BAB 2
LANDASAN TEORI PEMANCAR GELOMBANG INFRAMERAH
2.1 Diagram Blok Pemancar Gelombang Inframerah
Tombol ON
A T 8 9 S 5 1
Pemancar inframerah Pulsa gelombang inframerah
Tombol OFF
Gambar 2.1 Diagram Blok Pemancar Gelombang Inframerah
Dalam membuat suatu alat ada beberapa hal yang perlu di perhatikan yaitu bagaimana cara merancang alat yang akan di buat sesuai dasar teori. Sebelum merancang suatu sistem atau rangkaian terlebih dahulu membuat blok diagramnya.
Diagram blok merupakan salah satu cara yang paling sederhana untuk menjelaskan cara kerja dari suatu sistem dan memudahkan untuk melokalisir kesalahan dari suatu sistem.
Universitas Sumatera Utara
6
Dengan diagram blok kita dapat menganalisa cara kerja rangkian dan merancang hardware yang akan dibuat secara umum. Diagram merupakan pernyataan hubungan yang berurutan dari suatu atau lebih komponen yang memiliki kesatuan kerja tersendiri, dan setiap blok komponen mempengaruhi komponen lainya.
Diagram blok memiliki arti yang khusus dengan memberikan keterangan di dalamnya. Untuk setiap blok di hubungkan dengan suatu garis yang menunjukkan arah kerja dari setiap blok yang bersangkutan
2.2 Tombol ON dan Tombol OFF
Jika tombol ON ditekan maka mikrokontroler akan memproses data untuk mengirimkan perintah pada pemancar inframerah untuk menghidupkan alat-alat elektronik khususnya pada pintu jarak jauh. Keluaran yang dipancarkan oleh infra merah berupa pulsa gelombang inframerah yang akan diterima oleh pemancar gelombang infra merah.
Sama halnya pada tombol OFF, jika pengguna ingin mematikan alat elektronik maka pengguna hanya menekan tombol OFF saja.
2.3 Mikrokontroler AT89S51
Mikrokontroller
sebagai
suatu
terobosan
teknologi
mikrokontroler
dan
microkomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai teknologi baru, yaitu teknologi semi konduktor dengan kandungan transistor yang lebih banyak namun hanya membutuhkan ruang kecil serta dapat diproduksi secara massal (dalam jumlah banyak) sehingga harga menjadi lebih murah
Universitas Sumatera Utara
7
(dibandingkan microprocessor). Sebagai kebutuhan pasar, mikrokontroler hadir untuk memenuhi selera industri dan para konsumen akan kebutuhan dan keinginan alat-alat bantu dan mainan yang lebih canggih serta dalam bidang pendidikan.
Tidak seperti sistem komputer, yang mampu menangani berbagai macam program aplikasi (misalnya pengolah kata, pengolah angka, dan lain sebagainya), Microcontroller hanya bisa digunakan untuk satu aplikasi tertentu saja. Perbedaan lainnya terletak pada perbandingan RAM dan ROM-nya. Pada sistem komputer perbandingan RAM dan ROM-nya besar, artinya program-program pengguna disimpan dalam ruang RAM yang relatif besar, sedangkan rutin-rutin antar muka perangkat keras disimpan dalam ruang ROM yang kecil. Sedangkan Pada mikrokontroler, perbandingan ROM dan RAM-nya yang besar artinya program control disimpan dalam ROM yang ukurannya relatif lebih besar, sedangkan RAM digunakan sebagai tempat penyimpanan sederhana sementara, termasuk registerregister yang digunakan pada Microcontroller yang bersangkutan.
Microcontroller AT89S51 merupakan salah satu keluarga dari MCS-51 keluaran Atmel. Jenis Microcontroller ini pada prinsipnya dapat digunakan untuk mengolah data per bit ataupun data 8 bit secara bersamaan.
Pada prinsipnya program pada Microcontroller dijalankan bertahap, jadi pada program itu sendiri terdapat beberapa set instruksi dan tiap instruksi itu dijalankan secara bertahap atau berurutan.
Universitas Sumatera Utara
8
Beberapa fasilitas yang dimiliki oleh microcontroller AT89S51 adalah sebagai berikut : 1. Sebuah Central Processing Unit 8 bit 2. Osilatc : internal dan rangkaian pewaktu 3. RAM internal 128 byte 4. Flash memori 4 Kbyte 5. Lima buah jalur interupsi (dua buah interupsi eksternal dan tiga buah interupsi internal) 6. Empat buah programable port I/O yang masing-masing terdiri dari delapan buah jalur I/O 7. Sebuah port serial dengan kontrol serial full duplex UART 8. Kemampuan untuk melaksanakan operasi aritmatika dan operasi logika 9. Kecepatan dalam melaksanakan instruksi per siklus 1 mikrodetik pada frekuensi 12 MHz 2.3.1 Kontruksi AT89S51
Mikrokontroller AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 kristal serta catu daya 5 volt. Kapasitor 10 micro-fard dan resistor 10 kilo Ohm dipakai untuk membentuk rangkaian riset. Dengan adanya rangkaian riset ini AT89C4051 otomatis diriset begitu rangkaian menerima catu daya. Kristal dengan frekuensi maksimum 24MHz dan kapasitor 30 mikro-farad dipakai untuk melengkapi rangkaian
oscilator
pembentuk
clock
yang
menentukan
kecepatan
kerja
Microcontroller. Memori merupakan bagian yang sangat penting pada Microcontroller. Microcontroller memiliki dua macam memori yang sifatnya berbeda.
Universitas Sumatera Utara
9
Read Only Memory (ROM) yang isinya tidak berubah meskipun IC kehilangan catu daya. Sesuai dengan keperluannya, dalam susunan MCS-51 memori penyimpanan program ini dinamakan sebagai memori program. Ada berbagai jenis ROM. Untuk Microcontroller dengan program yang sudah baku dan diproduksi secara massal, program diisikan kedalam ROM pada saat IC Microcontroller dicetak dipabrik IC. Untuk keperluan tertentu Microcontroller menggunakan ROM yang dapat diisi ulang atau Programble-Eraseable ROM yang disingkat menjadi PROM (PEROM). Dulu banyak UV-EPROM (Ultra Violet Eraseable Programble ROM) yang kemudian dinilai mahal dan ditinggalkan setelah ada flash PEROM yang harganya jauh lebih murah.
Random Access Memory (RAM) isinya akan sirna begitu IC kehilangan catu daya, dipakai untuk menyimpan data pada saat program bekerja. RAM yang dipakai untuk menyimpan data ini disebut sebagai memori data.
Jenis memori yang dipakai untuk memori program AT89S51 adalah flash PEROM, program untuk mengendalikan Microcontroller diisikan ke memori itu lewat bantuan alat yang dinamakan sebagai AT89C4051 flash PEROM Programmer. Memori data yang disediakan dalam chip AT89S51 sebesar 128 kilo byte meskipun hanya kecil saja tapi untuk banyak keperluan memori kapasitas itu sudah cukup.
AT89S51 dilengkapi UART (Universal Asyncronous Receiver/Transmiter) yang biasa dipakai untuk komunikasi data secara seri. Jalur untuk komunikasi data seri (RXD dan TXD) diletakkan berhimpitan dengan P1.0 dan P1.1. pada kaki nomor 2 dan 3, sehingga kalau sarana input/output bekerja menurut fungsi waktu. Clock penggerak untaian pencacah ini bisa berasal dari oscillator kristal atau clock yang
Universitas Sumatera Utara
10
diumpan dari luar lewat T0 dan T1/T0 dan T1 berhimpitan dengan P3.4 dan P3.5, sehingga P3.4 dan P3.5 tidak bisa dipakai untuk jalur input/output paralel kalau T0 dan T1 dipakai.
AT89S51 mempunyai enam sumber pembangkit interupsi, dua diantaranya adalah sinyal interupsi yang diumpankan ke kaki INT0 dan INT1. Kedua kaki ini berhimpitan dangan P3.2 dan P3.3 sehingga tidak bisa dipakai sebagai jalur input/output paralel kalau INT0 dan INT1 dipakai untuk menerima sinyal interupsi. Port1 dan 2, UART, Timer 0, Timer 1 dan sarana lainnya merupakan yang secara fisik merupakan RAM khusus, yang ditempatkan di Special Function Register (SFR).
2.3.2Pin-Pin pada Microcontroller AT89S51 Deskripsi pin-pin pada Microcontroller AT89S51 :
Gambar 2.2 IC Mikrokontroler AT89S51
Universitas Sumatera Utara
11
1. VCC (Pin 40) Suplai tegangan 2. GND (Pin 20 ) Ground 3. Port 0 (Pin 39-Pin 32) Port 0 dapat berfungsi sebagai I/O biasa, low order multiplex address/data ataupun penerima kode byte pada saat flash progamming Pada fungsi sebagai I/O biasa port ini dapat memberikan output sink ke delapan buah TTL input atau dapat diubah sebagai input dengan memberikan logika 1 pada port tersebut. Pada fungsi sebagai low order multiplex address/data, por ini akan mempunyai internal pull up. Pada saat flash progamming diperlukan eksternal pull up, terutama pada saat verifikasi program. 4. Port 2 (Pin 21 – pin 28) Port 2 berfungsi sebagai I/O biasa atau high order address, pada saat mengaksememori secara 16 bit. Pada saat mengakses memori 8 bit, port ini akan mengeluarkan isi dari P2 special function register. Port ini mempunyai internal pull up dan berfungsi sebagai input dengan memberikan logika 1. Sebagai output, port ini dapat memberikan output sink keempat buah input TTL. 5. Port 3 (Pin 10 – pin 17) Port 3 merupakan 8 bit port I/O dua arah dengan internal pullup. Port 3 juga mempunyai fungsi pin masing-masing, yaitu sebagai berikut :
Universitas Sumatera Utara
12
Tabel 2.1 Fungsi Masing-masing Pin pada Port 3 Mikrokontroler
Nama Pin
Fungsi
Alternatif
P3.0 (pin 10)
RXD
Untuk menerima data port serial
P3.1 (pin 11)
TXD
Untuk mengirim data port serial
P3.2 (pin 12)
INT0
Interupsi Eksternal waktu pencacah 0
P3.3 (pin 13)
INT1
Interupsi Eksternal waktu pencacah 1
P3.4 (pin 14)
T0
Input Eksternal waktu pencacah 0
P3.5 (pin 15)
T1
Input Eksternal waktu pencacah 1
P3.6 (pin 16)
WR
Jalur menulis memori data eksternal
P3.7 (pin 17 )
RD
Jalur membaca memori data eksternal
6. RST (pin 9) Reset akan aktif dengan memberikan input high selama 2 cycle. 7. ALE/PROG (pin 30) Address latch Enable adalah pulsa output untuk me-latch byte bawah dari alamat selama mengakses memori eksternal. Selain itu, sebagai pulsa input progam (PROG) selama memprogam Flash. 8. SEN (pin 29) Progam store enable digunakan untuk mengakses memori progam eksternal. 9. EA (pin 31) Pada kondisi low, pin ini akan berfungsi sebagai EA yaitu mikrokontroler akan menjalankan progam yang ada pada memori eksternal setelah sistem direset. Jika kondisi high, pin ini akan berfungsi untuk menjalankan progam yang ada pada memori internal. Pada saat flash progamming, pin ini akan mendapat tegangan 12 Volt.
Universitas Sumatera Utara
13
10. XTAL1 (pin 19) Input untuk clock internal. 11. XTAL2 (pin 18) Output dari osilator
2.4 Sinar Inframerah
Inframerah adalah radiasi elektromagnetik dari panjang gelombang lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi gelombang radio. Namanya berarti "bawah merah" (dari bahasa Latin infra, "bawah"), merah merupakan warna dari cahaya tampak dengan gelombang terpanjang.
Radiasi inframerah memiliki jangkauan tiga "order" dan memiliki panjang gelombang antara 700 nm dan 1 mm berada pada spectrum berwarna merah. Inframerah berarti “bawah merah”, berasal dari bahasa latin infra yang berarti bawah. Memiliki panjang gelombang lebih dari cahaya nampak dan kurang dari mikrogelombang, yaitu diantara 0,75 mikrometer dan 1000 mikrometer. Gelombang inframerah dan milimeter dapat digunakan dengan meluas sebagai saluran komunikasi jarak dekat seperti penggunaan alat kawalan jarak jauh (remote control) bagi televisi, radio dan sebagainya. Infrared merupakan sebuah cahaya pada panjang gelombang yang titik puncaknya berada di luar respon mata manusia adalah merupakan cahaya yang mempunyai banyak fungsi pada bidang elektronika maupun robotik.
Saat ini telah dikenal berbagai macam gelombang elektromagnetik dengan rentang panjang gelombang tertentu. Spektrum elektromagnetik merupakan kumpulan
Universitas Sumatera Utara
14
spectrum dari berbagai panjang gelombang. Sinar infra merah mempunyai panjang gelombang antara (0,75 – 1000) µm.
Spektrum sinar matahari terdiri dari sinar tampak dan sinar tidak tampak. Dimana sinar tampak meliputi: merah, orange, kuning, hijau, biru, dan ungu. Sinar yang tidak tampak antara lain: sinar ultraviolet, sinar – X, sinar gamma, sinar kosmik, microwave, gelombang listrik dan sinar inframerah. Gelombang elektromagnetik diantara sinar tampak dan sinar microwave dinamakan sinar inframerah, dengan karakteristik adalah tidak kasat mata atau tidak terlihat, bersifat linier atau menyebar, refraktif atau dapat dipantulkan dan dapat diserap oleh beberapa obyek Dibawah ini terdapat gambar berdasarkan pembagian panjang gelombang, yaitu:
Gambar 2.3 Spektrum Elektromagnetik
Universitas Sumatera Utara
15
Dari pembagian daerah spektrum elektromagnetik tersebut diatas, daerah panjang gelombang yang digunakan pada alat spektrofotometer infra merah adalah pada daerah infra merah pertengahan, yaitu pada panjang gelombang 2,5 μm – 50 μm atau pada bilangan gelombang 4.000 – 200 cm.
Sebuah sambungan pn dapat memancarkan cahaya bila sebuah elektron yang berada di alas sebuah pita konduksi dari sebuah semikonduktor jatuh kedalam sebuah lubang yang berada di puncak pita valensi, maka energi E g dilepaskan, dimana E g adalah lebar sela. Apa yang terjadi pada energi ini? Setidak tidaknya ada dua kemungkinan. Mungkin energi itu ditransformasikan mejad energi termal dari kisi yang bergetar dan, dengan kemungkinan yang tinggi, dan itulah yang betul – betul terjadi dalam sebuah semikonduktor berbasis silikon.
Akan tetapi di dalam beberapa bahan semi konduktor
kondisinya akan
sedemikian rupa sehingga energi yang dipancarkan itu dapat juga muncul sebagai radiasi elektromagnetik, yang panjang gelombangnya adalah : λ=
=
c c = Eg / h v hc Eg
Dimana : λ adalah panjang gelombang E g adalah lebar sela antara pita konduksi dan pita valensi. c adalah kecepatan cahaya h adalah konstanta plank (6,62 x 10 -34 Js)
Universitas Sumatera Utara
16
Sebuah
semikonduktor tipe-n yang memperlihatkan tingkat-tingkat energi
donor yang telah mengkontribusikan elektron ( pengangkutan mayoritas) kepada pita konduksi. Jumlah lubang yang sedikit (pengangkut minoritas) di dalam pita valensi juga. Hal ini dapat dilihat pada gambar
Pita konduksi
Eg = energi gav celah energi
Pita valensi
Gambar 2.4 Inti dalam Atom Infra merah yang digunakan sebagai transmisi data dalam artikel ini hanya memanfaatkan pancaran cahaya infra merah. Jika LED infra merah memancarkan cahaya berarti datanya dianggap 1, sedangkan jika LED infra merah tidak memancarkan cahaya berarti datanya adalah 0.
2.4.1. Dioda Pemancar Infra Merah (LED Infra merah)
Untuk memperoleh jarak yang cukup jauh, Diode Infrared memerlukan sinyal dengan frekwensi 38 Hingga 40KHz Berbeda dengan Diode LED yang hanya memerlukan level tegangan DC saja untuk mengaktifkan LED, Diode Infrared memerlukan sinyal dengan frekwensi 38 ingga 40KHz untuk mengaktifkannya.Cahaya infrared tersebut
tidak
dapat
ditangkap
oleh
mata
manusia,
sehingga
diperlukan
phototransistor untuk mendeteksinya
Universitas Sumatera Utara
17
LED adalah dioda yang menghasilkan cahaya saat diberi energi listrik. Dalam bias maju sambungan p-n terdapat rekombinasi antara elektron bebas dan lubang (hole). Energi ini tidak seluruhnya dirubah kedalam bentuk energi cahaya atau photon melainkan dalam bentuk panas sebagian.
Proses pemancaran cahaya akibat adanya energi listrik yang diberikan terhadap sustu bahan disebut dengan sifat elektroluminesensi. Material lain adalah misalnya Galium Arsenida Pospat (GaAsP) atau Galium pospat (GaP) : Photon energi cahaya dipancarkan untuk menghasilkan cahaya tampak. Jenis lain dari LED digunakan untuk menghasilkan energi tidak tampak seperti yang dipancarkan oleh pamancar laser atau infra merah.
VCC 5V 330
Gambar 2.5 Simbol dan rangkaian sebuah LED
Pemancar infra merah adalah dioda solid state yang terbuat dari bahan Galium Arsenida (GaAs) yang mampu memancarkan fluks cahaya ketika dioda ini dibias maju. Bila diberi bias maju elektron dari daerah-n akan menutup lubang elektron yang ada di daerah-p. Selama proses rekombinasi ini, energi dipancar keluar dari
Universitas Sumatera Utara
18
permukaan p dan n dalam bentuk photon. Photon-photon yang dihasilkan ini ada yang diserap lagi dan ada yang meninggalkan permukaan dalam bentuk radiasi energi. Dengan menggunakan unsur-unsur diatas, pabrik dapat membuat LED yang memancarkanwarna merah, kuning dan infra merah. LED yang menghasilkan pancaran yang kelihatan dapat beguna pada display peralatan, mesin hitung, jam digital, dan lain-lain. LED infra merah dapat digunakan dalam sistem tanda bahaya pencuri dan ruang ligkup lain yang membutuhkan pancaran yang tak kelihatan. Keuntungan dari LED dibandingkan dengan lampu pijar yaitu umurnya yang lebih panjang, teganganya rendah dan saklar nyala matinya cepat.
Gelombang infra merah yang dihasilkan oleh elektron-elektron dalam molekul yang bergetar karena benda dipanaskan. Selain tidak dapat dilihat secara langsung sinar infra merah juga dapat menembus kabut dan awan tebal.
Dengan ciri-ciri yang spesifiktersebut, pesawat udara yang terbang tinggi atau pun satelit-satelit dapat membuat photo permukaan bumi yang tidak diperoleh dengan menggunakan cahaya infra merah.
Radiasi sinar infra merah dapat getaran-getaran atom pada suatu molekul. Getaran atom pada suatu molekul dapat memancarkan gelombang elektromagnetik. Pada frekuensi-frekuensi yang khas dalam infra merah sehingga spektroskopi. Infra merah merupakan salah satu alat penting untuk mempelajari spektrum molekul.
Energi yang terkandung dalam radiasi sinar ini tampak seperti energi panas termasuk cahaya yang diterima dari sinar matahari sejumlah besar mengandung radiasi ini.
Universitas Sumatera Utara
19
2.4.2 Photodioda
Pengertian : piranti semikonduktor dengan struktur p-n atau p-i-n untuk mendeteksi cahaya. Potodioda biasanya digunakan untuk mendeteksi cahaya. Potodioda adalah piranti semikonduktor yang mengandung sambungan p-n, dan biasanya terdapat lapisan intrinsik antara lapisan n dan p. Piranti yang memiliki lapisan intrinsik disebut p-i-n atai PIN potodioda. Cahaya diserap di daerah pengambungan atau daerah intrinsik menimbulkan pasangan elektron-hole, kebanyakan pasangan tersebut menghasilkan arus yang berasal dari cahaya. Mode operasi Potodioda dapat dioperasikan dalam 2 mode yang berbeda: 1. Mode potovoltaik: seperti solar sel, penyerapan pada potodioda menghasilkan tegangan yang dapat diukur. Bagaimanapun, tegangan yang dihasilkan dari tenaga cahaya ini sedikit tidak linier, dan range perubahannya sangat kecil. 2. mode potokonduktivitas : disini, potodioda diaplikasikan sebagai tegangan revers (tegangan balik) dari sebuah dioda (yaitu tegangan pada arah tersebut pada dioda tidak akan menhantarkan tanpa terkena cahaya) dan pengukuran menghasilkan arus poto. ( hal ini juga bagus untuk mengaplikasikan tegangan mendekati nol). Ketergantungan arus poto pada kekuatan cahaya dapat sangat linier . Karakteristik bahan potodioda: 1. Silikon (Si) : arus lemah saat gelap, kecepatan tinggi, sensitivitas yang bagus antara 400 nm sampai 1000 nm ( terbaik antara 800 sampai 900 nm). 2. Germanium (Ge): arus tinggi saat gelap, kecepatan lambat, sensitivitas baik antara 600 nm sampai 1800 nm (terbaik 1400 sampai 1500 nm).
Universitas Sumatera Utara
20
3. Indium Gallium Arsenida (InGaAs): mahal, arus kecil saat gelap, kecepatan tinggi sensitivitas baik pada jarak 800 sampai 1700nm (terbaik antara 1300 sampai 1600nm) Gambar Photodioda ditunjukkan pada gambar berikut:
a. Bentuk Fisik Photodioda
b. Simbol Photodioda
Gambar 2.6 Photodioda
2.5 Perangkat lunak 2.5.1 Bahasa Assembly MCS-51
Bahasa yang digunakan untuk memprogram IC mikrokontroler AT89C4051 adalah bahasa assembly untuk MCS-51. angka 51 merupakan jumlah instruksi pada bahasa ini hanya ada 51 instruksi, antara lain yaitu :
1. Instruksi MOV Perintah ini merupakan perintah untuk mengisikan nilai ke alamat atau register tertentu. Pengisian nilai dapat secara langsung atau tidak langsung. Contoh pengisian nilai secara langsung MOV R0,#20h Perintah di atas berarti : isikan nilai 20 Heksadesimal ke register 0 (R0).
Universitas Sumatera Utara
21
Tanda # sebelum bilangan menunjukkan bahwa bilangan tersebut adalah nilai. Contoh pengisian nilai secara tidak langsung MOV 20h,#80h ........... ............ MOV R0,20h Perintah di atas
berarti : isikan nilai yang terdapat pada alamat 20
Heksadesimal ke register 0 (R0). Tanpa tanda # sebelum bilangan menunjukkan bahwa bilangan tersebut adalah alamat. 2. Instruksi DJNZ Decreament Jump If Not Zero (DJNZ) ini merupakan perintah untuk mengurangi nilai register tertentu dengan 1 dan lompat jika hasil pengurangannya belum nol. Contoh , MOV R0,#80h Loop: ........... ............ DJNZ R0,Loop ............ R0 -1, jika belum 0 lompat ke loop, jika R0 = 0 maka program akan meneruskan ke perintah pada baris berikutnya. 3. Instruksi ACALL Instruksi ini berfungsi untuk memanggil suatu rutin tertentu. Contoh : ............. ACALL TUNDA
Universitas Sumatera Utara
22
............. TUNDA: ................. 4. Instruksi RET Instruksi RETURN (RET) ini merupakan perintah untuk kembali ke rutin pemanggil setelah instruksi ACALL dilaksanakan. Contoh, ACALL TUNDA ............. TUNDA: ................. RET 5. Instruksi JMP
(Jump)
Instruksi ini merupakan perintah untuk lompat ke alamat tertentu. Contoh, Loop: ................. .............. JMP Loop 6. Instruksi JB
(Jump if bit)
Instruksi ini merupakan perintah untuk lompat ke alamat tertentu, jika pin yang dimaksud berlogika high (1). Contoh, Loop: JB P1.0,Loop ................. 7. Instruksi JNB
(Jump if Not bit)
Universitas Sumatera Utara
23
Instruksi ini merupakan perintah untuk lompat ke alamat tertentu, jika pin yang dimaksud berlogika Low (0). Contoh, Loop: JNB P1.0,Loop ................. 8. Instruksi CJNZ
(Compare Jump If Not Equal)
Instruksi ini berfungsi untuk membandingkan nilai dalam suatu register dengan suatu nilai tertentu. Contoh, Loop: ................ CJNE R0,#20h,Loop ................ Jika nilai R0 tidak sama dengan 20h, maka program akan lompat ke rutin Loop. Jika nilai R0 sama dengan 20h,maka program akan melanjutkan instruksi selanjutnya.. 9. Instruksi DEC (Decreament) Instruksi ini merupakan perintah untuk mengurangi nilai register yang dimaksud dengan 1. Contoh, MOV R0,#20h
R0 = 20h
................ DEC R0
R0 = R0 – 1
............. 10. Instruksi INC (Increament) Instruksi ini merupakan perintah untuk menambahkan nilai register yang dimaksud dengan 1. Contoh,
Universitas Sumatera Utara
24
MOV R0,#20h
R0 = 20h
................ INC R0
R0 = R0 + 1
.............
2.5.2 Software 8051 Editor, Assembler, Simulator
Instruksi-instruksi yang merupakan bahasa assembly tersebut dituliskan pada sebuah editor, yaitu 8051 Editor, Assembler, Simulator. Tampilannya seperti di bawah ini.
Gambar 2.7 . Software 8051 Editor, Assembler, Simulator Setelah program selesai ditulis, kemudian di-save dan kemudian di-Assemble (di-compile). Pada saat di-assemble akan tampil pesan peringatan dan kesalahan. Jika masih ada kesalahan atau peringatan, itu berarti ada kesalahan dalam penulisan perintah atau ada nama subrutin yang sama, sehingga harus diperbaiki terlebih dahulu sampai tidak ada pesan kesalahan lagi.
Universitas Sumatera Utara
25
Software 8051IDE ini berfungsi untuk merubah program yang kita tuliskan ke dalam bilangan heksadesimal, proses perubahan ini terjadi pada saat peng-compile-an. Bilangan heksadesimal inilah yang akan dikirimkan ke mikrokontroller.
2.5.3 Software Downloader
Untuk mengirimkan bilangan-bilangan heksadesimal ini ke mikrokontroller digunakan software ISP- Flash Programmer 3.0a yang dapat didownload dari internet. Tampilannya seperti gambar di bawah ini.
Gambar 2.8 ISP- Flash Programmer
Cara menggunakannya adalah dengan meng-klik Open File untuk mengambil file heksadesimal dari hasil kompilasi 8051IDE, kemudian klik Write untuk mengisikan hasil kompilasi tersebut ke mikrokontroller.
Universitas Sumatera Utara