BAB II LANDASAN TEORI
2.1 Perangkat Keras (Hardware) 2.1.1
Mikrokontroler AT89S51
Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai teknologi baru, yaitu teknologi semi konduktor dengan kandungan transistor yang lebih banyak namun hanya membutuhkan ruang kecil serta dapat diproduksi secara massal (dalam jumlah banyak) sehingga harga menjadi lebih murah (dibandingkan microprocessor). Sebagai kebutuhan pasar, mikrokontroler hadir untuk memenuhi selera industri dan para konsumen akan kebutuhan dan keinginan alat-alat bantu dan mainan yang lebih canggih serta dalam bidang pendidikan.
Tidak seperti sistem komputer, yang mampu menangani berbagai macam program aplikasi (misalnya pengolah data, pengolah angka, dan lain sebagainya), Mikrokontroller hanya bisa digunakan untuk satu aplikasi tertentu saja. Perbedaan lainnya terletak pada perbandingan RAM dan ROM-nya. Pada sistem komputer perbandingan RAM dan ROMnya besar, artinya program-program pengguna disimpan dalam ruang RAM yang relatif besar, sedangkan rutin-rutin antar muka perangkat keras disimpan dalam ruang ROM
Universitas Sumatera Utara
yang kecil. Sedangkan Pada mikrokontroler, perbandingan ROM dan RAM-nya yang besar artinya program control disimpan dalam ROM yang ukurannya relatif lebih besar, sedangkan RAM digunakan sebagai tempat penyimpanan sederhana sementara, termasuk register-register yang digunakan pada mikrokontroller yang bersangkutan.
Mikrokontroller AT89S51 merupakan salah satu keluarga dari MCS-51 keluaran Atmel. Jenis microcontroller ini pada prinsipnya dapat digunakan untuk mengolah data per bit ataupun data 8 bit secara bersamaan.
Pada prinsipnya program pada Mikrokontroller dijalankan bertahap, jadi pada program itu sendiri terdapat beberapa set instruksi dan tiap instruksi itu dijalankan secara bertahap atau berurutan.
Beberapa fasilitas yang dimiliki oleh mikrokontroller AT89S51 adalah sebagai berikut : Sebuah Central Processing Unit 8 bit Osilator internal dan rangkaian pewaktu RAM internal 128 byte Flash memori 4 Kbyte Daya tahan 1000 kali baca/tulis Tiga level kunci memori progam Lima buah jalur interupsi (dua buah interupsi eksternal dan tiga buah interupsi internal)
Universitas Sumatera Utara
Empat buah programable port I/O yang masing-masing terdiri dari delapan buah jalur I/O Sebuah port serial dengan kontrol serial full duplex UART Kemampuan untuk melaksanakan operasi aritmatika dan operasi logika Kecepatan dalam melaksanakan instruksi per siklus 1 mikrodetik pada frekuensi 12 MHz.
2.1.2
Kontruksi AT89S51
Mikrokontroller AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 kristal serta catu daya 5 Volt. Kapasitor 10 mikro-Farad dan resistor 10 Kilo Ohm dipakai untuk membentuk rangkaian reset. Dengan adanya rangkaian reset ini AT89S51 otomatis direset begitu rangkaian menerima catu daya. Kristal dengan frekuensi maksimum 24 MHz dan kapasitor 30 piko-Farad dipakai untuk melengkapi rangkaian oscilator pembentuk clock yang menentukan kecepatan kerja mikrokontroller.
Memori merupakan bagian yang sangat penting pada mikrokontroller. Mikrokontroller memiliki dua macam memori yang sifatnya berbeda.
Read Only Memory (ROM) yang isinya tidak berubah meskipun IC kehilangan catu daya. Sesuai dangan keperluannya, dalam susunan MCS-51 memori penyimpanan progam ini dinamakan sebagai memori program.
Universitas Sumatera Utara
Random Access Memori (RAM) isinya akan sirna begitu IC kehilangan catu daya, dipakai untuk menyimpan data pada saat progam bekerja. RAM yang dipakai untuk menyimpan data ini disebut sebagai memori data.
Ada berbagai jenis ROM. Untuk mikrokontroller dengan progam yang sudah baku dan diproduksi secara masal, progam diisikan ke dalam ROM pada saat IC mikrokontroler dicetak di pabrik IC.
Untuk keperluan tertentu mikrokontroler
mengunakan ROM yang dapat diisi ulang atau Programble-Eraseable ROM yang disingkat menjadi PEROM atau PROM. Dulu banyak dipakai UV-EPROM (Ultra Violet Eraseable Progamble ROM) yang kemudian dinilai mahal dan ditinggalkan setelah ada flash PEROM yang harganya jauh lebih murah.
Jenis memori yang dipakai untuk Memori Program AT89S51 adalah Flash PEROM, program untuk mengendalikan mikrokontroller diisikan ke memori itu lewat bantuan alat yang dinamakan sebagai AT89S51 Flash PEROM Programmer.
Memori Data yang disediakan dalam chip AT89S51 sebesar 128 byte, meskipun hanya kecil saja tapi untuk banyak keperluan memori kapasitas itu sudah cukup.
Sarana Input/Ouput yang disediakan cukup banyak dan bervariasi. AT89S51 mempunyai 32 jalur Input/Ouput. Jalur Input/Ouput paralel dikenal sebagai Port 1 (P1.0..P1.7) dan Port 3 (P3.0..P3.5 dan P3.7).
Universitas Sumatera Utara
Gambar 2.1. IC Mikrokontroler AT89S51 Deskripsi pin-pin pada mikrokontroler AT89S51 : VCC (Pin 40) Suplai tegangan GND (Pin 20) Ground Port 0 (Pin 39-Pin 32) Port 0 dapat berfungsi sebagai I/O biasa, low order multiplex address/data ataupun penerima kode byte pada saat flash programming Pada fungsi sebagai I/O biasa port ini dapat memberikan output sink ke delapan buah TTL input atau dapat diubah sebagai input dengan memberikan logika 1 pada port tersebut. Pada fungsi sebagai low order multiplex address/data, port ini akan mempunyai internal pull up. Pada saat flash progamming diperlukan eksternal pull up, terutama pada saat
Universitas Sumatera Utara
verifikasi program. Port 2 (Pin 21 – pin 28) Port 2 berfungsi sebagai I/O biasa atau high order address, pada saat mengaksememori secara 16 bit. Pada saat mengakses memori 8 bit, port ini akan mengeluarkan isi dari P2 special function register. Port ini mempunyai internal pull up dan berfungsi sebagai input dengan memberikan logika 1. Sebagai output, port ini dapat memberikan output sink keempat buah input TTL. Port 3 (Pin 10 – pin 17) Port 3 merupakan 8 bit port I/O. RST (pin 9) Reset akan aktif dengan memberikan input high selama 2 cycle. ALE/PROG (pin 30) Address latch Enable adalah pulsa output untuk me-latch byte bawah dari alamat selama mengakses memori eksternal. Selain itu, sebagai pulsa input progam (PROG) selama memprogam Flash. PSEN (pin 29) Progam store enable digunakan untuk mengakses memori progam eksternal. EA (pin 31) Pada kondisi low, pin ini akan berfungsi sebagai EA yaitu mikrokontroler akan menjalankan progam yang ada pada memori eksternal setelah sistem direset. Jika kondisi high, pin ini akan berfungsi untuk menjalankan progam yang ada pada memori internal. Pada saat flash programming, pin ini akan mendapat tegangan 12 Volt. XTAL1 (pin 19)
Universitas Sumatera Utara
Input untuk clock internal.
XTAL2 (pin 18) Output dari osilator.
2.1.3. Relay Relay adalah suatu rangkaian switch magnetik yang bekerja bila mendapat catu dan suatu rangkaian trigger. Relay memiliki tegangan dan arus nominal yang harus dipenuhi output rangkaian pendriver atau pengemudinya. Arus yang digunakan pada rangkaian adalah arus DC.
Konstruksi dalam suatu relay terdiri dari lilitan kawat (coil) yang dililitkan pada inti besi lunak. Jika lilitan kawat mendapatkan aliran arus, inti besi lunak kontak menghasilkan medan magnet dan menarik switch kontak. Switch kontak mengalami gaya listrik magnet sehingga berpindah posisi ke kutub lain atau terlepas dari kutub asalnya. Keadaan ini akan bertahan selama arus mengalir pada kumparan relay. Dan relay akan kembali keposisi semula yaitu normaly ON atau Normaly OFF, bila tidak ada lagi arus yang mengalir padanya, posisi normal relay tergantung pada jenis relay yang digunakan. Dan pemakaian jenis relay tergantung pada kadaan yang diinginkan dalam suatu rangkaian. Menurut kerjanya relay dapat dibedakan menjadi : 1. Normaly Open (NO), saklar akan tertutup bila dialiri arus
Universitas Sumatera Utara
2. Normaly Close (OFF), saklar akan tertutup bila tidak dialiri arus 3. Change Over (CO), relay ini mempunyai saklar tunggal yang nomalnya tertutup yang lama, bila kumparan 1 dialiri arus maka saklar akan terhubung ke terminal A, sebaliknya
bila kumparan 2 dialiri arus maka saklar akan terhubung ke
terminal B.
Analogi rangkaian relay yang digunakan pada proyek ini adalah saat basis transistor ini dialiri arus, maka transistor dalam keadaan tertutup yang dapat menghubungkan arus dari kolektor ke emiter yang mengakibatkan relay terhubung. Sedangkan fungsi dioda disini adalah untuk melindungi transistor dari tegangan induksi berlebih, dimana tegangan ini dapat merusak transistor.
Jika transistor pada basis tidak ada arus maju, transistor terbuka sehingga arus tidak mengalir dari kolektor ke emiter, relay tidak bekerja karena tidak ada arus yang mengalir pada gulungan kawat.
Gambar 2.2. Simbol Dasar Relay
Universitas Sumatera Utara
2.1.4. Resistor
Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan seperti tembaga, perak, emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan-bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, bahan material seperti karet, gelas, karbon memiliki resistansi yang lebih besar menahan aliran elektron dan disebut sebagai insulator. Resistor adalah komponen dasar elektronika yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian. Sesuai dengan namanya resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Dari hukum Ohm diketahui, resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Satuan resistansi dari suatu resistor disebut Ohm atau dilambangkan dengan simbol Ω .
Tipe resistor yang umum adalah berbentuk tabung dengan dua kaki tembaga di kiri dan kanan. Pada badannya terdapat lingkaran membentuk gelang kode warna untuk memudahkan pemakai mengenali besar resistansi tanpa mengukur besarnya dengan Ohmmeter. Kode warna tersebut adalah standar manufaktur yang dikeluarkan oleh EIA (Electronic Industries Association) seperti yang ditunjukkan pada tabel berikut.
Universitas Sumatera Utara
Pada saat Penulis mendaftar kuliah di jurusan Teknik Elektro, ada salah satu test yang harus dipenuhi, yaitu diharuskan tidak buta warna. Belakangan baru diketahui bahwa mahasiswa Teknik Elektro wajib untuk bisa membaca warna gelang resistor.
Gambar 2.3 Resistor Warna
Nilai
faktor pengali
Toleransi
Hitam
0
1
Coklat
1
10
1%
Merah
2
100
2%
Jingga
3
1.000
Kuning
4
10.000
Hijau
5
100.000
Biru
6
106
Violet
7
107
Abu-abu
8
108
Putih
9
109
Emas
-
0.1
5%
Perak
-
0.01
10%
Tanpa warna
-
-
20%
Tabel 2.1. Nilai Warna Gelang
Universitas Sumatera Utara
Resistansi dibaca dari warna gelang yang paling depan ke arah gelang toleransi berwarna coklat, merah, emas atau perak. Biasanya warna gelang
toleransi ini berada
pada badan resistor yang paling pojok atau juga dengan lebar yang lebih menonjol, sedangkan warna gelang yang pertama agak sedikit ke dalam. Dengan demikian pemakai sudah langsung mengetahui berapa toleransi dari resistor tersebut. Kalau anda telah bisa menentukan mana gelang yang pertama selanjutnya adalah membaca nilai resistansinya.
Jumlah gelang yang melingkar pada resistor umumnya sesuai dengan besar toleransinya. Biasanya resistor dengan toleransi 5%, 10% atau 20% memiliki 3 gelang (tidak termasuk gelang toleransi). Tetapi resistor dengan toleransi 1% atau 2% (toleransi kecil) memiliki 4 gelang (tidak termasuk gelang toleransi). Gelang pertama dan seterusnya berturut-turut menunjukkan besar nilai satuan, dan gelang terakhir adalah faktor pengalinya. Misalnya resistor dengan gelang kuning, violet, merah dan emas. Gelang berwarna emas adalah gelang toleransi. Dengan demikian urutan warna gelang resitor ini adalah, gelang pertama berwarna kuning, gelang kedua berwana violet dan gelang ke tiga berwarna merah. Gelang ke empat tentu saja yang berwarna emas dan ini adalah gelang toleransi. Dari tabel 2.1 diketahui jika gelang toleransi berwarna emas, berarti resistor ini memiliki toleransi 5%. Nilai resistansisnya dihitung sesuai dengan urutan warnanya. Pertama yang dilakukan adalah menentukan nilai satuan dari resistor ini. Karena resitor ini resistor 5% (yang biasanya memiliki tiga gelang selain gelang toleransi), maka nilai satuannya ditentukan oleh gelang pertama dan gelang kedua. Masih dari tabel 2.1
Universitas Sumatera Utara
diketahui gelang kuning nilainya = 4 dan gelang violet nilainya = 7. Jadi gelang pertama dan kedua atau kuning dan violet berurutan, nilai satuannya adalah 47. Gelang ketiga adalah faktor pengali, dan jika warna gelangnya merah berarti faktor pengalinya adalah 100. Sehingga dengan ini diketahui nilai resistansi resistor tersebut adalah nilai satuan x faktor pengali atau 47 x 100 = 4.7K Ohm dan toleransinya adalah 5%.
Spesifikasi lain yang perlu diperhatikan dalam memilih resitor pada suatu rancangan selain besar resistansi adalah besar watt-nya. Karena resistor bekerja dengan dialiri arus listrik, maka akan terjadi disipasi daya berupa panas sebesar P = I2R watt. Semakin besar ukuran fisik suatu resistor bisa menunjukkan semakin besar kemampuan disipasi daya resistor tersebut.
Umumnya di pasar tersedia ukuran 1/8, 1/4, 1, 2, 5, 10 dan 20 watt. Resistor yang memiliki disipasi daya 5, 10 dan 20 watt umumnya berbentuk kubik memanjang persegi empat berwarna putih, namun ada juga yang berbentuk silinder. Tetapi biasanya untuk resistor ukuran jumbo ini nilai resistansi dicetak langsung dibadannya, misalnya 100 Ω 50 W.
2.1.5. Kapasitor Kapasitor adalah komponen elektronika yang dapat menyimpan muatan listrik. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik,
Universitas Sumatera Utara
gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatanmuatan positif akan mengumpul pada salah satu kaki elektroda metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif karena terpisah oleh bahan elektrik yang nonkonduktif. Muatan elektrik ini “tersimpan” selama tidak ada konduktif pada ujung- ujung kakinya. Di alam bebas fenomena kapasitor terjadi pada saat terkumpulnya muatanmuatan positif dan negatif diawan.
Kapasitor merupakan komponen pasif elektronika yang sering dipakai didalam merancang suatu sistem yang berfungsi untuk mengeblok arus DC, Filter, dan penyimpan energi listrik. Didalamnya 2 buah pelat elektroda yang saling berhadapan dan dipisahkan oleh sebuah insulator. Sedangkan bahan yang digunakan sebagai insulator dinamakan dielektrik. Ketika kapasitor diberikan tegangan DC maka energi listrik disimpan pada tiap elektrodanya. Selama kapasitor melakukan pengisian, arus mengalir. Aliran arus tersebut akan berhenti bila kapasitor telah penuh. Yang membedakan tiap - tiap kapasitor adalah dielektriknya. Berikut ini adalah jenis– jenis kapasitor yang dipergunakan dalam perancangan ini.
2.1.6. Transistor Transistor adalah komponen elektronika yang mempunyai tiga buah terminal. Terminal itu disebut emitor, basis, dan kolektor. Transistor seakan-akan dibentuk dari
Universitas Sumatera Utara
penggabungan dua buah dioda. Dioda satu dengan yang lain saling digabungkan dengan cara menyambungkan salah satu sisi dioda yang senama. Dengan cara penggabungan seperti dapat diperoleh dua buah dioda sehingga menghasilkan transistor NPN. Bahan mentah yang digunakan untuk menghasilkan bahan N dan bahan P adalah silikon dan germanium. Oleh karena itu, dikatakan : 1. Transistor germanium PNP 2. Transistor silikon NPN 3. Transistor silikon PNP 4. Transistor germanium NPN Semua komponen di dalam rangkaian transistor dengan simbol. Anak panah yang terdapat di dalam simbol menunjukkan arah yang melalui transistor. C B
C B
E NPN
E PNP
Gambar 2.4. simbol tipe transistor Keterangan : C = kolektor E = emiter B = basis
Universitas Sumatera Utara
Didalam pemakaiannya transistor dipakai sebagai komponen saklar (switching) dengan memanfaatkan daerah penjenuhan (saturasi) dan daerah penyumbatan (cut off) yang ada pada karakteristik transistor.
Pada daerah penjenuhan nilai resistansi persambungan kolektor emiter secara ideal sama dengan nol atau kolektor dan emiter terhubung langsung (short). Keadaan ini menyebabkan tegangan kolektor emiter (V CE) = 0 Volt pada keadaan ideal, tetapi pada kenyataannya VCE bernilai 0 sampai 0,3 Volt. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaan on seperti pada gambar 2.6 Vcc
Vcc IC
RB VB
VCE IB
R Saklar On
VBE
Gambar 2.5. Transistor sebagai Saklar ON Saturasi pada transistor terjadi apabila arus pada kolektor menjadi maksimum dan untuk mencari besar arus basis agar transistor saturasi adalah : I max
Vcc ……………………………………………..…………….(2.1) Rc
hfe . I B
IB
Vcc ………………………………………….…………….(2.2) Rc
Vcc ………………………………………………………….(2.3) hfe . Rc
Universitas Sumatera Utara
Hubungan antara tegangan basis (VB) dan arus basis (IB) adalah :
IB
VB VBE ……………………………………………………….(2.4) RB
VB = IB . RB + VBE…………………………………………………..(2.5)
VB
Vcc . R B VBE …………………………………………………(2.5) hfe . Rc
Jika tegangan VB telah mencapai VB
Vcc . R B VBE , maka transistor akan saturasi, hfe . Rc
dengan Ic mencapai maksimum. Gambar 2.6 dibawah ini menunjukkan apa yang dimaksud dengan V CE (sat) adalah harga VCE pada beberapa titik dibawah knee dengan posisi tepatnya ditentukan pada lembar data. Biasanya VCE (sat) hanya beberapa perpuluhan volt, walaupun pada arus kolektor sangat besar bisa melebihi 1 volt. Bagian dibawah knee pada gambar 2.7 dikenal sebagai daerah saturasi.
IC Penjenuhan (saturation)
Vcc Rc
IB > IB (sat) IB = IB (sat) IB
IB = 0
Titik Sumbat (Cut off)
VCE
Universitas Sumatera Utara
Gambar 2.6. Karakteristik daerah saturasi pada transistor Pada daerah penyumbatan,nilai resistansi persambungan kolektor emiter secara ideal sama dengan tak terhitung atau terminal kolektor dan emiter terbuka (open). Keadaan ini menyebabkan tegangan (VCB) sama dengan tegangan sumber (Vcc). Tetapi pada kenyataannya Vcc pada saat ini kurang dari Vcc karena terdapat arus bocor dari kolektor ke emiter. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaan off seperti gambar dibawah ini. Vcc
Vcc IC
RB VB
VCE IB
R Saklar Off
VBE
Gambar 2.7.Transistor Sebagai Saklar OFF Keadaan penyumbatan terjadi apabila besar tegangan habis (V B) sama dengan tegangan kerja transistor (VBE) sehingga arus basis (IB) = 0 maka : IB
IC ……………………………………………………………(2.6) hfe
IC = IB . hfe ….………………………………………………………(2.7) IC = 0 . hfe ………..…………………………………………………(2.8) IC = 0 ………………………………………………………………..(2.9) Hal ini menyebabkan VCE sama dengan Vcc dapat dibuktikan dengan rumus :
Universitas Sumatera Utara
Vcc
= Vc + VCE …………..…………………………………………(2.10)
VCE
= Vcc – (Ic . Rc) …..……………………………………………(2.11)
VCE
= Vcc …..………………………………………………………(2.12)
2.1.7. Dioda
Dioda memiliki fungsi yang unik yaitu hanya dapat mengalirkan arus satu arah saja. Struktur dioda tidak lain adalah sambungan semikonduktor P dan N. Satu sisi adalah semikonduktor dengan tipe P dan satu sisinya yang lain adalah tipe N. Dengan struktur demikian arus hanya akan dapat mengalir dari sisi P menuju sisi N. Gambar ilustrasi berikut menunjukkan sambungan PN dengan sedikit porsi kecil yang disebut lapisan deplesi (depletion layer), dimana terdapat keseimbangan hole dan elektron.
Gambar 2.8. Simbol dan struktur dioda
Universitas Sumatera Utara
Seperti yang sudah diketahui, pada sisi P banyak terbentuk hole-hole yang siap menerima elektron sedangkan di sisi N banyak terdapat elektron-elektron yang siap untuk bebas merdeka. Lalu jika diberi bias positif, dengan arti kata memberi tegangan potensial sisi P lebih besar dari sisi N, maka elektron dari sisi N dengan serta merta akan tergerak untuk mengisi hole di sisi P. Tentu kalau elektron mengisi hole disisi P, maka akan terbentuk hole pada sisi N karena ditinggal elektron. Ini disebut aliran hole dari P menuju N, Kalau mengunakan terminologi arus listrik, maka dikatakan terjadi aliran listrik dari sisi P ke sisi N.
Gambar 2.9. Dioda dengan bias maju Sebaliknya apakah yang terjadi jika polaritas tegangan dibalik yaitu dengan memberikan bias negatif (reverse bias). Dalam hal ini, sisi N mendapat polaritas tegangan lebih besar dari sisi P.
Gambar 2.10. Dioda dengan bias negatif
Universitas Sumatera Utara
Tentu jawabanya adalah tidak akan terjadi perpindahan elektron atau aliran hole dari P ke N maupun sebaliknya. Karena baik hole dan elektron masing-masing tertarik ke arah kutub berlawanan. Bahkan lapisan deplesi (depletion layer) semakin besar dan menghalangi terjadinya arus. Demikianlah sekelumit bagaimana dioda hanya dapat mengalirkan arus satu arah saja. Dengan tegangan bias maju yang kecil saja dioda sudah menjadi konduktor. Tidak serta merta diatas 0 volt, tetapi tegangan beberapa volt diatas nol baru bisa terjadi konduksi. Ini disebabkan karena adanya dinding deplesi (deplesion layer). Untuk dioda yang terbuat dari bahan Silikon tegangan konduksi adalah diatas 0.7 volt. Dan kira-kira 0.2 volt batas minimum untuk dioda yang terbuat dari bahan Germanium.
Gambar 2.11. Grafik arus dioda Sebaliknya untuk bias negatif dioda tidak dapat mengalirkan arus, namun memang ada batasnya. Sampai beberapa puluh bahkan ratusan volt baru terjadi breakdown, dimana dioda tidak lagi dapat menahan aliran elektron yang terbentuk di lapisan deplesi.
Universitas Sumatera Utara
2.1.8. LED
LED adalah singkatan dari Light Emiting Dioda, merupakan komponen yang dapat mengeluarkan emisi cahaya.LED merupakan produk temuan lain setelah dioda. Strukturnya juga sama dengan dioda, tetapi belakangan ditemukan bahwa elektron yang menerjang sambungan P-N juga melepaskan energi berupa energi panas dan energi cahaya. LED dibuat agar lebih efisien jika mengeluarkan cahaya. Untuk mendapatkan emisi cahaya pada semikonduktor, doping yang pakai adalah galium, arsenic dan phosporus. Jenis doping yang berbeda menghasilkan warna cahaya yang berbeda pula.
Gambar 2.12. Simbol LED Pada saat ini warna-warna cahaya LED yang banyak ada adalah warna merah, kuning dan hijau.LED berwarna biru sangat langka. Pada dasarnya semua warna bisa dihasilkan, namun akan menjadi sangat mahal dan tidak efisien. Dalam memilih LED selain warna, perlu diperhatikan tegangan kerja, arus maksimum dan disipasi daya nya. Rumah (chasing) LED dan bentuknya juga bermacam-macam, ada yang persegi empat, bulat dan lonjong. 2.2 PERANGKAT LUNAK 2.2.1. Bahasa Assembly MCS-51
Universitas Sumatera Utara
Bahasa yang digunakan untuk memprogram IC mikrokontroler AT89S51 adalah bahasa assembly untuk MCS-51. angka 51 merupakan jumlah instruksi pada bahasa ini hanya ada 51 instruksi. Dari 51 instruksi, yang sering digunakan orang hanya 10 instruksi. Instruksi –instruksi tersebut antara lain :
1. Instruksi MOV Perintah ini merupakan perintah untuk mengisikan nilai ke alamat atau register tertentu. Pengisian nilai dapat secara langsung atau tidak langsung. Contoh pengisian nilai secara langsung MOV R0,#20h Perintah di atas berarti : isikan nilai 20 Heksadesimal ke register 0 (R0). Tanda # sebelum bilangan menunjukkan bahwa bilangan tersebut adalah nilai. Contoh pengisian nilai secara tidak langsung MOV 20h,#80h ........... ............ MOV R0,20h Perintah di atas berarti : isikan nilai yang terdapat pada alamat 20 Heksadesimal ke register 0 (R0). Tanpa tanda # sebelum bilangan menunjukkan bahwa bilangan tersebut adalah alamat. 2. Instruksi DJNZ
Universitas Sumatera Utara
Decreament Jump If Not Zero (DJNZ) ini merupakan perintah untuk mengurangi nilai register tertentu dengan 1 dan lompat jika hasil pengurangannya belum nol. Contoh , MOV R0,#80h Loop: ........... ............ DJNZ R0,Loop ............ R0 -1, jika belum 0 lompat ke loop, jika R0 = 0 maka program akan meneruskan ke perintah pada baris berikutnya.
3. Instruksi ACALL Instruksi ini berfungsi untuk memanggil suatu rutin tertentu. Contoh : ............. ACALL TUNDA ............. TUNDA: ................. 4. Instruksi RET Instruksi
RETURN (RET) ini merupakan perintah untuk kembali ke rutin
pemanggil setelah instruksi ACALL dilaksanakan. Contoh, ACALL TUNDA ............. TUNDA: .................
Universitas Sumatera Utara
RET 5. Instruksi JMP
(Jump)
Instruksi ini merupakan perintah untuk lompat ke alamat tertentu. Contoh, Loop: ................. .............. JMP Loop
6. Instruksi JB
(Jump if bit)
Instruksi ini merupakan perintah untuk lompat ke alamat tertentu, jika pin yang dimaksud berlogika high (1). Contoh, Loop: JB P1.0,Loop ................. 7. Instruksi JNB
(Jump if Not bit)
Instruksi ini merupakan perintah untuk lompat ke alamat tertentu, jika pin yang dimaksud berlogika Low (0). Contoh, Loop: JNB P1.0,Loop ................. 8. Instruksi CJNZ
(Compare Jump If Not Equal)
Instruksi ini berfungsi untuk membandingkan nilai dalam suatu register dengan suatu nilai tertentu. Contoh, Loop:
Universitas Sumatera Utara
................ CJNE R0,#20h,Loop ................ Jika nilai R0 tidak sama dengan 20h, maka program akan lompat ke rutin Loop. Jika nilai R0 sama dengan 20h,maka program akan melanjutkan instruksi selanjutnya..
9. Instruksi DEC (Decreament) Instruksi ini merupakan perintah untuk mengurangi nilai register yang dimaksud dengan 1. Contoh, MOV R0,#20h
R0 = 20h
................ DEC R0
R0 = R0 – 1
............. 10. Instruksi INC (Increament) Instruksi ini merupakan perintah untuk menambahkan nilai register yang dimaksud dengan 1. Contoh, MOV R0,#20h
R0 = 20h
................ INC R0
R0 = R0 + 1
............. 11. Dan lain sebagainya
2.2.2. Software 8051 Editor, Assembler, Simulator (IDE)
Universitas Sumatera Utara
Instruksi-instruksi yang merupakan bahasa assembly tersebut dituliskan pada sebuah editor, yaitu 8051 Editor, Assembler, Simulator (IDE). Tampilannya seperti di bawah ini.
Gambar 2.13. 8051 Editor, Assembler, Simulator (IDE) Setelah program selesai ditulis, kemudian di-save dan kemudian di-Assemble (dicompile). Pada saat di-assemble akan tampil pesan peringatan dan kesalahan. Jika masih ada kesalahan atau peringatan, itu berarti ada kesalahan dalam penulisan perintah atau ada nama subrutin yang sama, sehingga harus diperbaiki terlebih dahulu sampai tidak ada pesan kesalahan lagi.
Software 8051IDE ini berfungsi untuk merubah program yang kita tuliskan ke dalam bilangan heksadesimal, proses perubahan ini terjadi pada saat peng-compile-an. Bilangan heksadesimal inilah yang akan dikirimkan ke mikrokontroller.
2.2.3. Software Downloader Untuk mengirimkan bilangan-bilangan heksadesimal ini ke mikrokontroller digunakan software ISP- Flash Programmer 3.0a yang dapat didownload dari internet. Tampilannya seperti gambar di bawah ini
Universitas Sumatera Utara
Gambar 2.14. ISP- Flash Programmer Cara menggunakannya adalah dengan meng-klik Open File untuk mengambil file heksadesimal dari hasil kompilasi 8051IDE, kemudian klik Write untuk mengisikan hasil kompilasi tersebut ke mikrokontroller.
2.3. Metode Pemodulasian
Metode pemodulasian berbasis amplitudo merepresentasikan kode bit
sebagai
gelombang amplitudo tertentu. Metode yang dilakukan yaitu dengan menjaga suatu gelombang agar berada pada frekuensi yang konstan, tetapi memiliki amplitudo yang
Universitas Sumatera Utara
bervariasi guna mewakili data yang akan dikirimkan. Amplitudo tersebut harus terjaga minimal sampai dengan satu sklus gelombang terpenuhi, sehingga dapat diterjemahkan dengan benar oleh sang penerima. Metodelogi pemodulasian berbasis amplitudo ini sering disebut dengan amplitudo shift keying (ASK)
Metode pemodulasian
berbasis frekuensi dilakukan dengan meragamkan
frekuensi dari gelombang pembawa sementara amplitudonya tetap. metodelogi pemodulasian berbasis frekuensi ini sering disebut dengan frequency shift keying (FSK).
Metode pemodulasian fase ini secara endasar metode dua metode pemodulasian
memang berbada dengan
yang terdahulu. Lingkungan dari gelombang sinus
memang memungkinkan untuk menjaga fase sebagai harga yang konstan. Tetapi fase dapat digunakan uutk merepresentasikan sinyal, yaitu dengan membuat pergeseran yang cepat dalam fase sebuah sinyal atau dengan menukar dengan cepat antara dua sinyal dari duafase yang berbeda. Peergeseran yang mendadak dalam fase sinyal dapat dideteksi danditerjemahkan sebagai data. Metode pengkodean data ini disebut phase shift modulation atau phase shift keying (PSK).
Multilevel coding adalah sebuah tehnik untuk menanamkan bit-bit kedalam sebuah karakter gelombang tunggal, seperti frekuensi atau amplitudo . Sekumpulan bit diperlakukan sebagai suatu unit tunggal guan pengkodean sinyal. Sebagai contoh dua bit dapat di kombinasikan sebagai satu tingkat amplitudo jika sebelumnya sudah ada empat tingkat gelombang yang telah termodulasi.
Universitas Sumatera Utara
Pulse Width Modulation (PWM) adalah sebuah cara memanipulasi lebar sinyal atau tegangan yang dinyatakan dengan pulsa dalam suatu perioda, yang akan digunakan untuk
mentransfer data pada telekomunikasi ataupun
mengatur
tegangan sumber yang konstan untuk mendapatkan tegangan rata-rata yang berbeda. Penggunaan PWM sangat banyak, mulai dari pemodulasian data untuk tele, audikomunikasi, pengontrolan daya atau tegangan yang masuk ke beban, regulator tegangano effect dan penguatan, serta aplikasi-aplikasi lainnya.
Gambar 2.15. Square - Wave Terlihat pada gambar, bahwa sinyal PWM adalah sinyal digital yang amplitudonya tetap, namun lebar pulsa yang aktif (duty cycle) per periodenya dapat diubah-ubah. Dimana periodenya adalah waktu pulsa high (1) T on ditambah waktu pulsa low (0) T off.
Duty cycle adalah lamanya pulsa high (1) Ton dalam satu perioda. Pada grafik PWM teratas terlihat bahwa sinyal high per periodenya, sangat kecil (hanya 10%). Pada
Universitas Sumatera Utara
grafik PWM ditengah terlihat sinyal highnya hampir sama dengan sinyal low (50%). Dan pada gambar paling bawah terlihat bahwa sinyal high-nya lebih besar dari sinyal low-nya (90%). Maka jika dimisalkan tegangan input yang melalui rangkaian tersebut sebesar 10 V. Maka jika digunakan PWM teratas, nilai tegangan output rata-ratanya sebesar 1 V (10% dari Vsource), jika digunakan PWM yang tengah, maka tegangan output rataratanya sebesar 5V (50%). Begitu pula jika menggunakan PWM yang paling bawah, maka tegangan output rata-ratanya sebesar 9V (90%).
Untuk mendapatkan sinyal PWM dari input berupa sinyal analog, dapat dilakukan dengan membentuk gelombang gigigergaji atau sinyal segitiga yang diteruskan ke komparator bersama sinyal aslinya. (Namun
berbahagialah bagi para
pengguna mikrokontroler, sebab pada beberapa tipe mikrokontroler telah tersedia fasilitas pembangkit PWM. Jadi tidak perlu bingung-bingung lagi) Dimana sinyal input analog (berwarna hijau) dimodulasikan dengan sinyal gigi gergaji (berwarna biru), sehingga didapatkan sinyal PWM seperti gambar dibawahnya (berwarna merah)
Universitas Sumatera Utara