BAB II
TINJAUAN TEORITIS
2.1 Tinjauan Pustaka
Realisasi modul praktikum FM menggunakan PLL (Phase Locked Loop) sebelumnya telah pernah dibuat oleh Rizal Septiandi mahasiswa Program Studi Teknik
Telekomunikasi tahun 2007. Modul praktikum FM menggunakan (Phase Locked Loop) yang telah dibuat memiliki spesifikasi sebagai berikut:
Frekuensi kerja carrier ± 20 KHz
Informasi 300-3400 Hz
Menggunakan IC LM555
Panel hanya terdiri dari blok Filter
Pada proyek akhir ini penulis membuat sebuah modul praktikum Modulator FM dengan PLL (Phase Locked Loop) dengan frekuensi carrier yang lebih tinggi dan dengan panel yang berisi blok lengkap dari PLL(Phase Locked Loop).
2.2 Teori Dasar Modulasi Modulasi dalam konteks telekomunikasi berarti mengatur suatu parameter dari suatu pembawa (carrier) frekuensi tinggi dengan menggunakan bantuan sinyal informasi yang berfrekuensi rendah. Berdasarkan sinyal informasinya modulasi dibagi menjadi modulasi analog dan modulasi digital. Modulasi analog terdiri dari:
Modulasi Amplitudo (AM)
Modulasi Frekuensi (FM)
Dan modulasi digital terdiri dari:
Amplitude Shift Keying (ASK)
Frekuency Shift Keying (FSK)
Phase Shift Keying (PSK)
4
BAB II Tinjauan Teoritis
Frekuensi 2.3 Modulasi
Modulasi Frekuensi dapat dideefinisikan sebagai deviasi frekuensi sesaat sinyal
carrier( sinyal pembawa) sesuai dengan amplitude sesaat sinyal pemodulasi ( sinyal informasi ). Sinyal pembawa atau sinyal carrier biasanya berupa gelombang sinusoidal
sedangkan sinyal pemodulasi atau sinyal informasi dapat berupa gelombang apa saja ( kotak, segitiga, gigi gergaji atau sinyal audio). Gambar 1 Dibawah ini sinusoidal,
mengilustrasikan proses modulasi frekuensi.
Gambar 1 Ilustrasi Frekuensi Modulasi Secara matematis sinyal termodulasi FM dapat dinyatakan sebagai berikut:
eFM = Vc sin ( ωc t + mf sin ωm t ) .……………….………………...…(1) Dengan: eFM : sinyal termodulasi FM\ em : sinyal pemodulasi ec : sinyal pembawa Vc : amplitudo maksimum sinyal pembawa mf : indeks modulasi FM ωc : frekuensi sudut sinyal pembawa (radian/detik) ωm : frekuensi sudut sinyal pemodulasi(radian/detik)
Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
5
BAB II Tinjauan Teoritis
2.3.1 Deviasi Frekuensi
pada modulasi frekuensi maka frekuensi sinyal pembawa diubah-ubah
sehingga besarnya sebanding dengan dengan besarnya amplitudo sinyal pemodulasi. Semakin besar amplitudo sinyal pemodulasi, maka semakin besar pula
frekuensi sinyal termodulasi FM. Besar selisih antara frekuensi sinyal termodulasi pada suatu saat dengan frekuensi sinyal pembawa disebut deviasi frekuensi. FM
Deviasi frekuensi maksimum didefinisikan sebagai selisih antara frekuensi sinyal termodulasi tertinggi dengan terendahnya.
Besarnya indeks modulasi dapat dinyatakan dengan persamaan matematis
sebagai berikut:
∆f = k.EmMakx………………………………………………………...…(2) Dimana: ∆f= deviasi frekuensi FM K= konstanta deviasi frekuensi EmMakx= amplitude maksimum sinyal pembawa FM
2.3.2 Indeks Modulasi Indeks modulasi FM merupakan perbandingan antara deviasi frekuensi maksimum terhadap frekuensi sinyal pemodulasi (sinyal Informasi). Besarnya nilai indeks modulasi dinyatakan dengan persamaan matematis dibawah ini:
m= ∆f/ fm……………………………...……………………………...….(3)
dimana: m= indeks modulasi FM ∆f= deviasi frekuensi maksimum Fm= frekuensi sinyal pemodulasi besarnya indeks modulasi ini akan dimaksimalkan dengan cara mengatur besarnya deviasi frekuensi maksimal yang diijinkan[1].
Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
6
BAB II Tinjauan Teoritis
2.3.3 Spektrum frekuensi Gelombang FM
Bentuk gelombang termodulasi FM mempunyai spektrum frekuensi yang
cukup banyak atau mempunyai sideband hanya satu atau lebih dari satu. Banyaknya frekuensi dari hasil proses modulasi FM ini menentukan besarnya bandwidth dari suatu pemancar FM. Semakin banyak sinyal sideband yang
dihasilkan oleh pemancar FM maka semakin besar juga range frekuensi yang
digunakan oleh pemancar FM
tersebut.
Untuk mengetahui seberapa lebar spektrum frekuensi sinyal termodulasi
FM, tentu saja dimulai dari persamaan (1), yaitu persamaan gelombang FM yang berbentuk fungsi sinus dari fungsi sinus. Penyelesaiannya memasukkan fungsi
Bessel seperti ditunjukkan pada persamaan (4), yaitu sinus dari fungsi sinus. Persamaan gelombang FM dinyatakan sbb: eFM = Vc J0 mf sin ωc t ...............................................................................................(4) + Vc {J1 (mf) [sin (ωc + ωm )t - sin (ωc - ωm )t]} + Vc {J2 (mf) [sin (ωc + 2ωm )t - sin (ωc - 2ωm )t]} + Vc {J3 (mf) [sin (ωc + 3ωm )t - sin (ωc - 3ωm )t]} + Vc {J4 (mf) [sin (ωc + 4ωm )t - sin (ωc - 4ωm )t]} + ……… dengan eFM
: amplitudo sesaat gelombang termodulasi FM
Vc
: amplitudo puncak pembawa
Jn
: penyelesaian fungsi Bessel orde ke-n untuk indeks modulasi
mf
: indeks modulasi FM
dan Vc J0 (mf) sin ωc t = komponen frekuensi pembawa Vc{J1 (mf) [sin (ωc+ωm)t - sin (ωc-ωm)t]} = komp. bid. sisi pertama Vc{J2 (mf) [sin (ωc+2ωm )t - sin (ωc-2ωm )t]} = komp. bid. sisi ke-dua Vc{J3 (mf) [sin (ωc+3ωm)t -sin (ωc-3ωm )t]} = komp. bid. sisi ke-tiga Vc{J4 (mf) [sin (ωc + 4ωm )t-sin (ωc-4ωm )t]} = komp. bid. sisi ke-empat Vc {J5 (mf) [sin (ωc + 5ωm )t - sin (ωc - 5ωm )t]} = komp. bid. sisi ke-lima dst. Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
7
BAB II Tinjauan Teoritis
Gambar 2 Penyelesaian fungsi Bessel orde ke-n untuk berbagai indeks modulasi
Dari persamaan (3), nampak bahwa spektrum gelombang FM menjadi tidak terbatas walaupun spektrum yang berada simetris terhadap frekuensi carrier, fC, mempunyai amplitudo yang makin lama mengecil sesuai koefisien fungsi Bessel yang bersesuaian. Nilai spektrum terjauh dapat dilihat dari Tabel-1, yaitu pada nilai koefisien J yang terakhir untuk nilai index modulasi tertentu.
Sementara pada sistem AM,
spektrum hanya terbatas pada LSB dan USB-nya. Tetapi dalam praktek rekomendasi ITU-R, yang diterapkan pada bidang penyiaran misalnya. Dari Tabel 1, nampak bahwa sangat mungkin melakukan penilaian ukuran carrier dan setiap sideband untuk nilai tertentu index modulasi, mf, sehingga kita dapat menggambarkan spektrum tersebut pada berbagai nilai index modulasi seperti ditunjukkan pada gambar 2. Index modulasi akan berubah oleh dua peubah sesuai persamaan (3), yaitu, nilai deviasi frekuensi, δ, dan frekuensi sinyal pemodulasi, fm. Nampak pada gambar 2, bahwa perubahan dua peubah itu akan menghasilkan spektrum yang berbeda walaupun nilai index modulasi yang dihasilkan sama. Ini dapat dilihat pada nilai mf = 0,5 untuk dua kondisi (a) dan (b) pada gambar 3.
Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
8
BAB II Tinjauan Teoritis
Tabel 1 Koefisien Fungsi Bessel vs mf
Bessel function of the first kind n or order of sidebands Modulatio carrier n index frequency J 0 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 (mf) 1.00 0.00 0.98 0.12 0.25 0.94 0.24 0.03 0.5 0.11 0.02 0.77 0.44 1.0 0.51 0.56 0.22 0.06 0.01 1.5 0.22 0.58 0.35 0.13 0.03 2.0 -0.05 0.50 0.45 0.22 0.07 0.02 2.5 -0.26 0.34 0.49 0.31 0.13 0.04 0.01 3.0 -0.40 -0.07 0.36 0.43 0.28 0.13 0.05 0.02 4.0 -0.18 -0.33 0.05 0.36 0.39 0.26 0.13 0.05 0.02 5.0 0.15 -0.28 -0.24 0.11 0.36 0.36 0.25 0.13 0.06 0.02 6.0 0.30 0.00 -0.30-0.17 0.16 0.35 0.34 0.23 0.13 0.06 0.02 7.0 0.17 0.23 -0.11-0.29-0.10 0.19 0.34 0.32 0.22 0.13 0.06 0.03 8.0 -0.09 0.24 0.14 -0.18-0.27-0.06 0.20 0.33 0.30 0.21 0.12 0.06 0.03 0.01 9.0 -0.25 0.04 0.25 0.06 -0.22-0.23-0.01 0.22 0.31 0.29 0.20 0.12 0.06 0.03 0.0 10.0 0.05 -0.22 -0.08 0.20 0.18 -0.07-0.24-0.17 0.05 0.23 0.30 0.27 0.20 0.12 0.07 0.03 0.01 12.0 -0.01 0.21 0.04 -0.19-0.12 0.13 0.21 0.03 -0.17-0.22-0.09 0.10 0.24 0.28 0.25 0.18 0.12 15.0 SOURCE: E. Cambi Functions, Dover Publications, Inc, New York, N.Y., 1948. Courtesy of the publisher.
(a)
(b)
Gambar 3 Spektogram sinyal FM (a) fm konstan, δ bertambah, (b) δ konstan, fm bertambah Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
9
BAB II Tinjauan Teoritis
Dalam pengaturan bandwidth untuk modulasi FM dikenal 2 istilah yaitu
NBFM (Narrow Band FM) dan WBFM (Wide Band FM). Pada NBFM
,mempunyai indeks modulasi lebih kecil dari atau sama dengan 0,2 dan sebaliknya untuk WBFM mempunyai indeks modulasi lebih dari 0,2[2].
2.3.4 Bandwidht FM
Spectrum FM menduduki lebar frekuensi tertentu sebesar:
BFM= 2nfm………………………………………………………….……(5)
Dimana:
BFM = Bandwidth FM
n= orde frekuensi sisi tertinggi yang amplitudonya masih cuku berarti
fm = frekuensi sinyal pemodulasi Dengan n adalah nilai tertinggi komponen bidang-sisi dan fm adalah frekuensi tertinggi pemodulasi. Oleh karena pada kenyataannya nilai n mencapai tak hingga, maka secara teoritis lebar bidang yang dibutuhkan adalah tak hingga pula. Namun, amplitudo komponen bidang sisi untuk n yang bernilai besar menjadi tidak terlalu signifikan sehingga kontribusinya dapat diabaikan. Dengan pertimbangan ini, maka nilai n yang digunakan untuk menentukan lebar bidang adalah nilai n yang masih memberikan kontribusi signifikan pada amplitudo komponen bidang sisinya. Kontribusi yang dapat dianggap signifikan adalah yang memberikan tegangan sebesar minimal 1% atau – 40 dB. Hal ini dapat dilihat pada tabel fungsi Bessel, misalnya untuk mf sebesar 5 maka jumlah n yang signifikan adalah 8 (sampai dengan J8 , untuk n > 8 diabaikan).
Dengan mengacu pada pedoman diatas persamaan bandwidth dapat ditulis menjadi:
BFM= 2(mf+1)fm……………………………………………….……….(6)
Dimana: BFM = bandwidth FM mf= indeks modulasi FM Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
10
BAB II Tinjauan Teoritis
fm = frekuensi sinyal pemodulasi dengan menggunakan subtitusi untuk mf persamaan dapat ditulis sebagai berikut:
BFM= 2(∆f + fm)……………………………………………….……….(7) Dimana:
BFM = bandwidth FM
∆f= deviasi frekuensi maksimum
fm = frekuensi sinyal pemodulasi[3]. 2.4 PLL (Phase Locked Loop)
PLL adalah sebuah sistem yang mensinkronisasikan dan menyesuaikan osilator satu
dengan osilator lainnya dengan membanding clock pada mikrokontroller, menggenerate frekuensi carrier, modulator FM dan lain-lain.PLL sendiri terdiri dari beberapa bagian yang diantaranya Detektor Phasa, Loop Filter dan VCO. Seperti yang diperlihatkan gambar 4 di bawah ini:
Gambar 4 Blok diagram PLL secara umum.
OSILATOR Osilator adalah rangkaian yang menghasilkan sinyal output periodik tanpa ada sinyal input dari luar. Sinyal input rangkaian didapat dengan cara mengumpan balikkan sebagian/seluruh sinyal output ke input. Seperti ditunjukkan oleh gambar 5 dibawah ini’
Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
11
BAB II Tinjauan Teoritis
Vi
+
Σ
Vf
Vd
AMPLIFIER Av
Vo
+
FEEDBACK β
Gambar 5 Blok diagram Osilator Menurut Berkhausen frekuensi osilasi adalah frekuensi dimana pada suatu
keadaan total pergeseran phasa mulai dari input melalui rangkaian umpan balik dan kembali lagi ke input adalah nol atau kelipatan 360 derajat. Hal ini dapat diartikan
bahwa osilasi terjadi ketika |βAV|=1 dan pergerseran phasa 0 atau n.360o.
1. Osilator penggeser phasa
Gambar 6 Rangkaian osilator penggeser phasa
Osilator penggeser phasa memiliki karakteristik sebagai berikut:
pada frekuensi osilasi tegangan input dan output penguat berbeda fasa 180 derajat
perbedaan fasa diperoleh dari jaringan tangga RC tiga tingkat
Menggunakan umpan balik tunggal
Frekuensi resonansi 1/(2π(RC)0.5)
Dengan syarat osilasi
= +29
Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
12
BAB II Tinjauan Teoritis
2. Osilator wien bridge
Gambar 7 Rangakaian osilator wien bridge Osilator penggeser phasa memiliki karakteristik sebagai berikut:
pada frekuensi osilasi teganganoutput vo dan input V+ sefasa pada 0 derajat
sinyal akan berbentuk segi empat dan frekuensi akan turun apabila penguatan terlalu besar
perbandingan nilai kapasitor dan resistor menentukan tingkat kestabilan frekuensi
3. Osilator LC
Gambar 8 Rangkaian osilator LC 4. Osilator Clapp
Gambar 9 Rangkaian osilator clap Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
13
BAB II Tinjauan Teoritis
Osilator clap pada dasarnya adalah osilator LC yang induktornya diganti
dengan L dan C dengan tujuan mendapatkan kstabilan osilasi yang lebih baik.
5. Osilator Kristal
Kristal osilator digunakan untuk menghasilkan isyarat dengan tingkat
kestabilan frekuensi yang sangat tinggi. Kristal pada osilator ini terbuat dari
quartz atau Rochelle salt dengan kualitas yang baik. Material ini memiliki
kemampuan mengubah energy listrik menjadi energi mekanik berupa getaran atau
sebaliknya. Kemampuan ini lebih dikenal dengan piezoelectric effect.
Gambar 10 Rangkaian equivalen Kristal
VCO VCO (voltage controlled oscillator) adalah osilator LC yang frekuensinya bisa dikendalikan dari tegangan yang diberikan pada varaktor-nya (lihat gambar 5). Varaktor adalah dioda yang bila diberi tegangan balik akan menjadi kapasitor, dimana nilai kapasitansinya tergantung dari tegangan yang diberikan padanya. Jadi dengan mengubah tegangan pada varaktor itu, frekuensi VCO akan berubah. Sementara itu nilai kapasitansi varaktor (maupun kapasitansi intrinsik dalam transistor) sangat mudah dipengaruhi oleh suhu. Inilah yang membuat frekuensi VCO mudah berubah (kurang stabil). Sensitif terhadap suhu[4].
Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
14
BAB II Tinjauan Teoritis
Gambar 11 Rangkaian VCO
DETEKTOR PHASA
Rangkaian detector Phasa adalah rangkaian yang
berfungsi untuk
memperoleh beda phasa dari kedua input yaitu sinyal arus dan sinyal tegangan. rangkaian ini terdiri dari rangkaian buffer, zero crossing detector dan ICXOR. Di Rangkaian detector beda phasa itu D1 dan D2 adalah dioda zener 4,7 Volt. fungsi dari dua deoda itu adalah sebagai pengaman agar sinyal output yang dilewatkan hanya memilikiamplitudo sebesar Vzener ditambah Vforward yaitu 4.7V ditambah dengan sekitar 0.7V samadengan ±5.4V saja[5].
LOOP FILTER Loop filter yang digunakan dalam PLL biasanya menggunakan LPF (Low Pass Filter). Filter Low Pass(LPF) adalah sebuah rangkaian yang tegangan keluarannya tetap dari DC naik sampai ke suatu frekuensi cut-off fc. Bersama naiknya frekuensi di atas fc, tegangan keluarannya diperlemah (turun). Low Pass Filter adalah jenis filter yang melewatkan frekuensi rendah serta meredam atau menahan frekuensi tinggi. Bentuk respon LPF seperti ditunjukkan gambar 6 di bawah ini.
Gambar 12 Respon Frekuensi LPF. Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
15
BAB II Tinjauan Teoritis
PLL mempekerjakan dua jenis osilator itu (kristal dan VCO) sedemikian rupa sehingga menghasilkan frekuensi output yang stabil dan sekaligus mudah diubah-ubah
(variabel).
Caranya
adalah
dengan
membagi
frekuensi
VCO
dan
kemudian
membandingkannya dengan frekuensi referensi yang berasal dari osilator kristal.
Dua buah sinyal dikatakan memiliki frekuensi yang sama bila beda phasa antara
keduanya selalu tetap. Bila misalnya frekuensi VCO berubah maka beda phasa antara
osilator kristal dan VCO akan berubah. Perubahan beda phasa ini kemudian oleh detektor phasa dikonversi menjadi perubahan tegangan error. Tegangan error berupa deretan pulsa-pulsa ini kemudian dilewatkan ke rangkaian Low Pass Filter sehingga menjadi tegangan DC yang benar-benar rata. Selanjutnya perubahan tegangan DC yang sudah rata
ini diberikan pada varaktor sehingga frekuensi VCO kembali seperti semula. Dengan cara
ini maka frekuensi VCO akan “terkunci” (locked) dan selalu sama dengan frekuensi osilator kristal. Berhubung osilator kristal sangat stabil maka frekuensi VCO dengan sendirinya akan ikut stabil. Dalam gambar 6 frekuensi referensi (fr) berasal dari osilator kristal yang telah dibagi (oleh rangkaian pembagi frekuensi) dengan bilangan pembagi = R. Sementara itu, sebelum dibandingkan dengan frekuensi referensi (fr), frekuensi output VCO (fo) juga dibagi dengan bilangan pembagi = N. Pada saat sistem PLL ini dalam keadaan terkunci (locked) maka fr = fo / N atau dengan kata lain : fo = N . fr………………………………………………………………….(8) Berdasarkan persamaan ini maka fo akan mudah dibuat variabel dengan mengubah besarnya bilangan N, dimana N adalah bilangan bulat dan fr adalah satuan terkecil dari perubahan fo. Satuan terkecil ini sering disebut step. Dengan demikian mudah di dihitung Bila fr = 100 kHz maka fo = N. 100 kHz. Bila fr = 10 kHz maka fo = N . 10 kHz Bila fr = 1 kHz maka fo = N . 1 kHz, dst. N adalah bilangan bulat, bukan pecahan, dan N bisa bernilai 1 hingga tak berhingga. Dalam praktek umumnya N ditentukan oleh lebar frekuensi kerja VCO, karena tidak ada VCO yang mampu bekerja pada frekuensi nol hingga tak berhingga.
Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
16
BAB II Tinjauan Teoritis
frekuensi VCO ditentukan oleh karakteristik varaktor yang digunakan. Nilai Lebar
kapasitansi varaktor dalam PLL ditentukan oleh tegangan error yang dihasilkan detektor
phasa yang besarnya berkisar antara 0 – 5 volt, mengingat detektor phasa umumnya dibangun dari TTL (Transitor Transistor Logic) yang beroperasi pada tegangan 5 volt.
Variasi tegangan error inil akan menentukan lebar frekuensi kerja VCO. Terkadang variasi tegangan 0 - 5 volt sering dirasa kurang. Untuk mendapatkan variasi tegangan
yang lebih lebar (misalnya 0 - 15 volt) dibutuhkan sebuah DC Amplifier sehingga akan diperoleh frekuensi kerja VCO yang lebih lebar. Kesimpulan penting yang bisa diambil dari sini adalah bahwa frekuensi output PLL sangat stabil (se-stabil frekuensi kristal) tapi sekaligus dapat diubah-ubah dengan amat
mudah, cukup dengan mengubah besarnya bilangan pembagi (N).
2.5 PLL Sebagai Modulator FM Ketika berdiri sendiri, frekuensi output VCO sangat tidak stabil. Hal ini disebabkan karena kapasitansi varaktor dan kapasitansi intrinsik di dalam transistor yang digunakan, sangat dipengaruhi oleh suhu lingkungan. Bila suhu berubah maka frekuensi VCO akan berubah, sehingga dinyatakan bahwa frekuensi VCO tidak stabil. Ketidak-stabilan frekuensi VCO ini kemudian diatasi dengan sistem PLL. Perubahan suhu lingkungan umumnya berlangsung sangat lambat. Ordenya bisa detik, menit atau jam. Perubahan yang lambat ini cukup mudah diikuti oleh Low Pass Filter (LPF) di dalam PLL. Sebab time response dari LPF ini telah sengaja dibuat lambat. Ketika frekuensi VCO berubah sedemikian cepat maka LPF tidak mampu lagi mengikuti perubahan itu. Sifat inilah yang membuat PLL bisa dimanfaatkan sebagai Modulator FM. Vm
Fr F Referensi
Detektor phasa
Fout
DC + Vm
LPF
VCO DC
Fb= Fo/N
:N
Gambar 13 Blok diagram PLL sebagai modulator FM Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
17
BAB II Tinjauan Teoritis
Pada gambar 2.5 di atas sinyal pemodulasi dijumlahkan ke dalam tegangan DC yang
dihasilkan oleh LPF, sehingga tegangan yang diterima oleh varaktor adalah tegangan DC ditambah dengan tegangan sinyal pemudulasi. Akibatnya frekuensi VCO akan berubah
ubah sesuai perubahan sinyal pemodulasi.
Bila sinyal pemodulasi ini berupa sinyal audio dengan frekuensi terrendah = 20 Hz,
maka hal ini berartii bahwa perubahan yang paling lambat akan terjadi dalam waktu = 1 / 20 Hz = 0.05 detik. Sementara itu time response LPF telah sengaja dibuat misalnya = 0.07 detik. Maka perubahan frekuensi VCO yang disebabkan oleh sinyal audio itu terlalu cepat bagi LPF sehingga LPF tidak bisa mengikutinya.
Perubahan frekuensi VCO yang disebabkan karena perubahan suhu, masih bisa diikuti oleh LPF. Sebab perubahan suhu jauh lebih lambat dari time response LPF. Sangat jarang terjadi suhu berubah dalam waktu kurang dari 1 detik, sehingga time response LPF sebesar 0.07 detik akan terasa sangat responsif terhadap perubahan suhu. Akan tetapi menghadapi perubahan sinyal audio yang begitu cepat (lebih dari 0.05 detik) LPF tidak mampu lagi mengikutinya. Oleh karena itu, walaupun frekuensi output VCO ini berubahubah (sebanding dengan sinyal audio), tetapi frekuensi tengahnya akan selalu terkunci oleh sistem PLL. Dengan kata lain, frekuensi pembawa dari sinyal FM dalam sistem PLL adalah tetap (stabil)[6].
Vera Noviana Kresnawati (091331031) Laporan Proyek Akhir
18