3.2. ANALYTICKÁ GEOMETRIE ROVINY
V této kapitole se dozvíte: •
jak popsat rovinu v třídimenzionáln ím p rosto ru;
•
jak analyzo vat v zájemn ou p olohu bodu a roviny včetně jejich vzd áleno sti;
•
jak analyzovat vzájemnou polohu p římky a roviny vč etně jejich v zdálenosti a odchylk y;
•
jak analyzo vat v zájemn ou p olohu dvou rovin včetně jejich vzdále no sti a odchylk y;
•
co je to průsečnice dvou rovin a jak ji u rčit.
Klíčová slova této kapitoly: rovina, parametrická rovnice roviny, obecná (normálová) rovnice rovi ny, normálový vektor, vzájemná poloha bodu a roviny, vzdálenost bodu a roviny, vzájemná poloha přímky a roviny, vzdálenost přímky a roviny,.odchylka přímky a roviny, vzájemná poloha dvou rovin, vzdálenost dvou rovin,.odchylka dvou rovin, průsečnice rovin. Čas potřebný k prostudování učiva kapitoly: 0,5 + 1,0 hodiny (teorie + řešení příkladů )
V této kapitole pracujeme výhradně v třídimenzionálním prostoru a v kartézských souřadnicích. Parametrická rovnice roviny. Parametrická rovnice roviny v prostoru má tvar r = a + t ⋅ (b − a) + s ⋅ (c − a ) , kde r je polohový vektor libovolného bodu X roviny, a , b , c jsou polohové vektory tří různých pevně zvolených bodů A, B, C (určujících rovinu) a t , s ∈ R jsou parametry, probíhající všechny reálné hodnoty. Vektory u ≡ b − a , v ≡ c − a jsou směrové vektory přímek AB, AC, ležících v dané rovině. Uvedená vektorová rovnice obsahuje v sobě tři skalární rovnice xi = ai + t ( bi − ai ) + s ( ci − ai ) , i = 1, 2, 3 pro souřadnice bodů X, A, B, C. Obecná rovnice roviny. Obecnou (normálovou) rovnicí roviny v prostoru je rovnice tvaru ax + by + cz + d = 0 , vektorově n ⋅ r + d = 0 , kde a, b, c, d ∈ R , a, b nebo c je různé od nuly a x, y, z ∈ R jsou souřadnice libovolného bodu přímky a vektor r = ( x, y, z ) jeho polohový vektor. Vektor n ≡ ( a, b, c ) je kolmý na vektory u , v (možno se přesvědčit skalárním součinem), tudíž je kolmý k celé rovině a nazývá se normálovým vektorem roviny. Obecnou rovnici roviny lze odvodit z parametrického vyjádření vyloučením parametrů t, s. Vzájemná poloha bodu a roviny. Bod P je prvkem roviny ρ ( P ∈ ρ ) právě tehdy, pokud jeho souřadnice vyhovují rovnici této roviny. Vzdálenost bodu P = ( xP , yP , z P ) od roviny ρ : ax + by + cz + d = 0 je dána vzorcem d ( P, ρ ) =
axP + byP + cz P + d a 2 + b2 + c2
Vzájemná poloha přímky a roviny. Přímka p může k rovině ρ zaujímat tyto polohy:
.
a) p je rovnoběžná s ρ a p ∩ ρ ≠ {φ } , pak p patří do ρ , tzn. každý bod přímky p je i bodem roviny ρ (stačí to dokázat pro dva body); b) p je rovnoběžná s ρ a p ∩ ρ = 0 , tzn. přímka p a rovina ρ nemají žádný společný bod; c) p je různoběžná s ρ , pak platí p ∩ ρ = {P} , tzn. přímka p protíná rovinu ρ v jediném bodě P. Vyšetřit vzájemnou polohu roviny a přímky můžeme následovně. Podle skalárního součinu směrového vektoru přímky a normálového vektoru roviny zjistíme, zda je přímka rovnoběžná s rovinou (skalární součin roven nule) nebo ne (pak je různoběžná). Pokud je rovnoběžná, zvolíme libovolný bod přímky a zjistíme, zda patří také do roviny, a podle toho rozhodneme, zda je přímka částí roviny nebo nikoliv. Vzdálenost přímky od roviny s ní rovnoběžné je rovna vzdálenosti libovolného bodu této přímky od dané roviny. u
n α ρ
γ = π/2 - α
p Odchylka přímky p od roviny ρ je doplňkový úhel γ k úhlu α sevřenému směrovým vektorem přímky a normálovým vektorem roviny, tudíž u p ⋅nρ π sin γ = sin − α = cos α = . u p ⋅ nρ 2 Vzájemná poloha dvou rovin v prostoru. Nechť jsou dány dvě roviny ρ : n ρ ⋅ r + d ρ = 0 , δ : nδ ⋅ r + dδ = 0 . Pak roviny jsou a) totožné, je-li n ρ = k ⋅ nδ a zároveň d ρ = k ⋅ dδ ; b) rovnoběžné různé, je-li n ρ = k ⋅ nδ a zároveň d ρ ≠ k ⋅ dδ ; c) různoběžné, jestliže normálové vektory n ρ , nδ jsou nekolineární. Vzdálenost dvou rovnoběžných rovin je rovna vzdálenosti libovolného bodu jedné roviny od druhé roviny. Odchylka dvou rovin je dána úhlem α , který svírají jejich normálové vektory. Spočítáme nejlépe standardně přes skalární součin těchto vektorů:
cos α =
nδ ⋅ n ρ nδ ⋅ n ρ
.
Průsečnice různoběžných rovin. Průsečnicí dvou různoběžných rovin je přímka, kterou lze najít různými způsoby. Např. můžeme najít dva body průsečnice (např. řešením soustavy obecných rovnic obou rovin) a pak napsat parametrickou rovnici přímky, určené těmito body. Nebo stačí najít jediný bod průsečnice a její směrový vektor určit jako vektorový součin normálových vektorů obou rovin. Průsečnice musí být totiž kolmá k oběma normálovým vektorům, protože je částí obou rovin.
Shrnutí kapitoly: Rovinu v třídimenzionálním prostoru popisujeme parametrickou rovnicí r = a + t ⋅ ( b − a ) + s ⋅ ( c − a ) s dvěma parametry t , s ∈ R nebo obecnou rovnicí ax + by + cz + d = 0 , (vektorově n ⋅ r + d = 0 ). Vzájemnou polohu bodu a roviny určíme snadno podle toho, zda souřadnice bodu vyhovují rovnici roviny nebo nikoliv. Vzdálenost bodu od roviny lze spočítat snadno podle jednoduchého vzorce, analogického vzorci pro výpočet vzdálenosti bodu a přímky v rovině. Přímka a rovina mohou být navzájem rovnoběžné a různoběžné, v prvním případě navíc přímka může a nemusí být částí roviny. O vzájemné poloze rozhodneme pomocí směrového vektoru přímky, normálového vektoru roviny a průniku obou útvarů. Vzdálenost přímky od roviny s ní rovnoběžné určíme snadno jako vzdálenost libovolného bodu přímky od této roviny. Odchylku přímky od roviny definujeme jako doplněk do π úhlu mezi směrovým vektorem 2 přímky a normálovým vektorem roviny. Lze ji spočítat jednoduchým vzorcem. Vzájemná poloha dvou rovin může být trojího druhu. Roviny mohou být totožné, rovnoběžné různé a různoběžné. Polohu vyšetříme snadno využitím polohových vektorů rovin a průniku obou útvarů. Vzdálenost rovnoběžných rovin opět snadno vypočteme jako vzdále nost libovolného bodu jedné roviny od druhé roviny. Odchylku dvou rovin počítáme standardně jako úhel jejich normálových vektorů. Průnikem dvou různoběžných rovin je přímka zvaná průsečnice. Tato přímka musí být nutně kolmá k normálovým vektorům obou rovin.
Otázky: •
Jaký mi rov nicemi pop isujeme rovinu v třírozměrn ém p ro sto ru?
•
Formulu jte parametrick ou rovnici rovin y. Po ro vnejte ji s p arametrickou rovnicí přímky.
•
Formulu jte obecnou rovnici roviny . Proč se tato rovn ice nazývá také no rmálovou ? Po rov nejte ji s o becnou rovnicí přímky v rovině.
•
Jako u v zájemnou polohu mohou mít b od a rovina? Jak ji určíme?
•
Jakým v zo rcem po čítáme v zdáleno st bodu a ro viny?
•
Jakou vzájemn o u po loh u mo hou mít p římk a a rovina? Jak ji u rčíme ?
•
Jak počítáme vzd álenost p římk y a rovin y s n í rovnoběžn é?
•
Jak je defin ována a jak počít áme odch ylku přímky a roviny?
•
Jakou vzájemnou polohu mohou mít d vě rovin y? Jak ji určíme?
•
Jak počítáme vzdálenost d vou ro vn oběžných ro vin?
•
Jak počítáme odc h ylku dvou rovin?
•
Co je to průsečnice dvou rovin a jaké má v lastnosti? Jak b yste ji n alezli?
Příklad 1. Napište obecnou rovnici roviny, určené body A = [1, 0, 2] , B = [0, 2, 3] , C = [4, 0, 0] . Návod. Řešte jednak vyloučením parametrů z parametrického tvaru, jednak výpočtem normálového vektoru užitím vektorového součinu. Příklad 2. Vypočtěte vzdálenosti dvojic geometrických útvarů: a) A = [3, −2, 1] , ρ: 2 x − 3 y + 3z − 1 = 0 ; b) p: r = ( 3, −5, 2 ) + t ( 4, 2, −3) , ρ: x − 2 y − 4 z + 6 = 0 ; c) ρ: − 2x + y − 4 z + 3 = 0 , δ : 6x − 3 y + 12 z − 5 = 0 .
Příklad 3. Vyšetřete vzájemnou polohu roviny ρ : x + y − 2 = 0 a roviny δ : x − 2 y + 3 z = 0 . Určete případně také jejich průsečnici.
Řešení příkladů: 1) Obecná rovnice: 4 x − y + 6 z − 16 = 0 . Pozor! Váš správný výsledek může být odlišný od uvedeného, musí s ním být ale ekvivalentní. 2a) d ( A, ρ ) = 14 ; 2b) d ( p, ρ ) = 0 (jsou různoběžné!); 2c) d ( ρ , δ ) =
4 . 189
3) Roviny jsou různoběžné, odchylka α ≈ 79,1° , průsečnicí je přímka p : r = ( 43 , 23 , 0 ) + t ( −1, 1, 1) (pozor, tvar závisí na volbě parametru).
Další zdroje: 1. POLÁK, J. Přehled středoškolské matematiky. 6. vyd. Praha: Prometheus, 1997. 2. POLÁK, J. Středoškolská matematika v úlohách I. 1. vyd. Praha: Prometheus, 1996. 3. POLÁK, J. Středoškolská matematika v úlohách II. 1. vyd. Praha: Prometheus, 1996. 4. REKTORYS, K. a spol. Přehled užité matematiky. 6. přepr. vyd. Praha: Prometheus, 1995.
ZÁVĚR: [Tady klepněte a pište]