ANALISIS ON-BOTTOM STABILITY DAN INSTALASI PIPA BAWAH LAUT DI DAERAH SHORE APPROACH
TUGAS AKHIR Karya tulis sebagai salah satu syarat untuk memperoleh gelar Sarjana
Oleh Zenal Abidin NIM 15503023
PROGRAM STUDI TEKNIK KELAUTAN
FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN
INSTITUT TEKNOLOGI BANDUNG 2008
PROGRAM STUDI TEKNIK KELAUTAN FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN INSTITUT TEKNOLOGI BANDUNG
TUT TEK
TUGAS AKHIR Diberikan kepada Nama NIM
: : Zenal Abidin : 15503023
Judul Tugas Akhir adalah Analisis On-Bottom Stability Dan Instalasi Pipa Bawah Laut Di Daerah Shore Approach, dengan isi Tugas Akhir sebagai berikut : BAB II
DISAIN PIPA BAWAH LAUT
BAB III
PROSES DI SHORE APPROACH
BAB IV
METODE INSTALASI PIPA BAWAH LAUT
BAB V
STUDI KASUS
BAB VI
PENUTUP
Tugas Akhir ini dibuat rangkap 6 (enam) : 1. Untuk Mahasiswa 2. Untuk Pembimbing 3. Untuk Penguji Sidang Tugas Akhir 4. Untuk Tata Usaha Program Studi Teknik Kelautan 5. Untuk Perpustakaan
( 1 buah ) ( 1 buah ) ( 2 buah) ( 1 buah ) ( 1 buah )
Bandung, Februari 2008 Menyetujui Koodinator,
Pembimbing
Krisnaldi Idris, Ph.D NIP. 131 570 002
Rildova, Ph.D NIP.1321 634 93
Lembar Pengesahan Tugas Akhir Sarjana
ANALISIS ON-BOTTOM STABILITY DAN INSTALASI PIPA BAWAH LAUT DI DAERAH SHORE APPROACH
Adalah benar dibuat oleh saya sendiri dan belum pernah dibuat dan diserahkan sebelumnya baik sebagian ataupun seluruhnya, baik oleh saya maupun orang lain, baik di ITB maupun institusi pendidikan lainnya. Bandung, _______________ Penulis Pasfoto 3x4
Zenal Abidin NIM 15503023 Bandung, ________________ Pembimbing
Rildova, Ph.D NIP 132163493
Mengetahui: Program Studi Teknik Kelautan Ketua,
Dr. Ir. Muslim Muin, MSOE NIP 131570005
ABSTRAK
Gelombang merambat dari laut dalam menuju pantai melalui perairan dengan kedalaman yang bervariasi dan cenderung semakin dangkal. Perubahan ini memberikan efek pada gelombang terutama ketika gelombang mulai menyentuh dasar laut . Disamping itu, fenomena refraksi, kekasaran dan gradien kemiringan dasar laut juga ikut mempengaruhi perubahan sifat-sifat gelombang. Stabilitas pipa bawah laut diperhitungkan dengan mempertimbangkan efek gaya-gaya hidrodinamika yang bekerja pada pipa. Ketika suatu jaringan pipa dipasang dari darat menuju ke laut lepas, disepanjang rutenya pipa ini akan mengalami efek gaya hidrodinamika yang berbeda-beda seiring dengan perubahan karakteristik gelombang menuju perairan dangkal (transformasi gelombang). Dan, pada kedalaman tertentu disekitar pantai dimana gelombang semakin tinggi dan tidak stabil, gelombang akan pecah dengan menghempaskan energi yang lebih besar terhadap pipa dibawahnya. Pada keadaan sebenarnya dimungkinkan pipa akan mengalami penetrasi ketanah akibat beban fungsional pipa tersebut, keadaan ini mengakibatkan adanya reduksi terhadap gaya-gaya hidrodinamika yang bekerja pada pipa. Berdasarkan pada SK Mentamben No. 300.K/38/M.PE/1997 menyatakan bahwa untuk keamanan pipa pada kedalaman kurang dari 13 mater harus dikubur 2 meter top of pipe. Sama halnya dengan pipa yang terpenetrasi, analisa stabilitas yang dilakukan untuk pipa di dalam open trench berbeda dengan adanya reduksi terhadap gaya hidrodinamik. Dalam hal ini harus diperhatikan metode trenching dan back filling agar propertis pipa yang kita pilih tetap stabil. Pemilihan metode instalasi biasanya didasarkan kedalaman lokasi pipa yang akan dipasang. Dalam proses instalasi pipa membutuhkan analisis yang benar agar pipa yang dipilih tidak mengalami kerusakan akibat gaya-gaya yang bekerja selama proses instalasi tersebut berlangsung.
KATA PENGANTAR Segala puji dan syukur kehadirat Allah SWT atas semua rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan laporan Tugas Akhir ini. Laporan yang berjudul: “Analisis On-Bottom Stability Dan Instalasi Pipa Bawah Laut Di Daerah Shore Approach” ini disusun untuk memenuhi persyaratan pendidikan sarjana pada Program Studi Teknik Kelautan, Institut Teknologi Bandung. Berbagai pihak yang telah memberikan bantuan baik secara moril maupun materiil kepada penulis untuk menyusun laporan ini hingga selesai. Untuk itu penulis ingin menyampaikan terima kasih sebanyak-banyaknya, kepada : 1.
Bapak Rildova, Ph.D selaku dosen pembimbing yang telah dengan sabar memberikan bimbingan dan nasihat-nasihatnya.
2.
Bapak Ricky Lukman Tawekal, Ph.D selaku dosen penguji yang telah meluangkan waktunya.
3.
Dr.Ir. Hendriyawan, MT selaku dosen penguji yang telah meluangkan waktunya.
4.
Dr. Nita Yuanita, ST. MT.
selaku dosen penguji yang telah meluangkan
waktunya. 5.
Bapak, Mimi, dan adik-adik’ku yang sangat penulis sayangi, kalian telah memberikan inspirasi pada penulis untuk selalu semangat.
6.
Mas Dwi Haryo Wibisono “Mas Karyo” terima kasih atas semua ilmu dan wawasan yang telah diberikan.
7.
Seluruh staff pengajar Program Studi Teknik Kelautan Institut Teknologi Bandung.
8.
Seluruh staff Tata Usaha Program Studi Teknik Kelautan Institut Teknologi Bandung.
9.
Teman-teman seperjuangan Mamin Rajin, Micho Ganteng, Rudi Parto, Ridha Metal, Mendy Ganteng, Amri Milanisti, Reza Ganteng, Iyus Endut, Wawan, Andri, Leo, Dimas, Gusti, Yaser, Frans, Iwan, Erik mah urang sunda, Andreas, Oki, Bang-Fantri, Anton,
Ana, Nana, Wistie, Ica, Mice,
Rahma, terimakasih telah menjadi teman-teman terbaik penulis selaman ini. “Dan barang siapa yang mentaati Allah dan Rosul-Nya mereka itu akan bersamasama dengan orang-orang yang dianugrahi nikmat oleh Allah, yaitu: Nabi-Nabi,
i
Para Shiddiqi, orang-orang yang mati syahid, dan orang-orang saleh. Dan mereka itulah teman yang sebaik-baiknya” (QS: An Nisa:69). 10.
Teman-teman KL 2002, 2004, dan 2005, penulis ucapkan terimakasih.
11.
Dan pihak-pihak lainnya yang tidak dapat penulis sebutkan satu per satu, penulis ucapkan terima kasih
Penulis menyadari bahwa dalam laporan tugas akhir ini masih terdapat kekurangan, untuk itu penulis mengharapkan kritik dan saran yang membangun mengenai laporan ini. Semoga laporan ini dapat menjadi sesuatu yang bermanfaat. Bandung, Februari 2008
Penulis
ii
DAFTAR ISI Pengantar Daftar Isi Daftar Gambar Daftar Tabel
i iii v vii
BAB 1 PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penulisan 1.3 Lingkup Pembahasan 1.4 Metode Penulisan 1.5 Sistematika Pembahasan
I-1 I-1 I-2 I-3 I-3 I-4
BAB 2 DISAIN PIPA BAWAH LAUT 2.1 Pendahuluan 2.1.1 Klasifikasi Sistem Pipa Bawah Laut Berdasarkan Fluida Yang Dialirkan 2.1.2 Klasifikasi Sistem Pipa Bawah Laut Berdasarkan Lokasi Pipa 2.1.3 Klasifikasi Sistem Pipa Bawah Laut Berdasarkan Tingkat Keamanan 2.2 Pemilihan Jalur Pipa 2.3 Pembebanan Pada Pipa 2.4 Diameter Pipa dan Pemilihan Material Pipa 2.5 Disain Tebal Dinding Pipa (Wall Thickness) 2.5.1 Karakteristik Wall Thickness 2.5.2 Kriteria Pressure Containment 2.5.3 Kriteria Buckling 2.6 On-Bottom Stability 2.6.1 Kondisi Lingkungan 2.6.2 Periode Ulang (Return Periode) 2.6.3 Gaya-Gaya Yang Bekerja Pada Analisa Stabiltas Pipa Bawah Laut 2.6.4 Analisis Disain Stabilitas Pipa Bawah Laut 2.6.5 Penetrasi Pipa 2.6.6 Jetting dan Trenching 2.6.7 Reduksi Pembebanan Pada Pipa
II-1 II-1 II-3 II-3 II-4 II-5 II-5 II-7 II-10 II-10 II-10 II-14 II-20 II-21 II-22 II-23 II-32 II-35 II-37 II-39
BAB 3 PROSES DI SHORE APPROACH 3.1 Pendahuluan 3.2 Gelombang 3.2.1 Teori Gelombang Linier (Airy) 3.2.2 Persamaan Gelombang 3.2.3 Kecepatan Rambat dan Panjang Gelombang Airy 3.2.4 Kecepatan dan Percepatan Air 3.2.5 Gelombang Acak (Random Wave) 3.3 Transformasi Gelombang 3.3.1 Refraksi Gelombang 3.3.2 Shoaling 3.3.3 Kombinasi Refraksi dan Shoaling 3.3.4 Gelombang Pecah 3.3.5 Difraksi Gelombang 3.4 Metode Numerik untuk Gelombang Pecah (William R. Dally, 1980) 3.5 Pasang Surut Air Laut 3.6 Pantai dan Daerah Disekitarnya
III-1 III-1 III-2 III-2 III-3 III-5 III-6 III-7 III-10 III-11 III-14 III-14 III-16 III-17 III-19 III-21 III-22
iii
BAB 4 METODE DAN ANALISIS INSTALASI PIPA BAWAH LAUT 4.1 Pendahuluan 4.2 Metode Pemasangan Pipa (Lay Method) 4.2.1 Metode S-Lay 4.2.2 Metode J-Lay 4.2.3 Metode Reel Lay 4.2.4 Tow Methods 4.2.5 Metode Shore Pull 4.3 Analisis Instalasi Pipa 4.3.1 Overbend 4.3.2 Sagbend
IV-1 IV-1 IV-2 IV-2 IV-3 IV-5 IV-6 IV-10 IV-12 IV-13 IV-14
BAB 5 STUDI KASUS 5.1 Pendahuluan 5.2 Data Proyek 5.2.1 Data Pipa Dan Materialnya 5.2.2 Data Batimetri 5.2.3 Data Lingkungan 5.3 Hasil dan Analisa Perhitungan 5.3.1 Perhitungan Wall Thickness 5.3.2 Perhitungan Gelombang 5.3.3 Perhitungan On botttom Stability 5.3.4 Instalasi Pipa Bawah Laut
V-1 V-1 V-2 V-3 V-3 V-4 V-7 V-7 V-10 V-23 V-28
BAB 6 PENUTUP 6.1 Kesimpulan 6.2 Saran
VI-1 VI-1 VI-2
Lampiran I
Hasil Perhitungan Transformasi Gelombang Dan Arus
Lampiran II
Hasil Perhitungan Tebal Dinding Pipa
Lampiran III
Hasil Perhitungan On Bottom Stability
Lampiran IV
Ouput Program Off Pipe
iv
DAFTAR GAMBAR
Gambar 2. 1 Gambar 2. 2 Gambar 2. 3 Gambar 2. 4 Gambar 2. 5 Gambar 2. 6 Gambar 2. 7 Gambar 2. 8 Gambar 2. 9 Gambar 2. 10 Gambar 2. 11 Gambar 2. 12 Gambar 2. 13 Gambar 2. 14 Gambar 2. 15 Gambar 2. 16 Gambar 2. 17 Gambar 2. 18
Flow chart langkah disain pipa bawah laut. Grafik temperatur Vs Stress derating Sketsa orbit partikel gelombang. Sketsa gaya-gaya yang bekerja pada pipa bawah laut. Potongan melintang pipa beserta lapisan pelindungnya. Grafik Koefisien Drag Vs Raynold Number. Grafik Koefisien Drag Vs Raynold Number. Sketsa terjadinya gaya gesek pada pipa. Sketsa terjadinya gaya angkat pada pipa. Grafik nilai koefisien gesek untuk jenis tanah clay. Gaya-gaya hidrodinamika pada pipa (Mousseli, 1981). Grafik nilai factor kalibrasi (Fw). Bentuk sttlement pada pipa. Metode Jetting . Diverless jet sled (DJS) 10 untuk pipa 60 inc (Saipem) Potongan melintang pipa dalam parit (Mousselli, 1981). Sketsa pipa yang terpendam ditanah. Sktetsa pipa dalam parit.
II-2 II-8 II-22 II-23 II-24 II-28 II-28 II-29 II-31 II-32 II-33 II-35 II-36 II-37 II-38 II-38 II-40 II-40
Gambar 3. 1 Gambar 3. 2 Gambar 3. 3 Gambar 3. 4 Gambar 3. 5 Gambar 3. 6 Gambar 3. 7 Gambar 3. 8 Gambar 3. 9 Gambar 3. 10
Sketsa definisi gelombang. * Kecepatan arus signifikan (Us ). Periode zero up crossing (Tu). Faktor reduksi gelombang (R). Refraksi gelombang. Hukum Snell’s gelombang. Sketsa gelombang melewati kontur sejajar. Pola gelombang di belakang rintangan. Potongan melintang sebuah profil ideal dengan parameterProfil pantai berpasir.
III-3 III-9 III-10 III-10 III-12 III-13 III-15 III-18 III-21 III-24
Gambar 4. 1 Gambar 4. 2 Gambar 4. 3 Gambar 4. 4 Gambar 4. 5 Gambar 4. 6 Gambar 4. 7 Gambar 4. 8 Gambar 4. 9 Gambar 4. 10 Gambar 4. 11 Gambar 4. 12 Gambar 4. 13 Gambar 4. 14 Gambar 4. 15 Gambar 4. 16
Sketsa metode instalasi S-lay. Contoh barge S-lay (Lorelay Barge (LB) 200). Sketsa metode instalasi J-lay. Contoh J-lay barge (Heerema’s Balder). Sketsa metode instalasi Reel lay. Technip’s DP vertical reel vessel Deep Blue (J-lay). Sketsa metode bottom tow. Sketsa metode surface tow. Sketsa metode mid-dept tow. Sketsa instalasi pipa. Sketsa metode off-bottom tow. Metode shore pull dengan winch di lay barge. Metode shore pull dengan winch di darat. Daerah overbend dan sagbend pada S-lay barge. Distribusi momen pada stinger. Sktesa bending pada pipa.
IV-2 IV-3 IV-4 IV-4 IV-6 IV-6 IV-7 IV-8 IV-8 IV-9 IV-10 IV-11 IV-12 IV-12 IV-14 IV-15
v
Gambar 5. 1 Gambar 5. 2 Gambar 5. 3 Gambar 5. 4 Gambar 5. 5 Gambar 5. 6 Gambar 5. 7 Gambar 5. 8 Gambar 5. 9 Gambar 5. 10 Gambar 5. 11 Gambar 5. 12 Gambar 5. 13 Gambar 5. 14 Gambar 5. 15 Gambar 5. 16 Gambar 5. 17 Gambar 5. 18 Gambar 5. 19 Gambar 5. 20 Gambar 5. 21 Gambar 5. 22 Gambar 5. 23 Gambar 5. 24
Peta jalur pipa proyek SSWJ2. V-1 Gambar pembagian wilayah kerja proyek. V-2 Potongan melintang batimetri jalur pipa SSWJ 2. V-3 Pembagian letak zona pada jalur pipa. V-4 Flow chart langkah perhitungan wall tickness pipa. V-8 Kontur dasar laut dengan kemiringan yang bervariasi. V-10 Sketsa tahapan transformasi gelombang dari laut dalam. V-11 Flow chart perhitungan transformasi gelombang. V-13 Sketsa input arah dating gelombang dan sudut pipa terhadap normal kontur. V-14 Plot kedalaman dan tinggi gelombang hasil transformasi (Zona 1,2,3) untuk data periode ulang 1 tahun. V-16 Plot kedalaman dan tinggi gelombang hasil transformasi (Zona 1,2,3) untuk data periode ulang 100 tahun. V-16 Plot kedalaman dan tinggi gelombang hasil transformasi (Zona 14,17,18) untuk data periode ulang 1 tahun. V-17 Plot kedalaman dan tinggi gelombang hasil transformasi (Zona 14,17,18) untuk data periode ulang 100 tahun. V-17 * V-18 Kecepatan air signifikan (Us ). Periode zero up cossing (Tu). V-19 V-19 Faktor reduksi gelombang untuk N= ∞ (R ). Flow chart langkah perhitungan arus gelombang. V-20 Profil kecepatan arus laut lokasi zona 1 dan 2 periode ulang 1 dan 100 tahun. V-21 Profil kecepatan arus laut lokasi zona 17 dan 18 periode ulang 1 tahun. V-21 Flow chart perhitungan onbottom stability pipa. V-24 Pemilihan metode trenching dan back filling zona 1 dan 2. V-26 Pemilihan metode trenching dan back filling zona 1 dan 2. V-26 Tampak atas sketsa shore pull. V-31 Tampak samping sketsa shore pull. V-32
vi
DAFTAR TABEL
Tabel 2. 1 Tabel 2. 2 Tabel 2. 3 Tabel 2. 4 Tabel 2. 5 Tabel 2. 6 Tabel 2. 7 Tabel 2. 8 Tabel 2. 9 Tabel 2. 10 Tabel 2. 11 Tabel 5. 1 Tabel 5. 2 Tabel 5. 3 Tabel 5. 4 Tabel 5. 5 Tabel 5. 6 Tabel 5. 7 Tabel 5. 8 Tabel 5. 9 Tabel 5. 10 Tabel 5. 11 Tabel 5. 12 Tabel 5. 13 Tabel 5. 15 Tabel 5. 16 Tabel 5. 17 Tabel 5. 18 Tabel 5. 19 Tabel 5. 20 Tabel 5. 21 Tabel 5. 22
Klasifikasi Sistem Pipa Bawah Laut Berdasarkan Fluida Yang Aialirkan Klasifikasi Sistem Pipa Bawah Laut Berdasarkan Lokasi Pipa Klasifikasi Sistem Pipa Bawah Laut Berdasarkan Tingkat Keamanan Klasifikasi Sistem Pipa Bawah Laut Berdasarkan Tingkat Kemanan Untuk Kondisi Normal Faktor Kekuatan Material Karakteristik Kekuatan Material Grade Material Berdasarkan Standar API Nilai Maksimum Faktor Fabrikasi Usage Factor untuk Pressure Containmet Load Effect Factor dan Load Combination Nilai Koefisien Gesek Berdasarkan Jenis Tanah Data Fisik dan Material pipa Data Kedalaman Zona Data Gelombang dan Arus Laut Data Pasang Surut dan Storm Data Tanah Untuk Zona 1 dan 2 Data Tanah Untuk Zona 17 dan 18 Hasil perhitungan wall tickness pipa pada kedalaman 85 m Input Parameter Besaran Gelombang Laut Dalam Data Periode Ulang 1 Dan 100 Tahun Rangkuman Output Parameter Gelombang Zona 1 dan 2 Rangkuman Output Parameter Gelombang Zona 17 dan 18 Arus Maksimum Akibat Gelombang Rangkuman Output Perhitungan Stabilitas Pipa Zona 1 dan 2 Rangkuman Output Perhitungan Stabilitas Pipa Zona 17 dan 18 Spesifikasi Barge Yang Digunakan. Profill Roller (R) Dan Tensioner (T/U). Profill Stinger (S). Kesimpulan Ouput Analisis Metode S-lay Chek Terhadap Load Control Combination Metode Instalasi Shore Pull Perhitungan Kebutuhan Pelampung Untuk Pipa Perhitungan Kebutuhan Pelampung Untuk Wire Rope
vii
II-3 II-3 II-4 II-4 II-7 II-8 II-9 II-9 II-12 II-18 II-32 V-3 V-4 V-5 V-5 V-6 V-6 V-9 V-14 V-15 V-15 V-22 V-25 V-25 V-29 V-29 V-29 V-30 V-30 V-30 V-32 V-32