BAB II LANDASAN TEORI
2.1 Matriks dan Operasi Matriks 2.1.1 Definisi Matriks adalah suatu kumpulan angka-angka sering disebut juga elemenelemen yang disusun berdasarkan baris dan kolom sehingga berbentuk empat persegi panjang dimana panjang dan lebarnya ditentukan oleh banyaknya kolom dan baris yang dibatasi dengan tanda kurung.
a13 a1n a11 a12 a 23 a n1 a 21 a 22 A= a m1 a m 2 a m 3 a nm Atau disingkat dengan : ( a ij ) , i
= 1, 2, ….. , m
j
= 1, 2, ……, n
Matriks diatas disebut matriks berukuran mxn terdiri dari m baris dan n kolom. Setiap a ij disebut elemen (unsur) dari matriks itu sedangkan indeks i dan j berturut-turut menyatakan baris dan kolom. Jadi elemen a ij terdapat pada baris kei dan kolom ke-j. Matriks bujur sangkar adalah matriks dimana banyaknya baris sama dengan banyaknya kolom (m=n).
2.1.2 Teorema Matriks 1. Jika A = (a ij ) dan B = (bij ) keduanya adalah matriks berukuran mxn, maka A+B = (a ij + bij ) 2. Jika A =
(a ) matriks berukuran mxn dan k adalah skalar, maka k.A = ij
(k ) aij
Universitas Sumatera Utara
3.
Jika A = (a ij ) matriks berukuran mxp dan B = (bij ) matriks berukuran pxn maka perkalian matriks AxB berlaku apabila sejumlah kolom matriks A sama dengan jumlah matriks B. P AB = ∑ aik .bkj K =1
4.
Jika A = (aij ) dan B =
(b ) ij
kedua nya adalah matriks berukuran mxn
maka A= B jika a ij = b ij untuk semua i,j A ≥ B jika a ij ≥ b ij untuk semua i,j A > B jika a ij > b ij untuk semua i,j Demikian halnya untuk A ≤ B dan A < B
5.
Matriks bujur sangkar (square) adalah matriks dimana jumlah banyaknya baris sama dengan banyaknya kolom (m=n).
A=
a13 a1n a11 a12 a 23 a 2 n a 21 a 22 a m1 a m 2 a m 3 a mn
6. Matriks Identitas (I n ) adalah matriks bujur sangkar yang mempunyai angka satu disepanjang diagonal utama (diagonal dari kiri atas menuju kanan bawah) elemen yang lainnya adalah nol.
In =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
Universitas Sumatera Utara
7. Matriks transpos adalah jika baris dan kolom dari suatu matriks mxn dipertukarkan (baris pertama dengan kolom pertama dan seterusnya), maka diperoleh suatu matriks nxm yang disebut transpos. Atau disingkat dengan At atu AI.Contoh : A=
a12 a 22 maka a32
a11 a 21 a 31
a11 At = a12
a 21
a31
a 22
a32
8. Matriks Kuadrat adalah matriks yang memiliki baris dan kolom yang sama banyak. Dalam suatu matriks kuadrat, elemen-elemen a 11 , a 22 ,….., a nn disebut elemen diagonal utama. Jumlah elemen-elemen diagonal utama suatu matriks kuadrat A disebut trace A ditulis tr (A). tr (A) = n
∑a i =1
ij
, (i = j ) a 11 a 21 Amxn = a n1
a 1n a 22 a 2 n a n 2 a mn
a 12
tr (A) = a 11 + a 22 +……+ a nn
2.2 Operasi Matriks 2.2.1 Perkalian Skalar Definisi : Jika A = [a ij ] adalah matriks mxn dan r adalah suatu skalar, maka hasil kali A dari r adalah B = [b ij ] matrik mxn dengan b ij = ra ij (1≤ i ≤ m, 1 ≤ j ≤ n). Contoh : 2 7 A = dengan diberikan r = 4 maka 9 3
Universitas Sumatera Utara
2 7 8 28 4A = 4 = 9 3 36 12
2.2.2 Perkalian Matriks Definisi : Jika A = [a ij ] adalah matriks mxp dan B = [b ij ] adalah matriks pxn maka hasil kali dari matriks A dan matriks B yang ditulis dengan AB adalah C matriks mxn. Secara matematik dapat ditulis sebagai berikut : C ij = a ij b ij + a i2 b 2j + ……..+ a ip b pj p
=
∑a k =1
ik
bkj
(1 ≤ i ≤ m,
1 ≤ j ≤ n)
2.2.3 Penjumlahan Matriks Definisi : Jika A = [a ij ] adalah matriks mxp dan B = [b ij ] adalah matriks pxn maka penjumlahan matriks dari matriks A dan matriks B yang ditulis dengan C = [C ij ] dimana C ij = a ij + b ij (i = 1,2,……., m ; j = 1,2,…….,n)
2.2.4 Pengurangan Matriks Definisi : Jika Jika A = [a ij ] adalah matriks mxp dan B = [b ij ] adalah matriks pxn maka pengurangan dari matriks A dan matriks B yang ditulis dengan C = [C ij ] dimana C ij = a ij - b ij (i = 1,2,……., m ; j = 1,2, ……,n)
2.2.5 Invers Matriks Definisi : Misalkan A matriks nxn disebut nonsingular jika terdapat matriks B maka AB = BA = I n Matriks B disebut invers dari A. Jika tidak terdapat matriks B maka matriks A disebut singular.
Universitas Sumatera Utara
Contoh : Invers dari matriks : A 2x2
2 4 = adalah 3 1
B
4 − 1 10 10 = 3 −2 10 10
BA
4 − 1 10 10 2 4 1 0 = = =I 3 − 2 3 1 0 1 10 10
AB
4 − 1 2 4 10 10 1 0 = = =I − 2 0 1 3 1 3 10 10
Karena :
2.2.6 Determinan Matriks Definisi : Misalkan A = [a ij ] adalah matriks nxn. Fungsi determinan dari A ditulis dengan det (A) atau [A]. Secara matematikanya ditulis dengan : det(A)=[A]
∑ (± )a
IjI
a 2 j 2 ....a njn dengan j1 j 2 .... j n merupakan himpunanS = {1,2,.., n}
2.2.7 Teorema : Jika A = [a ij ] adalah matriks nxn yang mengandung sebaris bilangan nol, maka [A] = 0 Contoh : A 3x3
1 2 3 = 2 1 4 → A = 0 0 0 0
2.3 Teori Permainan (Game Theory) 2.3.1 Definisi Teori permainan adalah pendekatan matematis untuk merumuskan situasi
persaingan
dan
konflik
antara
berbagai
kepentingan.Teori
ini
Universitas Sumatera Utara
dikembangkan untuk menganalisa proses pengambilan keputusan dari situasisituasi persaingan yang berbeda-beda dan melibatkan dua atau lebih kepentingan. Kepentingan-kepentingan yang bersaing dalam permainan disebut para pemain (players). Model-model teori permainan dapat diklasifikasikan dengan sejumlah cara, seperti jumlah pemain, keuntungan dan kerugian dan jumlah strategi yang digunakan dalam permainan. Sebagai contoh, bila jumlah pemain adalah dua, permainan disebut sebagai permainan dua-permain. Begitu juga, bila jumlah pemain adalah N permainan disebut N-pemain. Dalam studi formal tentang konflik dan kooperasi konsep teori permainan dapat diterapkan ketika setiap kegiatan dari objek pelaku adalah saling bergantung satu dengan yang lainnya. Objek pelaku ini dapat berupa individu, group, perusahaan, atau kombinasinya. Konsep teori permainan menyediakan sebuah bahasa untuk memformulasi, menstruktur, menganalisa dan mengerti skenario strategi. Ide dasar dari teori permainan adalah tingkah laku strategis dari pemain atau pengambil keputusan (player or decision maker). Setiap pemain dianggap mempunyai suatu seri rencana atau model tingkah laku darimana dia bisa memilih, kalau kita memiliki suatu himpunan strategi. Perlu diperhatikan disini bahwa teori permainan menekankan tidak hanya menekankan strategi atau gerakan-gerakan yang diambil bagi pengambil keputusan (pemain) yang tunggal, akan tetapi tindakan yang dilakukan dalam situasi dimana pemain lainnya sebagai lawannya juga berbuat sesuatu untuk melakukan gerakan-gerakan sesuai dengan strategi yang dipilihnya. Lebih lanjut tindakan seorang pemain akan mempengaruhi gerakan pemain lawannya secara langsung. Dengan perkataan lain, setiap pemain berada dalam lingkukan yang dinamis bukan statis. Kegunaan dari teori permainan adalah metodologi yang disediakannya untuk menstruktur dan menganalisa masalah pemilihan strategi. Untuk menggunakan teori permainan, maka langkah pertama adalah menentukan secara eksplisit pemain, strategi yang ada, dan juga menentukan preferensi serta reaksi dari setiap pemain.
Universitas Sumatera Utara
Tujuan dari teori permainan adalah menentukan suatu strategi yang memenuhi kriteria Nash equilibrium sehingga setiap pemaian dalam suatu permainan tidak dapat mengambil keuntungan dengan cara mengubah strateginya secara sepihak.
2.4 Unsur – unsur Dasar Teori Permainan
Berikut ini akan diuraikan beberapa unsur atau elemen dasar yang penting dalam penyelesaian dari setiap kasus dengan teori permainan dengan mengambil permainan dua pemain jumlah nol.
Tabel 2.1 Permainan Dua Pemain Jumlah Nol Pemain
Pemain B
A
B1
B2
B3
A1
6
9
2
A2
8
5
4
Dari tabel diatas dapat diuraikan unsur-unsur dasar teori permainan : 1. Angka-angka dalam matriks payoff, atau biasa disebut matriks permainan, menunjukkan hasil-hasil dari strategi-strategi permainan yang berbeda-beda. Hasil-hasil ini dinyatakan dalam suatu bentuk ukutan efektivitas, seperti uang, persentase market share. Dalam permainan dua-pemain jumlah nol, bilanganbilangan positif menunjukkan keuntungan bagi pemain baris (maximizing player), dan merupakan kerugian bagi pemain kolom (maximizing player). Sebagai contoh, bila pemain A mempergunakan strategi A 1 dan pemain B memilih strategi B 2 , maka hasilnya A memperoleh keuntungan 9 dan B kerugian 9. Anggapannya bahwa matriks payoff diketahui oleh kedua pemain. 2. Suatu strategi permainan adalah rangkaian kegiatan atau rencana yang menyeluruh dari seorang pemain, sebagai reaksi atas aksi yang mungkin dilakukan oleh pemain lain yang menjadi pesaingnya. Dalam hal ini dianggap bahwa suatu strategi tidak dapat dirusak oleh para pesaing atau faktor lain.
Universitas Sumatera Utara
Dalam tabel 2.1 pemain A mempunyai 2 strategi yaitu A 1 dan A 2 dan pemain B mempunyai 3 strategi yaitu (B 1 , B 2 , B 3 ). 3. Aturan-aturan permainan menggambarkan kerangka dengan mana para pemain memilih strategi mereka. Sebagi contoh, dipakai anggapan bahwa para pemain harus memilih strategi-strategi mereka secara simultan dan bahwa permainan adalah berulang. 4. Nilai permainan adalah hasil yang diperkirakan permainan atau payoff ratarata dari sepanjang rangkaian permainan, dimana kedua pemain mengikuti atau mempergunakan strategi mereka yang paling baik atau optimal. Suatu permainan dikatakan “adil” (fair) apabila nilainya nol, dimana tak ada pemain yang memperoleh keuntungan atau kemenangan. Permainan dikatakan “tidak adil” (unfair) apabila nilainya bukan nol. 5. Suatu strategi dikatakan dominan bila setiap payoff dalam strategi adalah superior terhadap setiap payoff
yang berhubungan dalam suatu strategi
alternatif. Sebagai contoh, untuk pemain B, kedua strategi B 1 dan B 2 didominasi oleh strategi B 3 . Oleh karena itu untuk maksud pemecahan permainan ini, kolom-kolom B 1 dan B 2 dapat dihilangkan dari matrik payoff. Kemudian permainan dipecahkan dengan pemain B memilih B 3 dan pemain A memilih A 2 . Nilai permainan adalah 4. Aturan dominan ini dapat digunakan untuk mengurangi ukuran matriks payoff dan upaya perhitungan. 6. Suatu strategi optimal adalah rangkaian kegiatan, atau rencana yang menyeluruh, yang menyebabkan seorang pemain dalam posisi yang paling menguntungkan tanpa memperhatikan kegiatan-kegiatan para pesaingnya. Pengertian
posisi
menguntungkan
adalah
bahwa
adanya
devisi
(penyimpangan) dari strategi optimal, atau rencana optimal, akan menurunkan payoff. 7. Tujuan dari model permainan adalah mengindentifikasikan stratagi atau rencana optimal untuk setiap pemain. Dari contoh diatas, strategi optimal untuk A adalah A 2 , B 3 adalah strategi optimal untuk B.
2.4.1
Jenis Situasi Permainan Kategori situasi permainan dibagi 2 yaitu :
Universitas Sumatera Utara
1) Situasi permainan jumlah dua pemain (two person game) 2) Situasi permainan jumlah lebih dari n- pemain (n-person game)
Klasifikasi pemain dibagi 2 yaitu: 1) Zero sum game (Permainan jumlah nol) adalah Permainan jumlah nol adalah jika jumlah kerugian dan keuntungan kedua pemain sama dengan nol. Artinya hasil dari maksimin dan minimaks selalu sama. Seperti tabel dibawah ini:
Tabel 2.2 Permainan Jumlah Nol Zero sum game 1
Player I
Player II A
B
a
8
4
b
4
2
2) Non- zero sum game (Permainan jumlah tidak nol adalah) : Disini ditemukan dalam kehidupan riil. Dalam permainan ini hasil dari keuntungan dan kerugian tidak sama dengan nol. Dan ini sering diselesaikan dengan metode strategi campuran. Seperti gambar dibawah ini :
Tabel 2.3 Permainan Jumlah Tidak Nol Non Zero sum game
Player I
Player II B1
B2
B3
A1
2
5
7
A2
-1
2
4
A3
6
1
9
Universitas Sumatera Utara
2.4.2
Strategi
2.4.2.1 Definisi rencana tindakan yang diikuti oleh seorang pemain. Setiap pemain memiliki dua atau lebih strategi, hanya satu yang dipilih untuk dimainkan. Ada dua jenis strategi dalam permainan yaitu : a. Strategi murni (Pure Strategy) adalah disini pemain mempergunakan strategi tunggal. Dalam permainan strategi murni, pemain baris mengidentifikasikan strategi optimalnya melalui aplikasi kriteria maksimin (maximin). Sedangkan pemain kolom (minimizing player) menggunakan kriteria
minimaks
(minimax)
untuk
mengidentifikasikan
strategi
optimalnya. Dalam hal ini nilai yang dicapai harus merupakan maksimum dan minimaks bari dan minimum dari maksimin kolom sekaligus. Pada kasus tersebut suatu titik keseimbanngan telah dicapai, dan titik ini sering dikenal sebagai titik pelana (saddle point). Bila nilai maksimin tidak sama dengan nilai minimaks, titik pelana tidak dapat dicapai, sehingga permainan tidak dapat dipecahkan dengan mempergunakan strategi murni. Permainan
tanpa titik pelana dapat
dipecahkan dengan menggunakan strategi campuran (mixed strategy).
Contoh : Kasus teori permainan dalam strategi murni Misalkan dalam suatu perusahaan A dan B akan melihat seberapa besar keuntungan yang diperoleh dalam proyek yang akan diteliti oleh kedua perusahaan tersebut. Maka dapat digambarkan dalam suatu tabel matriks. Dalam suatu perusahaan ini dianggap A mempunyai 2 strategi dan B mempunyai tiga strategi. Maka akan disusun seperti tabel dibawah ini :
Universitas Sumatera Utara
Tabel 2.4 Permainan dengan kriteria maksimin dan minimaks
A
B1
A1
B2
B3
Min baris
1
9
2
1
A2
8
5
4
4
Mak
8
9
4
B
← maksimin
kolom ↓ minimaks Dari tabel diatas A mempunyai 2 strategi /pilihan yang tersedia dan B mempunyai 3 strategi/pilihan yang tersedia. Sekarang A dapat memilih strategi A 1 dan A 2 . Hasilnya dari pemilihan tersebut adalah sebagai berikut :
Strategi
Perolehan pilihan Perolehan minimum B
tergangtung pilihan B
Pemain A
A1
(1, 9, 2)
Min (1, 9, 2) = 1
memilih
A2
(8, 5, 4)
Min (8, 5, 4) = 4
Tujuan A : Memaksimumkan perolehan minimum sehingga :
{p i } = {1, 4 }
i = 1, 2
dan : V = max . {p i } = max . {1, 4}= 4 i
Maka pemain A memilih strategi A 2 sebagai strategi optimal dan tidak mau mundur dari situ. Selanjutnya bagi pemain B terdapat alternatif sebagai berikut:
Strategi
Derita tergantung
Derita max tidak
Pilihan A
tergantung pilihan A
Pemain B
B1
(1, 8)
Max (1,8) = 8
memilih
B2
(9, 5)
Max (9,5) = 9
B3
(2,4)
Max (2,4) = 4
Universitas Sumatera Utara
Tujuan B : Meminimumkan derita maksimum, sehingga :
{p }= {8, 9, 4 } j=1, 2, 3 V = min . {P }= min {8, 9, 4} j
dan :
j
=4
i
Disini pemain B memilih strategi B 3 sebagai strategi optimal. Dengan demikian pemain A dan B masing-masing telah memainkan strategi bersih (pure strategi). Dan didapat titik equilibrium/titik pelana dengan V = V = 4 dan harga ini terdapat pada kotak H (A 2 , B 3 ) dari tabel diatas. Jadi strategi optimal untuk perusahaan A adalah A 2 dan strategi optimal untuk perusahaan B adalah b. Mixed strategy (Strategi Campuran) adalah memainkan lebih dari satu pilihan (alternatif) dan tidak menggunakan urutan tertentu tetapi dalam bentuk acak. Dalam suatu permainan tidak memiliki strategi deterministik yang menghasilkan solusi optimal bagi setiap pemain dalam permainan tersebut. Oleh karenanya, kita membutuhkan suatu teori lain yang dapat membantu kita mengambil keputusan dalam situasi pemilihan strategi, apabila strategi deterministik tidak dapat menghasilkan solusi yang optimal.
Contoh : Kasus teori permainan dalam strategi campuran
Perusahaan Coloroid Camera (yang akan kita anggap sebagai Perusahaan I) akan memperkenalkan kamera baru ke dalam ini produknya dan berharap akan memperoleh peningkatan pangsa pasar sebesar mungkin. Di lain pihak, perusahaan Comco Camera (yang akan anggap sebagai Perusahaan II) ingin meminimasi peningkatan pangsa pasar Coloroid. Coloroid dan Camco mendominasi pasar kamera, dan peningkatan pangsa pasar untuk coloroid akan
Universitas Sumatera Utara
menghasilkan penurunan pangsa pasar yang sama untuk Camco. Strategi-strategi untuk
setiap
perusahaan
didasarkan
pada
kampanye
promosi
mereka,
pembungkusan,dan perbedaan aksesori antar produk. Tabel hasil prtukaran, yang mencakup strategi dan hasil untuk setiap perusahaan (I= Coloroid dan II = Camco), ditunjukkan dalam Tabel contoh:2. Nilai-nilai dalam Tabel contoh 3.2 adalah persentase peningkatan atau penurunan pangsa pasar untuk Perusahaan I.
Tabel contoh : Tabel 2.5 Untuk Perusahaan Kamera Strategi
Strategi Perusahaan Kamera II
Perusahaan Kamera I
A
B
C
1
9
7
2
2
11
8
4
3
4
1
7
Langkah pertama adalah memeriksa tabel untuk mencari strategi dominan. Dari melakukan hal tersebut, kita menemukan bahwa strategi 2 mendominasi strategi 1, dan strategi B mendominasi strategi A. Jadi, strategi 1 dan A dapat dihilangkan dari tabel hasil pertukaran, seperti ditunjukkan dalam tabel diatas maka :
Tabel 2.6 Hasil Pertukaran dengan Menghilangkan Strategi 1 dan A Srategi
Strategi Perusahaan II
Perusahaan I
B
C
2
8
4
3
1
7
Maka perusahaan I menerapkan Kriteria Maksimin seperti ditunjukkan dalam tabel 2.7
Universitas Sumatera Utara
Tabel 2.7 Tabel Hasil Pertukaran dengan Kriteria Maximin Srategi
Strategi Perusahaan II
Perusahaan I
B
C
2
8
4
3
1
7
Maksimin dari nilai minimum
Maka Kriteria minimax diterapkan untuk perusahaan II dalam tabel 3.4 nilai maksimum untuk strategi B adalah 8%, nilai maksimum untuk strategi C adalah 7%. Dari kedua nilai maksimum ini, 7% merupakan minimum, Jadi strategi optimal untuk Perusahaan II adalah C.
Tabel 2.8 Hasil Pertukaran dengan Kriteria Minimaks Srategi
Strategi Perusahaan II
Perusahaan I
B
C
2
8
4
3
1
7
Minimum dari nilai maksimum
Tabel diatas merupakan hasil gabungan dari penerapan kriteria maksimin dan minimaks dari kedua perusahaan tersebut.
Tabel 2.9 Gabungan Strategi Perusahaan I dan II Srategi
Strategi Perusahaan II
Perusahaan I
B
C
2
8
4
3
1
7
Dari tabel 2.9 dapat kita lihat strategi – strategi yang akan dipilih oleh kedua perusahaan tidak menghasilkan titik keseimbangan. Oleh karena itu, ini bukanlah permainan strategi murni. Pada kenyataannya, kondisi keseimbangan ini tidak akan terjadi pada strategi manapun dari kedua perusahaan ini. Perusahaan I memaksimumkan persentase peningkatan pangsa pasarnya dengan memilih
Universitas Sumatera Utara
strategi 2. Perusahaan II memilih strategi C untuk meminimumkan pangsa pasar perusahaan I. walaupun demikian perusahaan I melihat bahwa perusahaan II menggunakan strategi C, ia akan berpindah ke strategi 3 untuk meningkatkan pangsa pasarnay menjadi 7%. Pergerakan ini tidak akan terjadi tanpa terlihat oleh perusahaan II yang kemudian akan berpindah ke strategi B untuk mengurangi pangsa pasar perusahaan I menjadi 1 %. Tindakan oleh perusahaan B untuk mengurangi pangsa pasar perusahaan I segera berpindah ke strategi 2 untuk memaksimumkan peningkatan pangsa pasarnya menjadi 8%. Berdasarkan tindakan perusahaan I, perusahaan II akan berpindah ke strategi C untuk meminimumkan peningkatan pangsa pasar perusahaan I ke 4 %. Sekarang kita akan melihat bahwa kedua perusahaan kembali ketempat semula. Seperti dilihatkan pada tabel dibawah ini :
Tabel 2. 10 Hasil dengan Putaran Tertutup Srategi
Strategi Perusahaan II
Perusahaan I
B
C
2
8
4
3
1
7
Permainan strategi campuran bagi kedua perusahaan kamera diatas dapat dilakukan dengan menggunakan strategi campuran. Salah satu metode lain yang dapat digunakan yaitu dengan metode ekpektasi keuntungan dan kerugian. Perusahaan I secara sistematis mengasumsikan bahwa perusahaan II akan memilih strategi B. Berdasarkan keadaan ini ada probabilitas sebesar p untuk perusahaan I akan memilih strategi 2 dan probabilitas sebesar (1-p) bahwa perusahaan I akan memilih strategi 3. jadi, jika perusahaan II memilih B, ekspektasi keuntungan bagi perusahaan I adalah :
8p + 1(1 –p) = 1 + 7p
Kemudian perusahaan I mengasumsikan bahwa perusahaan II akan memilih strategi C. berdasarkan strategi C ada probabilitas sebesar p bahwa perusahaan I
Universitas Sumatera Utara
akan memilih strategi 2. Jadi, ekspektasi keuntungan dari perusahaan I berdasarkan strategi C adalah 4p + 7(1-p) = 7 – 3p Kita telah tahu sebelumnya bahwa metode ini didasarkan pada ide bahwa perusahaan I akan mengembangkan rencana yang menghasilkan Perusahaan II. Jadi jika Perusahaan I merasa apa pun pilihan Perusahaan II, ekspektasi keuntungan dan setiap strategi tersebut: 1 + 7p
= 7 – 3p 10p = 6 p = 6/10 = 0.6
Ingat bahwa p adalah probabilitas memakai strategi 2, atau persentase waktu penggunaan strategi 2. Jadi, rencana Perusahaan I adalah menggunakan strategi 2 selama 60% dari seluruh waktu yang ada dan menggunakan strategi 3 selama 40% dari seluruh waktu yang ada. Ekspektasi keuntungan (peningkatan pangsa pasar untuk Perusahaan I) dapat dihitung menggunakan hasil pertukaran strategi B atau C, karena keuntungan yang diperoleh sama. Dengan menggunakan pertukaran strategi B,
E (Perusahaan I) = 0,60(8) + 0,40(1) = 5,2 % peningkatan pangsa pasar
Untuk memeriksa hasil ini, kita akan menghitung ekspektasi keuntungan jika strategi C digunakan oleh Perusahaan II
EG (Perusahaan II) = 0,60(4) + 0,40(7) = 5,2 % peningkatan pangsa pasar
Sekarang kira harus mengulangi proses ini bagi Perusahaan II untuk mengembangkan strategi campuran yang merupakan ekspektasi keuntungan bagi Perusahaan I sekarang merupakan ekspektasi kerugian bagi perusahaan II. Pertama kita asumsikan bahwa Perusahaan I akan memilih strategi 2. Jadi perusahaan II akan menggunakan strategi B selama p persen dan seluruh waktu
Universitas Sumatera Utara
yang ada dan C selama (1 – p) dan waktu yang ada. Ekspektasi kerugian bagi Perusahaan II atas strategi 2 adalah :
8p+4(1-p)=4+4p
Kemudian kita hitung ekspektasi kerugian untuk Perusahaan II berdasarkan anggarai bahwa Perusahaan I memilih strategi 3:
1p + 7(1-p) = 7-6p Dengan menyamakan kedua ekspektasi kerugian untuk strategi 2 dan 3 akan didapatkan nilai untuk p dan (1-p) 4+ 4p 10p p
= 7 – 6p =3 = 3/10 = 0,30
dan 1p + 7 = 0,70 Karena p adalah probabilitas menggunakan strategi B, perusahaan II akan menggunakan strategi B selama 30 % dari seluruh waktu yang ada, dan demikian strategi C akan digunakan selama 70% dari waktu yang ada. Ekspektasi kerugian aktual berdasrkan strategi 2 dapat dihitung sebagai berikut :
E (Perusahaan II)
= 0,30 + 0,70 (4) = 5,2 % kehilangan pangsa pasar
Strategi campuran utnuk setiap perusahaan didapatkan sebagai berikut
Perusahaan I
Perusahaan II
Strategi 2: 60 % waktu yang ada
Strategi B: 30 % waktu yang ada
Strategi 3: 40 % waktu yang ada
Strategi C: 70 % waktu yang ada
Ekspektasi keuntungan untuk Perusahaan I adalah peningkatan pangsa pasar
Universitas Sumatera Utara
sebesar 5,2 % dan ekspektasi kerugian untuk Perusahaan I juga pangsa pasar sebesar 5,2 %. Jadi, strategi campuran untuk masing-masing perusahaan menghasikan titik keseimbangan dimana 5,2 % ekspektasi keuntungan untuk Perusahaan I pada saat yang sama merupakan 5,2 ekpektasi kerugian untuk Perusahaan II. Maka masing-masing perusahaan telah memperbaiki posisinya terhadap hasil yang dicapai dengan menggunakan strategi maximin dan minimax. Dimana Hasil pertukaran untuk Perusahaan I hanya berupa peningkatan pasar sebesar 4 % sementara strategi campuran menghasilkan ekspektasi keuntungan sebesar 5,2 %. Hasil dari strategi minimax dari perusahaan I adalah kerugian sebesar 7 %, namun strategi campuran menunjukkan kerugian 5,2 %. Jadi, masing-masing perusahaan menempatkan dirinya pada situasi yang lebih baik dengan menggunakan pendekatan strategi campuran. Pendekatan ini mengasumsikan bahwa permainan bersifat pengulangan dan akan dimainkan selama periode waktu tertentu sehingga strategi dapat digunakan selama persentase waktu tertentu dari periode tersebut. Untuk contoh diatas dapat secara logis diasumsikan bahwa pemasaran kamera baru oleh Perusahaan I akan membutuhkan waktu yang lama. Jadi setiap perusahaan dapat menggunakan strategi campuran yang dimiliki.
Secara matematis, defenisi mixed-strategy adalah sebagai berikut: Suatu mixed-strategy untuk P 1 adalah suatu vector X=(x 1 ,x 2 ,……., x n ) dimana entri-entrinya adalah bilangan riil positif sehingga x 1 +x 2 +…….+x m = 1, dengan pengertian bahwa P 1 akan memainkan strategi s i dengan peluang x i , 1 ≤ I ≤ m.
Oleh karena defenisi strategi dalam konsep mixed-strategy telah berubah menjadi stokastik, maka perolehan dari setiap pemain juga harus diubah.Jika dalam permainan yang bersifat deterministik perolehan untuk setiap pemain ditentukan oleh nilai dalam tabel perolehan, maka dalam permainan yang bersifat stokastik dalam mixed-strategy perolehan untuk setiap pemain adalah berupa nilai ekspektasi bagi pemain tersebut. Nilai ekspektasi didefenisikan sebagai hasil penjumlahan antara nilai keluaran yang mungkin dengan probabilitas dari nilai
Universitas Sumatera Utara
yang mungkin terjadi.Sebuah permainan dengan tabel perolehan dalam matriks A= (a ij ), jika P 1 menggunakan strategi X= (x 1 ,x 2 ,…….,x n ) dan P 2 Menggunakan strategi Y= (y 1 ,y 2 ,…….., y n ) maka peluang munculnya a ij adalah x i y j .Oleh karennya untuk permainan ini adalah hasil penjumlahan dari perkalian x i a ij y j atau dapat dinotasikan sebagai berikut:
∑∑ i
x i a ij y j
j
Atau dengan kata lain diatas adalah identik dengan XAYt dimana ‘X’ adalah strategi yang mungkin bagi pemain-I dan Y adalah stratagi yang mungkin bagi pemain-II dan A adalah tabel perolehan untuk permainan tersebut. Pemecahan masalah dalam permainan strategi campuran dapat dilakukan dengan : (1) metode analitis, (2) metode aljabar matriks.
Metode campuran dapat dilakukan dengan 2 cara yaitu : 1. Metode analitis P
Bentuk umum
: (1− p)
q
1-q
a c
b d
dimana : p = proporsi waktu pemain A untuk menggunakan strategi 1 1-p = proporsi waktu pemain A untuk menggunakan strategi 2 q = proporsi waktu pemain B untuk menggunakan strategi 1 1-q = proporsi waktu pemain B untuk menggunakan strategi 2
2. Metode Aljabar Matriks a c
b d
[ ]
= Pij
Universitas Sumatera Utara
dimana P ij menunjukkan jumlah payoff dala baris ke i dan kolom ke j. Dan dapat dicari dengan rumus sebagai berikut :
[1 1] [P adj ]
Strategi optimal perusahaan A =
Strategi optimal perusahaan B =
[1 1] [P cof ] [1 1] [P adj ]
Stragegi Nilai permainan = optimal A
=
[P ] [1 1] [P ]
1 1
[1 1] [P adj ]
[P ] ij
1 1 Stragegi optimal B
ij
adj
1 1
dimana : P adj = adjoint matriks P cof = kofaktor matriks
[P ] = matriks permainan ij
[P ] = determinan matriks permainan ij
2.5 Nash Equilibrium 2.5.1 Definisi : Keseimbangan adalah Suatu strategi s i dikatakan strategi dominan bagi Pi jika u(s i ) ≥ u(s j ), dengan u(s i ) dan u(s j ) adalah perolehan dari strategi s i dan s j dimana i ≠ j untuk semua s ∈ S. Dalam setiap permainan, setiap pemaian akan selalu menggunakan dominan karena sifat rasional yang diasumsikan pada setiap pemain. Tetapi dalam beberapa permainan, tidak terdapat strategi dominan sehingga pemain harus mencari
strategi
lain
untuk
memaksimumkan
perolehannya.
Dengan
Universitas Sumatera Utara
menggunakan mixed-strategy seorang pemain dapat menentukan strategi yang akan digunakannya dengan cara memilih strategi yang akan digunakannya dengan suatu distribusi peluang sehingga strategi yang akan digunakan bukan bersifat deterministik tetapi bersifat stokastik. Dengan menggunakan mixed-strategy komposisi strategi yang akan digunakan oleh pemain adalah berupa himpunan pasangan berurut distribusi-distribusi peluang yang akan digunakan oleh setiap pemain. Defenisi lain tentang keseimbangan Nash adalah kondisi dimana strategi-strategi yang digunakan oleh setiap pemain adalah strategi yang optimal baginya jika diberikan strategi pemain lainnya dalam permainan tersebut dimana setiap pemain tidak dapat meningkatkan hasil perolehannya dengan menggantikan strateginya.
Arti keseimbangan Nash menurut John Nash adalah jika ada serangkaian strategi untuk sebuah permainan dimana tidak ada pemain yang bisa beruntung dengan mengubah strateginya sedangkan pemain lain mempertahankan strateginya tidak berubah, maka serangkaian strategi tersebut dan perimbangan (payoff) yang koresponden membentuk keseimbangan Nash.
2.6 Memilih Strategi Dalam permainan dua pemain berjumlah nol ini tujuannya adalah menemukan jawab yang kokoh bagi kedua pemain. Memilih strategi sama artinya dengan menemukan jawab permainan. Jawab yang dimaksud hanya ada bila tiap pemain berusaha memperkecil derita atau memperbesar perolehan, dengan kata lain tiap pemain berusaha meraih strategi optimal bagi dirinya sehingga tidak ada lagi dari antara pemain yang dapat meningkatkan posisi masing-masing dengan memilih strategi lain. Hasil yang diharapkan bila kedua pemain telah menggunakan strategi optimalnya disebut “harga permainan”. Salah satu langkah dari satu permainan adalah pemilihan satu strategi oleh tiap pemain. Usaha menemukan strategi optimal dan harga permainan di sebut menyelesaikan
Universitas Sumatera Utara
permainan dan langkah berikutnya tidak boleh lagi dilanjutkan dan permainan telah selesai.
2.6.1 Kriteria Maksimin dan Minimaks Tujuan utama menyelesaikan suatu permainan adalah menentukan strategi optimal. Strategi optimal dapat ditentukan dengan menggunakan teori yang disebut teori minimaks yang pada prinsipnya mengatakan bahwa tiap pemain secara sepihak mencari tingkat keamanan yang maksimum bagi diri sendiri. Dalam memilih strategi optimal, beberapa asumsi ditetapkan terlebih dahulu yaitu: 1) Bahwa kedua pemain memiliki kepintaran yang sama 2) Tiap pemain sudah mengetahui strategi yang lain 3) Tiap pemain mengetahui jumlah perolehan sendiri dan derita pemain lain 4) Tiap pemain harus menentukan strategi (pilihan). Berdasarkan asumsi diatas, tiap pemain mengetahui bahwa pemain yang lain cukup rasional serta mempunyai tujuan yang sama yaitu memaksimumkan perolehan sendiri. Pemain I memeriksa tiap baris dari matriks perolehan dan memilih harga maksimum dari harga minimum. Cara menentukan pilihan seperti ini adalah cara yang konservatif dan biasa disebut sebagai cara memilih yang terbaik dari antara yang terburuk. Cara ini juga disebut kriteria maksimum dari minimum disingkat dengan kriteria maksimin. Sebaliknya, pemain II menyelesaikan permainan untuk menentukan strategi optimal dengan menggunakan teori yangn dinamakan teori minimaks. Teori ini menetapkan bahwa pemain secara sepihak mencari tingkat keamanan yang maksimum bagi dirinya sendiri, yaitu dengan memilih derita terkecil dari antara sejumlah derita maksimum. Cara ini ialah memilih kriteria minimum dari maksimum atau disingkat dengan minimaks.
Universitas Sumatera Utara
2.7 Peranan Dominasi Pemain B
Pemain A
x
y
z
1
8
(4)
7,5
2
7
3,5
3
8
(4)
7,5
Kerugian maksimum
Keuntungan minimum (4) maximin 3
minimax
Lihat kembali contoh yang diatas, terlihat bahwa strategi 1 menghasilkan keuntungan maksimum bagi A, tanpa memperhatikan strategi mana yang dipilih B. Sehingga strategi 1 dikatakan mendominasi strategi 2. untuk kasus dimana suatu strategi secara sempurna didominasi oleh strategi lain, strategi yang didominasi dapat dibuang dari matriks pay-off karena pemain tidak pernah memilihnya. Untuk pemain B, strategi x didominasi oleh strategi y karena kerugian strategi x selalu lebih besar daripada kerugian strategi y tanpa memperhatikan strategi yang dipilih A. strategi x juga didominasi oleh strategi z. Karena itu, strategi x dapat dibuang. Pemain A hanya dapat memilih strategi 1, yanng berarti B akan memilih strategi y untuk meminimumkan kerugian menjadi 4 daripada 7,5. Ingat bahwa solusinya tetap sama. Jadi, jika setiap pemain memiliki sebuah strategi dominan, games akan mencapai keseimbangan atau memiliki saddle point.
Universitas Sumatera Utara