A MISKOLCI EGYETEM KÖZLEMÉNYEI
A Sorozat BÁNYÁSZAT 50. KÖTET
A Miskolci Egyetem fennállásának 260. évfordulója alkalmából rendezett Jubileumi Tudományos Konferencia Bányászati és Műszaki földtudományi szekcióinak előadásai Miskolc, 1995. szeptember 7-8.
MISKOLC, 1995
A MISKOLCI EGYETEM KÖZLEMÉNYEI
A Sorozat BÁNYÁSZAT 50. KÖTET
Á Miskolci Egyetem fennállásának 260. évfordulója alkalmából rendezett Jubileumi Tudományos Konferencia Bányászati és Műszaki földtudományi szekcióinak előadásai Miskolc, 1995. szeptember 7-8.
MISKOLC, 1995
HU ISSN 0237-6016
SZERKESZTŐ BIZOTTSÁG: KOVÁCS FERENC felelős szerkesztő JAMBRIK R., MATING B., STEINER F., TARJÁN I.
Kiadja a Miskolci Egyetem A kiadásért felelős: Dr. Palkó Gyula rektorhelyettes Miskolc-Egyetemváros, 1995 Megjelent a Miskolci Egyetemi Kiadó gondozásában Felelős vezető: Dr. Péter József Műszaki szerkesztő: Balsai Pálné A kiadóba érkezett 1995. július 17-én. A Sokszorosítóba leadva: augusztus 7-én Példányszám: 300 Készült Develop lemezről, az MSZ 5601-59 és 5602-55 szabványok szerint Miskolci Egyetem Sokszorosító Üzeme A sokszorosításért felelős: Kovács Tiborné üzemvezető BD - '95 - 860 - ME
A Miskolci Egyelem Közleményei A. soroial Bányászai, 50. kötet. Jubileumi Konferencia 1995.109-116. old.
INCREASING THE CAPACITY OF 0.6 MPa WORKING PRESSURE GAS DISTRIBUTION NET, CONSTUCTED FROM 1.6 MPa NOMINAL PRESSURE ELEMENTS L. P. KOMORNOKI*
Summary The subject of the paper is a part of the material specifications, which study is the first element in the procedure of the capacity increasing. The paper is a short survay of the steel flange and valves for purchase.
Msc. László Péter Komomoki Head of Construction Department ÉGÁZ 9400 Sopron, Hungary manuscript received:
109
Steel Hange from stock
1.0 Introduction 2.0 Requirements 3.0 Supplementary Requirements 4.0 Certification 5.0 References
1.0 Introduction Scope: This specification covers the minimum requirements for steel flanges purchased from stock for use in the Owner's steel pipeline systems for natural gas. The following flange types are covered by this specification: iielding neck raised face flanges and blind raised face flanges. The latest edition of all standards referred to in this specification shall be used unless otherwise specifically noted. General: In case of conflict between this specification, standards referred to in this specification, the Data Sheet/Purchase Order, the sequence of ruling shall be: Purchase Order. Data Sheet if applicable. This specification standards referred to herein. Any deviations from the requirements of this specification shall have the written approval of the Owner or his Representative. The Owner will designate quality assurance/quality control representative who may witness the inspections and tests referred to in this specification and related documents. The Owner or his Representative reserves the right to request additional test and inspection if, in his opinion, the quality and performance of the flanges is not in accordance with the requirements of this specification, whether stated or implied. The Vendor may propose material standards not covered by this specification. These standards shall be subject to approval by the Owner or his representative.
110
2.0 Requirements, standard
Flanges furnished to this specification shall meet the requirements of ANSI B16.S. Material shall be in accordance with ASTM A105 with the following supplementary requirements: Carbon content C < 0.21% (Heat analysis) Carbon equivalent CE 0.40% (Heat analysis) Calculated as CE = C + Mn/6 + 0.04
Heat treatment section 5: Fully annealed or normalised. Workmanship, finish and appearance sec. 12: Resultant wall thickness of the welding neck after removal of defects must not be less than corresponding pipe wall thickness as per Purchase Order. Repair by welding sec. 13: Not permitted
Design Flange types: Welding neck raised face flanges and blind raised face flanges as per Purchase Order. Flange sizes and corresponding pipe dimensions as per Purchase Order. Blind flanges may be provided with lifting eyes as per Purchase Order. Blind flanges and welding neck flanges may be provided with jacking bolts as per Purchase Order.
Surface Treatment Flanges shall be protected from rusting in transit and storage.
Marking Marking in accordance with ANSI H 16.5
111
3.0 Supplementary requirements. Lifting eyes and jacking bolts. When so specified in the Purchase Order, blind flanges and/or welding neck flanges shall be provided with lifting eyes and/or jacking bolts in accordance with the requirements of Standard Drawing No. F-501.
4.0 Certification Flanges furnished with this specification shall be inspected and tested according to this specification and standards referred to. All tests and inspections shall be certified in accordance with DIN 50049.3.1b.
5.0 References
Standards ANSI B 16.5, ASTM A 105, DIN 50049, MSZ 2921/1983, MSZ 2922/1983, MSZ 2952/1987 MSZ 2953/1987, MSZ 2969/1987
112
VALVES FOR STEEL PIPELINES
1.0 Introduction 2.0 General 3.0 Materials (4.0 Valve Types 5.0 Supplementary Requirements to Design and Manufacturing Process 6.0 Test 7.0 Supplementary Test and Inspection Requirements 8.0 Certification 9.0 Marking 10.0 Shipping Instructions 11.0 References)
1.0 Introduction Scope. This specification covers the Owner's requirements for the manufacture of ball and plug valves for use in the Owner's steel pipelines systems for natural gas. Valves shall be manufactured in accordance with the latest edition and supplements of API 6D. Deviations and supplementary requirements to API 6D shall be as required in this specification. References to relevant paragraphs of API 60 are included in parentheses. The latest edition of all standards referred to in this specification shall be used unless otherwise specifically noted. General. In case of conflict between this specification, standards referred to in this specification, the Data Sheet/Purchase Order, the sequence of ruling shall be: Purchase Order. Data Sheet, if applicable. This specification standards referred to herein Any deviations from the requirements of this specification shall have the written approval of the Owner or his Representative. The Owner can designate a quality assurance/quality control representation who may witness the inspections and tests referred to in this specification and related documents. Before start of production a QC plan (Production plan) shall be worked out by the Vendor.
113
The QC plan contains key points in the production process and acceptance level according to this specification. The QC plan shall upon request be submitted to NGMN and be available for the Inspector. The Owner or his Representative reserves the right to request additional testing and inspection if, in his opinion, the quality and performance of the valves is not in accordance with the requirements of this specification, whether stated or implied. The manufacturer shall inform the Owner or his Representative at least one week before testing operations.
2.0 General - API 6D Section 2 Valve Classes - (para. 2.1 of API 6D). Valves furnished in accordance with this specification shall be standard flanged - or welding end valves, ends and classes as per Purchase Order. Ratings (para. 2.2 of API 6D). Temperature class - 29°C to 38 °C. Flanged end valves shall be manufactured with raised face flanges in accordance with ANSI 816.5. Welding Ends (para. 2.7 of API 6D). Welding end valves shall be manufactured with welding ends corresponding to ANSI B 31.8 or equivalent. Outside diameter and matching wall thickness as per Purchase Order. Extended Operating Gear Valves shall be provided with spindle extensions as specified in the Purchase Order. Service operations of the stem, stem seal or gearbox shall be possible. Spindle extensions shall be protected by a casing pipe tightly jointed on the top of the valve or gear. The casing pipe shall be 90% filled with suitable oil or grease selected by the manufacturer for internal corrosion protection of casing pipe and spindle. Pressure Relief (para. 2.11 of API 6D). Ball valves provided with spindle extensions shall be provided with pressure relieving device extended from the bottom of the valve body to the top of the spindle. The pressure relieving device shall consist of one blow-off valve located at the bottom of the valve and one on the top of the blow-off pipe. If threaded blow-off valves are used they shall be seal welded to the blow-off pipe. On the top, the pressure relieving device, shall be fitted with a threaded plug or end-cap. Blow-off valves shall be manufactured in accordance with this specification. Ball valves without spindle extensions shall be provided with bottom tapping for drainage of the valve body and tapping for pressure relieving. The tapping for drainage and pressure relieving may be the same depending on design.
114
Locking Device (para. 2.14 of API 6D). Valves with spindle extensions shall be furnished with locking device located on the top of the valve spindle for locking the ball or plug in open and closed position.
3.0 Materials API 6D Section 3 Body, Bonnet Cover, End Flange and Welding End (para. 3.1 of API 6D). Material according to table 3.1 or an approved equivalent shall be used. Material specifications selected by the manufacturer shall be approved by the Owner or his Representative. Nodular cast iron shall not be used except for manufacturing of balls and plugs.
Chemical Composition. The basic requirements for chemical composition for welding ends are as follows: C < 0.21% (Heat analysis) CE < 0.40% (Heat analysis) Calculated as CE = C + Mn/6 + 0.04 Mechanical Requirements. The basic requirements for mechanical properties are as follows: - Specified minimum yield strength
241 N/mm2
- Ratio between actual yield strength and ultimate tensile strength shall be
0.85
- Fracture toughness testing shall be executed in accordance with ASTM A 370, chapter V. notch. Test temperature highest as stated in D5458 for materials with residual stresses or at -20°C. Required values for full size transverse specimens not less than the following: Material with SMYS < 300 N/mm2 Min. average of 3 tests = 27 Joule Lowest single valve not less than 75 % of min. average. Material with SMYS
300 N/mm2
Min. average of 3 tests = 40 Joule Lowest single valve not less than 75t of min. average. If the width of the test specimen is less than 10 mm then the measured toughness shall be corrected using the formula:
115-
2
CT. = 80 mm • measured toughness/a CT. = Corrected toughness a
= Specimen's cross-sectional area below the notch (mm2)
Longitudinal specimens will be permitted on pipe dimensions up to and including 6 5/8". Optional Non-destructive Examination. Non-destructive examination of pressure containing parts such as body, bonnet, cover, welding ends and all assembly welds shall be executed. The test method shall be either x-ray, ultrasonic, magnetic particle or dye penetrant examination. Depending on valve design, manufacturing method, wall thickness etc. isotopes may be used. The method of non-destructive examination shall be subject to approval by the Owner. The manufacturer may propose alternative standards for execution and acceptance criteria, these standards shall be subject to approval by the Owner. Personnel for non-destructive examination shall be qualified in accordance with Nordtest, DGZfP or ASNT. If ASNT certification is used written practice for certification of NDT personnel shall be available. The inspection personnel shall at least be qualified for level I and under responsibility and supervision of at least a level n person. Material for pressure containing parts shall be fracture toughness tested in accordance with para. 3.1.2 of this specification.
REFERENCES [1] ASME Guide for Transmission and Distribution Piping Systems. 1986 [2] AGA Distribution. 1990 [3] Recommendations on Transmission and Distribution Practice IGE/TD/4, Edition 2: 1981 [4] TISHLER, H.: Designing transmission and distribution system to minimise hazards. British Gas 1978. [5] Dr. TIHANYI László: Gázszállitás. Egyetemi jegyzet 1993. [6] Dr. CSETE Jenő: Gázelosztó hálózatok szimulációja. Gázipari Kézikönyv. 5.11.1984. [7] Dr. CSETE Jenő - FÜLÖP Lajos: Gázelosztó vezetékek méretezése. Gázipari Kézikönyv. 5.4.1984 [8] Material Specifications, Naturgas Midt-Nord, 1991
116
TARTALOMJEGYZÉK
Dr. Takács, G., Udvardi, G., Turzó, Z.: A segédgázos termelés korszerűsítésének lehetőségei az algyői mezőben Heinemann, Z., E., Ganzer, L.,J.: Adaptive grid and dual-time stepping for multi-purpose reservoir simulation models
3 11
Lakatos, 1., Lakatos-Szabó, J.,Munkácsi, I., Trömbőczky, S.: Profile correction in hydrocarbon reservoirs state-of-art and experiences at the Algyő field 27 Gesztesi, Gy., Dr. Mating, B„ Dr. Török, J., Dr. Tóth, J.: Flow of mobilized oil in surfactant enhances oil recovery 37 Ősz, Á.: Vízszintes fúrások kitörésvédelme
,
47
Keresztes, T., ősz, Á., Pugner, S.: Korszerű fúrásellenőrző és -irányító műszerkabinok a szénhidrogén-bányászatban
59
Bódi, T.: Gyűjtőrendszer optimális telepítési helyének meghatározása számítógéppel
69
Dr. Bobok, E., Dr. Navratil, L., Tőrök, A., Udvardi, G.: Nehézolajok vízágyas szállításának egyszerű matematikai modellje
79
Csete, J.: Gázelosztó rendszerek szimulációja a 90-es években
85
Tihanyi, L.: Az Olaj- és Gázmérnöki szak képzési tapasztalatai és perspektívái
95
Dr. Szilágyi, Zs.: Az új gázipari műszaki-biztonsági szabályozás szakmai, tudományos alapjai Komornoki, L„ P.: Increasing fh<» rapacity of 0.6 MPa working pressure gas distribution net, constucted from 1.6 MPa nominal pressure elements Sztermen, A.: Subjective and objective risk assessment
105 109 117
Eperjesi, L.: Vezetékszakadások esetén kiáramló gáz mennyiségének becslése a végtelen nagy tartály modelljével
125
Debreczeni, E.: Pneumatikus szállítással kombinált marófej kifejlesztése a Geotechnikai Berendezések tanszéken
133
Dr. Debreczeni, E., Sümegi, L: Vízsugaras vágási kísérletek a Geotechnikai Berendezések tanszéken
145
Patvaros,J.: Möglichkeiten zur vielsteigen Nutzung von flözen mit grossem MethangehalL
155
Dr. Vőneky, G.: Textilbetétes gumiheveder rugalmas deformációja
165
Jambrik, R.: Environmental effects of closing the non-ferrous ore mine of Gyöngyösoroszi
177
293
Lénán, L.: A Bükk-térség fenntartható vízkészlet-gazdálkodása
191
Mádai, F.: A bükki mészkövek szöveti fejlődése a nyomási ikeresedés vizsgálata alapján
201
Dr. Bán, M.: Hévizek karbonátos vízkőkiválásainak termikus vizsgálata
213
Kovács, Zs.: Miskolci felhagyott kőfejtők környezetföldtani értékelése
221
Dr. Egerer, F., Namesánszki, K.: Ércpörkölés technológiai folyamatának optimalizálása röntgendiffrakcióval
231
Dr. Egerer, F., Kósik, G., Namesánszki, K.: Hulladéklerakók környezetföldtani problémái (Egy ipari hulladéklerakó környezetföldtani hatásvizsgálata) Sándor, Cs., Kovács, B„ Szabó, /.; Süllyedés-számítás depóniatestek alatt
237 245
Dr. Somfai, A., Dr. Szalay Á., Dr. Bérczy, I.: Kőolajföldtani szempontú medenceanalízis Szűcs P., Robonyi, A.: An applicable formation damage model in sandstone petroleum reservoirs Turai, E.: Felszínközeli környezetszennyezések elektromágneses módszerekkel történő kimutathatóságának a vizsgálata Némedi Varga, Z.: A mecseki kőszénkutatás eredményessége
294
255
267 275 283