,29
0,34970
9
Korea
0,90988
0,57
0,33915
10
Lithuania
0,59345
0,72
0,12362
11
Malaysia
1,36922
1,07
0,29604
36
12
Moldova
0,59632
0,61
0,01343
13
Norwegia
0,94000
1,32
0,37706
14
Portugal
0,73203
0,67
0,06374
15
Rusia
1,07179
0,73
0,34495
16
Singapore
0,66286
0,62
0,03847
17
Slovenia
0,68611
0,64
0,04220
18
Swedia
0,91015
0,95
0,03618
19
Turky
1,10711
1,23
0,12703
20
USA
0,92416
1,02
0,10022
Berdasarkan Tabel 8 menunjukkan adanya nilai galat cukup kecil antara GRR duga dengan GRR asli. Namun masih ada beberapa negara yang mempunyai nilai galat cukup besar diantaranya Kazakhastan, Rusia, dan Norwegia yang memiliki perbedaan nilai galat hingga 38%. Untuk jelasnya, berikut ini akan dibandingkan nilai GRR duga dengan nilai
1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0
grr asli
USA
Turky
Swedia
Slovenia
Rusia
Singapore
Portugal
Moldova
Norwegia
Malaysia
Lithuania
Korea
Kazakhastan
India
Israel
Greece
Hungary
Croatia
Czech Rep
grr duga Armenia
Gross Reproduction Ratle
GRR asli Model 13 pada gugus data II seperti disajikan pada Gambar 8.
Negara
Gambar 8 Perbandingan antara nilai GRR asli dengan GRR duga Model 13 pada gugus data II Berdasarkan Gambar 8, secara umum GRR duga sudah mendekati GRR asli dengan nilai galat cukup kecil untuk semua negara pada gugus data II. Dengan demikian Model 13 dapat digunakan untuk menduga nilai GRR pada suatu negara
37
jika negara tersebut belum dapat melaksanakan vital statistic untuk masalah kependudukannya. Namun masih ada beberapa negara diantaranya yaitu Kazakhastan, Rusia, dan Norwegia masih memiliki nilai selisih cukup besar antara GRR duga dengan GRR asli. Hal ini dapat disebabkan karena adanya pola berbeda pada tingkat kematian dan kelahiran di negara tersebut dengan tren yang ada. Untuk lebih jelasnya, Gambar 9 berikut dapat menyajikan contoh satu negara yaitu Malaysia untuk melihat perbandingan keadaan jumlah penduduk wanita dengan grafik bentuk diskrit dan bentuk kontinu menggunakan fungsi distribusi Gamma. hx
-nilai duga
0.025
..nilai sebenarnya
0.020
0.015 0.010
0.005 umur x 20
40
60
80
100
Gambar 9 Kurva fungsi Gamma umur dan proporsi jumlah penduduk wanita dengan nilai α = 1,39 dan β = 18,21 pada distribusi umur penduduk Malaysia tahun 1991
Berdasarkan Gambar 9, hasil dari fungsi gamma dengan nilai duga untuk jumlah penduduk wanita ada yang lebih tinggi dari nilai sebenarnya dan ada yang di bawah nilai sebenarnya. Dari gambar di atas terlihat adanya penurunan jumlah penduduk wanita pada saat umur mendekati batas akhir umur manusia pada umumnya yaitu mendekati nol.
38
4.5
Evaluasi Model Berdasarkan pengembangan model yang telah disajikan pada sub bagian
sebelumnya, perlu dilakukan evaluasi terhadap keberadaan model-model tersebut sehingga dapat dipilih model terbaik untuk digunakan dalam pendugaan. Dari Model 1 sampai dengan Model 13, model yang terbaik adalah model dengan koefesien determinasi (R2 adj) mendekati 1 pada gugus data I dan nilai MAPE eksternal paling kecil. Dari Tabel 9, dapat dilihat bahwa Model 11 dan Model 13 mempunyai MAPE eksternal terkecil yaitu masing-masing sebesar 14,3% dan 14,0%, sehingga dapat disimpulkan bahwa Model 11 dan Model 13 paling akurat digunakan untuk menduga nilai TFR. Koefesien determinasi terkoreksi (R2 adj) yang dihasilkan masing-masing sebesar 94,3% dan 94,0% juga merupakan nilai yang mendekati 1. Berikut disajikan tabel evaluasi model dari model Palmore dan Gunasekaran-Palmore dan modifikasinya. Tabel 9 Perbandingan antara R2 adj, MAPE gugus data I, dan MAPE gugus data II pada semua model Gugus Data I
Model
2
Gugus Data II
R adj(%)
MAPEint(%)
MAPE eks(%)
1
93,7
7,1
36,1
2
95,5
6,1
33,6
3
95,6
6,3
33,5
4
95,4
7,6
30,6
5
58,1
10,7
18,8
6
63,3
10,5
18,9
7
64,0
9,4
17,5
8
63,7
9,5
17,5
9
65,9
9,4
17,4
10
74,5
7,7
20,4
Gabungan Palmore &
11
94,3
3,1
14,3
Gunasekaran-Palmore
12
93,3
3,9
14,2
13
94.0
3,3
14,0
Palmore
Gunasekaran-Palmore
39
4.6
Penerapan pada Data Penduduk Indonesia Indonesia dengan jumlah penduduk yang besar termasuk negara yang masih
kurang lengkap dalam hal perhitungan TFR. Berikut kelengkapan data penduduk Indonesia pada tahun 2000-2003 yang didapat dari Sensus Penduduk (SP) tahun 2000 dan Survei Demografi Kesehatan Indonesia (SDKI) tahun 2003. (www.datastatistik.Indonesia.com). Tabel 10 Kelengkapan data penduduk Indonesia berdasarkan Sensus Penduduk dan SDKI tahun 2000-2003 Peubah Indonesia
AHH 65,5
IMR 35,6
CWR 0,44
CP 10,1
PEM 56,9
CVAG 0,68
K3 B2 4157,3 2,68
TFR 2,40
GRR 1,16
Berdasarkan hasil analisis hanya enam model yang digunakan untuk menduga nilai TFR Indonesia yaitu Model Palmore Original, Modifikasi Palmore (Model 4), Model Gunasekaran-Palmore Original, Modifikasi GunasekaranPalmore (Model 9), Modifikasi Gabungan Palmore dan Gunasekaran-Palmore fungsi distribusi umur wanita diskrit (Model 11) dan Modifikasi Gabungan Palmore dan Gunasekaran-Palmore fungsi distribusi umur wanita kontinu (Model 13) seperti disajikan pada Tabel 11. Tabel 11 Perbandingan nilai TFR duga untuk enam model pada data penduduk Indonesia dengan TFR = 2,40 Model
TFR
Palmore Original Modifikasi Palmore (4) Gunasekaran-Palmore Original Modifikasi Gunasekaran-Palmore (9) Modifikasi Gabungan Palmore dan Gunasekaran-Palmore fungsi distribusi umur wanita diskrit (11) Modifikasi Gabungan Palmore dan Gunasekaran-Palmore fungsi distribusi umur wanita kontinu (13)
3,20 2,46 2,70 2,27 2,49 2,37
Berdasarkan Tabel 11, dapat dilihat bahwa dengan menggunakan data penduduk Indonesia pada Model Palmore Original, nilai TFR duga yang dihasilkan sebesar 3,20. Pada Model Gunasekaran-Palmore Original, nilai TFR
40
duga yang dihasilkan sebesar 2,70. Pada Model 4 nilai TFR duga yang dihasilkan sebesar 2,46. Pada Model 9 nilai TFR duga yang dihasilkan sebesar 2,27. Pada Model 11, nilai TFR duga yang dihasilkan sebesar 2,49 dan pada Model 13 menghasilkan nilai TFR duga 2,37. Dari hasil yang diperoleh, maka untuk Model 11 dan Model 13 dengan nilai TFR duga masing-masing sebesar 2,49 dan 2,37 cukup akurat untuk menduga TFR Indonesia, yang jika dilihat berdasarkan data SDKI menggunakan Own Children Method tahun 2003 adalah 2,40. Sedangkan jika untuk Model 4, walaupun nilai TFR duga 2,46 sudah mendekati TFR Indonesia tetapi jika ditinjau secara demografi model tersebut tidak relevan karena tingkat kelahiran tidak hanya dipengaruhi oleh tingkat kelahiran dan faktor sosial yaitu status wanita pernah menikah tetapi juga oleh tingkat kematian.