3. ORBIT KEPLERIAN AS 2201 Mekanika Benda Langit
Monday, February 17, 2014
1
3.1 PENDAHULUAN Mekanika Newton pada mulanya dimanfaatkan untuk menentukan gerak orbit benda dalam Tatasurya. Misalkan Matahari bermassa 𝑀 pada titik pusat koordinat sistem. Planet bermassa 𝑚 berada pada vektor posisi 𝑟 . Bila dianggap bentuk orbit planet mengelilingi Matahari adalah lingkaran, maka gaya gravitasi yang bekerja pada sistem tersebut dinyatakan sebagai: 𝑓=−
𝐺𝑀𝑚 𝑟 𝑟3
Dengan 𝑀 ≫ 𝑚, dan 𝑓 = 𝑑2 𝑟 𝑑𝑡 2
=−
(3.1) 𝑑2 𝑟 , 𝑑𝑡 2
sehingga:
𝐺𝑀 𝑟 𝑟3
(3.2)
Monday, February 17, 2014
2
3.2 HUKUM KEPLER •
Coba sebutkan atau tuliskan bagaimana Hukum Kepler!
•
Turunkan atau nyatakan Hukum Kepler dari pers. (3.2)
Monday, February 17, 2014
3
3.3 HUKUM KONSERVASI Gravitasi adalah gaya konservatif, sehingga gaya gravitasi dapat dituliskan sebagai: 𝑓 = −𝛻𝑈
(3.3)
Dengan energi potensial 𝑈 𝑟 planet dalam medan gravitasi Matahari adalah: 𝑈 𝑟 =−
𝐺𝑀𝑚 𝑟
(3.4)
Energi total planet merupakan kuantitas tetap (kembali ke bab 1.4), dengan perkataan lain: ℇ=
𝑣2 2
−
𝐺𝑀 𝑟
(3.5)
ℇ adalah energi total per satuan massa, tetap sepanjang waktu, dan 𝑣 =
𝑑𝑟 𝑑𝑡
Gravitasi juga merupakan gaya pusat.
Monday, February 17, 2014
4
Momentum sudut sebuah planet adalah kekal (lihat sub-bab 1.5). Dengan perkataan lain: ℎ=𝑟×𝑣
(3.6)
Yaitu momentum sudut per satuan massa, konstan sepanjang waktu. Jika kita ambil produk skalar persamaan di atas dengan 𝑟 :
ℎ∙𝑟 =0
(3.7)
yang merupakan persamaan bidang yang melalui titik asal, dengan garis normalnya sejajar ℎ. Kalau ℎ merupakan vektor konstan, semua titik mempunyai arah yang sama gerak planet kita dalam 2 dimensi, misalnya pada bidang 𝑥 − 𝑦.
Monday, February 17, 2014
5
3.4 KOORDINAT POLAR Kita turunkan posisi planet pada koordinat kartesian (bidang 𝑥 − 𝑦) atau koordinat polar (𝑟, 𝜃) seperti gambar 3.1. 𝑟=
𝑥 2 + 𝑦 2 , dan 𝜃 = tan−1
𝑦 𝑥
x
𝑟
Definisikan vektor satuan: 𝑒𝑟 ≡ 𝑟 , dan 𝑒𝜃 ≡ 𝑒𝑧 × 𝑒𝑟 y
Dalam koordinat kartesian, komponen 𝑒𝑟 dan 𝑒𝜃 adalah: 𝑒𝑟 = cos 𝜃 , sin 𝜃
(3.8)
𝑒𝜃 = − sin 𝜃 , cos 𝜃
(3.9)
Jadi: 𝑟 = 𝑟𝑒𝑟
(3.10)
Gambar 3.1 koordinat polar x y
Monday, February 17, 2014
6
Maka, kecepatan planet menjadi: 𝑣=
𝑑𝑟 𝑑𝑡
= 𝑟 𝑒𝑟 + 𝑟𝑒𝑟
(3.11)
Turunan persamaan (3.8): 𝑒𝑟 = 𝜃 − sin 𝜃 , cos 𝜃 = 𝜃 𝑒𝜃
(3.12)
Sehingga: 𝑣 = 𝑟 𝑒𝑟 + 𝑟𝜃 𝑒𝜃
(3.13)
Percepatan gerak planet: 𝑎=
𝑑𝑣 𝑑𝑡
=
𝑑2 𝑟 𝑑𝑡 2
= 𝑟 𝑒𝑟 + 𝑟 𝑒𝑟 + 𝑟 𝜃 + 𝑟𝜃 𝑒𝜃 + 𝑟𝜃 𝑒𝜃
(3.14)
𝑒𝜃 = 𝜃 − cos 𝜃, − sin 𝜃 = −𝜃 𝑒𝑟
(3.15)
𝑎 = 𝑟 − 𝑟𝜃 2 𝑒𝑟 + 𝑟𝜃 + 2𝑟 𝜃 𝑒𝜃
(3.16)
Monday, February 17, 2014
7
Jadi persamaan gerak planet (3.2) dapat dituliskan sebagai: 𝑎 = 𝑟 − 𝑟𝜃 2 𝑒𝑟 + 𝑟𝜃 + 2𝑟 𝜃 𝑒𝜃 = −
𝐺𝑀 𝑒 𝑟2 𝑟
(3.17)
Dengan 𝑒𝑟 dan 𝑒𝜃 saling tegak lurus. Persamaan gerak pada arah radial: 𝑟 − 𝑟𝜃 2 = −
𝐺𝑀 𝑟2
(3.18)
Persamaan gerak pada arah tangensial:
𝑟𝜃 + 2𝑟 𝜃 = 0
(3.19)
Monday, February 17, 2014
8
3.5 HUKUM II KEPLER Persamaan gerak tangensial planet (3.19) bila dikalikan dengan 𝑟 akan menghasilkan: 𝑟 2 𝜃 + 2𝑟𝑟 𝜃 = 0
(3.20)
Tidak lain adalah : 𝑑 𝑟2𝜃 𝑑𝑡
=0
𝑟 2 𝜃 = ℎ konstan
(3.21) (3.22)
Dengan ℎ adalah besar vektor ℎ (3.6), yang berarti bahwa momentum sudut tetap selama dalam orbitnya, karena gravitasi sebagai gaya pusat. Andaikan vektor radius menghubungkan planet dengan pusatnya (Matahari) menyapu sudut sebesar 𝛿𝜃 antara waktu 𝑡 dan 𝑡 + 𝛿𝑡 (gambar samping), maka pendekatan untuk luas daerah yang disapu tersebut sebesar:
Monday, February 17, 2014
9
1
𝛿𝐴 ≅ 2 𝑟 2 𝛿𝜃
(3.23)
(hampir mendekati luas segitiga dengan alas 𝑟𝛿𝜃 dan tinggi 𝑟). Luas daerah yang disapu per satuan waktu, dapat dinyatakan dengan: 𝑑𝐴 𝑑𝑡
𝑟 2 𝛿𝜃 𝛿𝑡→0 2𝛿𝑡
= lim
=
𝑟 2 𝛿𝜃 2 𝛿𝑡
=
ℎ 2
(3.24)
.... Hukum II Kepler konsekuensi dari hukum ini: momentum sudut total planet adalah kekal!
10
HUKUM I KEPLER Persamaan gerak radial planet (3.18) dikombinasikan dengan pers (3.22) memberikan: 𝑟−
ℎ2 𝑟3
Bila 𝑟 = 𝑢 𝑟=− 𝑟=
𝐺𝑀 𝑟2 −1
=− 𝑢 𝑢2
(3.25)
, maka:
= −𝑟 2
𝑑2𝑢 −ℎ 2 𝜃 𝑑𝜃
=
𝑑𝑢 𝑑𝜃 𝑑𝜃 𝑑𝑡
= −ℎ
𝑑𝑢 𝑑𝜃
(3.26)
2 2 2𝑑 𝑢 −𝑢 ℎ 𝑑𝜃 2
(3.27)
Pers. (3.25) dapat dinyatakan dalam bentuk linier: 𝑑2𝑢 𝑑𝜃 2
+𝑢 =
𝐺𝑀 ℎ2
(3.28)
Solusi umum dari persamaan di atas adalah (lihat kembali kalkulus ya!!!): 𝐺𝑀 𝑢 𝜃 = 2 1 − 𝑒 cos 𝜃 − 𝜃0 ℎ
𝑒 dan 𝜃0 adalah konstanta sebarang.
𝑟 − 𝑟𝜃 2 = −
𝐺𝑀 𝑟2
𝑟 2 𝜃 = ℎ KONSTAN
(3.18) (3.22)
(3.29)
Bisa kita buat 𝜃0 = 0 dengan merotasikan sistem koordinat kita terhadap sumbu-𝑧. Maka: 𝑟
𝑐 𝑟 𝜃 = 1−𝑒 cos 𝜃
dengan 𝑟𝑐 =
ℎ2 𝐺𝑀
Persamaan irisan kerucut! •
𝑒 = 1 ... Persamaan untuk parabola
•
𝑒 < 1 ... Persamaan untuk elips
•
𝑒 > 1 ... Persamaan untuk hiperbola
Planet tidak bisa mengorbit dengan orbit parabola atau hiperbola, mengapa?
(3.30) (3.31)
HUKUM III KEPLER Telah kita ketahui, bahwa planet terhubung dengan titik pusat, menyapu luas daerah yang 𝑑𝐴 ℎ sama untuk selang waktu yang sama, dengan kecepatan 𝑑𝑡 = 2 . Kita juga tahu, bahwa planet mengorbit Matahari dalam orbit elips. Jika 𝑎 dan 𝑏 menunjukkan semimajor axis (setengah sumbu panjang) dan semiminor axis (setengah sumbu pendek), maka luas elips adalah 𝐴 = 𝜋𝑎𝑏. Bila vektor radius menyapu seluruh permukaan elips dalam periode waktu 𝑇, maka: 𝑇=
𝐴 𝑑𝐴 𝑑𝑡
=
2𝜋𝑎𝑏 ℎ 𝑟
Dengan 𝑎 = 1−𝑒𝑐 2 , dan 𝑏 = 𝑇2
=
4𝜋 2 𝑎 3 𝐺𝑀
(3.32) 𝑟𝑐 1−𝑒 2
= 1 − 𝑒 2 𝑎, maka: (3.33)
Dengan perkataan lain, kwadrat periode orbit sebanding dengan pangkat tiga setengah sumbu panjang orbitnya.
Jarak terdekat planet dengan bintangnya (jarak perihelion), adalah: 𝑟
𝑐 𝑟𝑝 = 1+𝑒 =𝑎 1−𝑒
(3.34)
Jarak terjauh planet terhadap bintangnya (jarak aphelion), adalah: 𝑟
𝑐 𝑟𝑎 = 1−𝑒 =𝑎 1+𝑒
(3.34)
Atau, setengah sumbu panjang orbit merupakan jarak rata-rata perihelion dan aphelion: 𝑎=
𝑟𝑝 +𝑟𝑎 2
(3.35)
Eksentrisitas atau ke-lonjong-an orbit dinyatakan dengan: 𝑟𝑎 −𝑟𝑝
𝑒=𝑟
𝑎 +𝑟𝑝
(3.36)
yang merupakan penyimpangan orbit dari orbit lingkaran. 𝑒 = 0 menunjukkan bahwa orbit berbentuk lingkaran.
Monday, February 17, 2014
14
Hukum III Kepler dapat dengan mudah dituliskan sebagai: 𝑎 1−𝑒 2
𝑟 = 1−𝑒 cos 𝜃 𝑟 2𝜃 = 1 − 𝑒 2
(3.38) 1 2 𝑛𝑎 2
(3.39)
𝐺𝑀 = 𝑛 2 𝑎 3
(3.40),
𝑎 merupakan setengah sumbu panjang orbit, 𝑒 adalah eksentrisitas, dan 𝑛 = rata kecepatan sudut orbit.
2𝜋 𝑇
Monday, February 17, 2014
adalah rata-
15
RINGKASAN: 1. Eksentrisitas 𝑒: seberapa lonjong! 0<𝑒<1 𝑒 = 0: orbit lingkaran 2. Setengah sumbu panjang orbit 𝑎: seberapa besar! 3. Setengah sumbu pendek orbit 𝑏 4. Jarak planet terhadap Matahari: 𝑟 5. Semi-latus rectum 𝑝 6. Salah satu titik fokusnya merupakan posisi Matahari
7. θ = 0°, 𝑟 = 𝑟𝑚𝑖𝑛 (perihelion) dan θ = 180°, 𝑟 = 𝑟𝑚𝑎𝑥 (aphelion). 𝑝 𝑟= 1 + 𝑒 𝑐𝑜𝑠 𝜃 Untuk planet yang mengorbit Matahari, 𝑟 adalah jarak planet ke Matahari dan 𝜃 adalah sudut yang dibentuk antara planet pada suatu posisi terhadap jarak terdekatnya dengan Matahari. Matahari berada di vertex.
3.8 ENERGI ORBIT Bagaimana dengan orbit asteroid dan komet? Dari pers. (3.30), orbit asteroid dan komet dapat berupa elips, parabola atau hiperbola. Dengan bantuan (3.5) dan (3.13), energi total per satuan massa dari benda-benda yang mengorbit Matahari, didapat: ℇ=
𝑟 2 +𝑟 2 𝜃 2 2
−
𝐺𝑀 𝑟
(3.41)
Dari pers. (3.22), (3.26) dan (3.31): ℇ=
𝑑𝑢 2 𝑑𝜃
ℎ2 2
+ 𝑢 2 − 2𝑢𝑢𝑐
(3.42)
dengan 𝑢 = 𝑟 −1 dan 𝑢𝑐 = 𝑟𝑐 −1 .
Dengan bantuan pers (3.30), didapat: 𝑢 𝜃 = 𝑢𝑐 1 − 𝑒 cos 𝜃
(3.43)
Dua persamaan di atas, jika dikombinasikan dengan pers. (3.31) dan (3.34) akan menghasilkan: 𝑟𝑐 1−𝑒 COS 𝜃 𝑣2 𝐺𝑀 − 2 𝑟
𝑟 𝜃 =
(3.30)
ℇ=
(3.5)
𝑣 = 𝑟 𝑒 𝑟 + 𝑟𝜃 𝑒 𝜃 𝐺𝑀𝑚 𝑈 𝑟 =− 𝑟
(3.13) (3.4)
Monday, February 17, 2014
17
ℇ=
𝑢𝑐 2 ℎ 2 2
𝐺𝑀
𝑒 2 − 1 = 2𝑟 𝑒 − 1 𝑝
(3.44)
Untuk: •
orbit eliptik (𝑒 < 1), energi total ℇ < 0,
•
orbit parabola (𝑒 = 1), energi total ℇ = 0,
•
orbit hiperbola (𝑒 > 1), energi total ℇ > 0.
Itu sebabnya mengapa untuk sistem yang konservatif, energi potensialnya selalu menuju 0 (pers. 3.4), dan kita berharap bahwa orbit-orbit yang terikat memiliki energi total negatif, sedangkan orbit yang tidak terikat memiliki energi total positif. Orbit elips (terikat) memiliki energi total negatif, tetapi orbit hiperbola memiliki energi total positif. Orbit parabola sebenarnya terikat karena yang bekerja hanya gravitasi Matahari, dan bisa lepas hanya oleh gravitasi Matahari, karena itu energi total orbit parabola = 0.
Monday, February 17, 2014
18
Untuk orbit eliptik, maka ℇ = −
𝐺𝑀 2𝑎
(3.45)
dengan 𝑎 adalah setengah sumbu panjang orbit yang terbatas. Bagaimana dengan satelit buatan?
Andaikan ada sebuah satelit buatan mengelilingi Matahari (atau Bumi). Saat di perihelion, 𝑟 = 0, dari persamaan (3.41) dan (3.44) menjadi: 𝑣𝑡 𝑣𝑐
= 1+𝑒
(3.46)
Dengan 𝑣𝑡 = 𝑟𝜃 merupakan kecepatan tangensial satelit, dan 𝑣𝑐 =
𝐺𝑀 𝑟𝑝
adalah kecepatan
tangensial yang diperlukan untuk menjaga agar orbit tetap lingkaran saat di perihelion. Saat di aphelion, 𝑟 = 0, dan persamaan (3.41) dan (3.44) menjadi: 𝑣𝑡 𝑣𝑐
= 1−𝑒
Dengan 𝑣𝑐 =
(3.47) 𝐺𝑀 𝑟𝑎
adalah kecepatan tangensial yang diperlukan untuk menjaga agar orbit
tetap lingkaran saat di aphelion. Monday, February 17, 2014
19
Anggap bahwa awalnya orbit satelit yang akan kita luncurkan berbentuk lingkaran dengan radius 𝑟1 dan berubah orbitnya tetap berbentuk lingkaran tetapi dengan radius 𝑟2 , dengan 𝑟2 > 𝑟1 . Hal itu dapat dicapai dengan membuat orbit sementara berbentuk lingkaran dengan jarak perihelion adalah 𝑟1 dan aphelionnya 𝑟2 . Dari persamaan (3.47), eksentrisitas orbit satelit tersebut adalah: 𝑒=
𝑟2 −𝑟1 𝑟2 +𝑟1
(3.48)
Monday, February 17, 2014
20
Dari pers. (3.46), kita bisa mengubah orbit satelit kita dari orbit lingkaran menjadi orbit elips dengan meningkatkan kecepatan tangensialnya, yaitu dengan faktor: 𝛼1 = 1 + 𝑒
(3.49)
Selanjutnya kita harus membuat setengah orbit satelit sehingga mencapai jarak aphelion, lalu meningkatkan kecepatan tangensial dengan faktor: 𝛼2 =
1 1−𝑒
(3.50)
Monday, February 17, 2014
Sekarang satelit kembali memiliki orbit lingkaran dengan setengah sumbu panjang orbit 𝑟2 (lihat gambar samping). Bagaimana kalau kita mau mengubah orbitnya menjadi hiperbola?
21
3.9 KEPLER PROBLEM Menurunkan orbit sebuah benda mengelilingi Matahari sebagai fungsi waktu dalam koordinat radial dan sudut (𝑟) dan (𝜃). Misalkan sebuah benda berada dalam orbit Keplerian saat mengelilingi Matahari, titik perihelionnya 𝑟 = 𝑟𝑝 dan 𝜃 = 0 pada 𝑡 = 𝜏. (𝜏 adalah saat benda tersebut melintas di perihelion). 𝑟𝑝 1+𝑒
𝑟 = 1+𝑒 cos 𝜃
(3.51)
Dan ℇ=
𝑟2 2
ℎ2
+ 2𝑟 2 −
𝐺𝑀 𝑟
(3.52)
Dengan eksentrisitas 𝑒, momentum sudut per satuan massa ℎ = 𝑒−1 energi per satuan massa ℇ = 𝐺𝑀 2𝑟
𝐺𝑀𝑟𝑝 1 + 𝑒 , dan
𝑝
Jadi 𝑟 2 = 𝑒 − 1
𝐺𝑀 𝑟𝑝
− 𝑒+1
𝑟𝑝 𝐺𝑀 𝑟2
+
2𝐺𝑀 𝑟
(3.53)
Monday, February 17, 2014
22
Akar kwadrat dan diferensiasikan: 𝑟 𝑟𝑝
𝑟 𝑑𝑟 2𝑟+ 𝑒−1
𝑟2 − 𝑟𝑝
𝑒+1 𝑟𝑝
1 2
= 𝐺𝑀 𝑡 − 𝜏
(3.54)
Mengingat akan karakter orbit elips: 0 < 𝑒 < 1. Sekarang tulis: 𝑟=
𝑟𝑝 1−𝑒
1 − 𝑒 cos Ε
(3.55)
Dengan Ε adalah anomali eliptik, dan ternyata Ε merupakan sudut antara −𝜋 dan 𝜋. 𝑑𝑟 =
𝑟𝑝 1−𝑒
𝑒 sin 𝐸 𝑑𝐸
2𝑟 + 𝑒 − 1
𝑟2 𝑟𝑝
(3.56)
− 𝑒 + 1 𝑟𝑝 =
𝑟𝑝 1−𝑒 𝑟𝑝
𝑒 2 1 − 𝑒 cos 2 Ε
= 1−𝑒 𝑒 2 sin2 Ε
(3.57)
Monday, February 17, 2014
23
Monday, February 17, 2014
24
Persamaan Kepler Sehingga pers. (3.54) dapat dituliskan sebagai: Ε 0
1 − 𝑒 cos Ε 𝑑Ε =
Dengan 𝑎 =
𝑟𝑝 1−𝑒
𝐺𝑀 1 2 𝑎3
𝑡−𝜏
(3.58)
. Persamaan ini dapat diintegrasikan untuk mendapatkan:
Ε − 𝑒 sin Ε = ℳ
(3.59)
ℳ =𝑛 𝑡−𝜏
(3.60)
ℳ adalah anomali rata-rata, 𝑛 = 2𝜋
𝑎3 𝐺𝑀
1 2
2𝜋 𝑇
adalah kecepatan sudut rata-rata, 𝑇 =
adalah periode orbit.
Pada titik perihelion, ℳ = 0, dan di aphelion, ℳ = 𝜋. Sudut 𝜃, biasanya diturunkan dari posisi sudut benar objek yang mengorbit, atau bisa disebut juga sebagai anomali benar.
Monday, February 17, 2014
25
Penyelesaian persamaan Kepler haruslah secara numerik. Jika ada n-benda, maka: Ε𝑛+1 = ℳ + 𝑒 sin Ε𝑛
(3.61)
Skema iterasi di atas sangat cepat, kecuali pada lim 𝑒 → 1 Persamaan (3.51)dan (3.55) dapat dikombinasikan menjadi: cos Ε−𝑒
cos 𝜃 = 1−𝑒 cos Ε 1 + cos 𝜃 =
𝜃 2𝑐𝑜𝑠 2 2
1 − cos 𝜃 =
𝜃 2𝑠𝑖𝑛2 2
tan
𝜃 2
=
(3.62) Ε
=
2 1−𝑒 𝑐𝑜𝑠 2 2 1−𝑒 cos Ε
=
2 1+𝑒 𝑠𝑖𝑛 2 2 1−𝑒 cos Ε
(3.63)
Ε
1+𝑒 1 2 Ε tan 1−𝑒 2
(3.64), maka: (3.65)
Monday, February 17, 2014
26
Untuk orbit elips, solusi dari masalah Kepler akan tereduksi menjadi solusi tiga persamaan berikut: Ε − 𝑒 sin Ε = ℳ
(3.66)
𝑟 = 𝑎 1 − 𝑒 cos Ε
(3.67)
tan
𝜃 2
=
1+𝑒 1 2 Ε tan 1−𝑒 2
Di sini, 𝑇 = 2𝜋
𝑎3 𝐺𝑀
1 2
dan 𝑎 =
(3.68) 𝑟𝑝 1−𝑒
. Jelas bahwa 𝑡 → 𝑡 + 𝑇 maka ℳ → ℳ + 2π,
Ε → Ε + 2π, dan 𝜃 → θ + 2π. Dengan perkataan lain, gerak benda tersebut periodik, dengan periode 𝑇.
Monday, February 17, 2014
27
Untuk orbit elips atau 𝑒 ≪ 1, persamaan (3.66) – (3.68) dapat diselesaikan dengan ekspansi deret dalam 𝑒: Ε = ℳ + 𝑒 sin ℳ +
𝑒2 sin 2ℳ 2
θ = ℳ + 2𝑒 sin ℳ + 𝑟 𝑎
= 1 − 𝑒 cos ℳ +
𝑒2 2
+
𝑒3 8
5𝑒 2 sin 2ℳ 4
+
3 sin 3ℳ − sin ℳ + ℴ 𝑒 4 𝑒3 12
1 − cos 2ℳ +
13 sin 3ℳ − 3sin ℳ + ℴ 𝑒 4 3𝑒 3 8
cos ℳ − cos 3ℳ + ℴ 𝑒 4
(3.69) (3.70) (3.71)
Untuk orbit hiperbola, 𝑒 = 1, maka didapat: 𝑃+
𝑃3 3
=
𝐺𝑀 2𝑟𝑝3
1 2
𝑡−𝜏
(3.72)
𝑟 = 𝑟𝑝 1 + 𝑃 2 tan
𝜃 2
(3.73)
= 𝑃, yaitu anomali parabolik −∞, ∞
(3.74)
Pada titik perihelion, 𝑃 = 0
Monday, February 17, 2014
28
Untuk orbit parabola, 𝑒 > 1, maka didapat: 𝑒 sinh 𝐻 − 𝐻 =
𝐺𝑀 1 2 𝑎3
𝑡−𝜏
(3.75)
𝑟 = 𝑎 𝑒 cos 𝐻 − 1
tan
𝜃 2
=
(3.76)
𝑒+1 1 2 𝐻 tanh 𝑒−1 2
(3.77)
𝐻 adalah anomali hiperbolik −∞, ∞ . Di titik perihelion, 𝐻 = 0.
Monday, February 17, 2014
29
3.10 ELEMEN ORBIT •
Elemen orbit geometri: • Setengah sumbu panjang orbit : 𝑎
• Eksentrisitas : 𝑒 •
Elemen orbit orientasi: • Inklinasi : 𝑖
• Bujur titik simpul naik : Ω • Argumen perihelion: 𝜔 •
Elemen orbit dinamik: • Periode : 𝑃
Gambar 3.1. Orbit planet secara umum
Monday, February 17, 2014
30
Elemen orbit dinyatakan juga dalam koordinat kartesian (𝑥, 𝑦, 𝑧) dengan Matahari berada di pusat koordinat. Bidang (𝑥, 𝑦) berimpit dengan bidang orbit, dan titik di sumbu-𝑥 menuju titik perihelion. Kita dapat menlakukan transformasi dari sistem (𝑥, 𝑦, 𝑧) ke sistem (𝑋, 𝑌, 𝑍) melalui 3 rangkaian rotasi sistem koordinat:
Monday, February 17, 2014
31
1. Rotasikan sumbu-𝑧 melalui sudut 𝜔 2. Sumbu baru yang diperoleh, dirotasikan melalui sudut I. Akan diperoleh sumbu baru ke-2. 3. Sumbu ke-2 ini dirotasikan sebesar Ω agar diperoleh sumbu-𝑧 baru. Dari teori standard untuk transformasi koordinat: 𝑋 cos Ω 𝑌 = sin Ω 𝑍 0
− sin Ω cos Ω 0
0 0 1
1 0 0
0 cos 𝑖 sin 𝑖
0 − sin 𝑖 cos 𝑖
cos 𝜔 sin 𝜔 0
− sin 𝜔 cos 𝜔 0
0 0 1
𝑥 𝑦 𝑧
(3.78)
Bila 𝑥 = 𝑟 cos 𝜃, y = 𝑟 sin 𝜃, 𝑧 = 0, maka: 𝑋 = 𝑟 cos Ω cos 𝜔 + 𝜃 − sin Ω sin 𝜔 + 𝜃 cos 𝑖
(3.79)
𝑌 = 𝑟 sin Ω cos 𝜔 + 𝜃 + cos Ω sin 𝜔 + 𝜃 cos 𝑖
(3.80)
𝑍 = 𝑟 sin 𝜔 + 𝜃 sin 𝑖
(3.81)
Monday, February 17, 2014
32
Jadi, orbit planet secara umum yang dinyatakan dalam persamaan (3.66) − (3.68) dan (3.79) − (3.81), mempunyai 6 buah parameter yang dinyatakan sebagai elemen orbit: • Setengah sumbu panjang orbit 𝑎 • Eksentrisitas 𝑒
• Saat melintas di perihelion 𝜏 • Sudut inklinasi 𝑖 • Titik bujur titik simpul naik Ω
• Argumen perihelion 𝜔 2𝜋 𝑎3 2
•
Sementara itu, kecepatan sudut orbit adalah 𝑛 =
(dalam rad/tahun) dan 𝑎 dalam au.
•
Kadang-kadang, argumen perihelion dinyatakan dalam 𝜛 = Ω + 𝜔 (atau Bujur perihelion)
Monday, February 17, 2014
33
Monday, February 17, 2014
34
Waktu melintas perihelion, 𝜏 kadang didefinisikan pada saat 𝑡 = 0, sehingga bujur rata-rata: 𝜆=𝜛+ℳ =𝜛+𝑛 𝑡−𝜏
(3.83)
Jika 𝜆0 adalah bujur rata-rata pada epoch 𝑡 = 0, maka: 𝜆 = 𝜆0 + 𝑛𝑡
(3.84)
Posisi heliosentrik sebuah planet (dilihat dari Matahari), lebih mudah dinyatakan dalam bujur ekliptika 𝜆 dan lintang ekliptika 𝛽 koordinat ekliptika dengan pusat Matahari! 𝑌
tan 𝜆 = 𝑋 sin 𝛽 =
(3.85) 𝑍
(3.86)
𝑋 2 +𝑌 2
Dengan (𝑋, 𝑌, 𝑍) adalah koordinat kartesian heliosentrik bagi planet.
Monday, February 17, 2014
35
3.11 SISTEM BINTANG GANDA Banyak terdapat bintang di galaksi kita merupakan sistem bintang ganda. Massa ke dua bintang dinyatakan dengan 𝑚1 dan 𝑚2 , dengan vektor posisi kedua bintang terhadap titik pusat massanya adalah 𝑟1 dan 𝑟2 . Harus diingat bahwa jarak ke dua bintang tersebut jauh lebih kecil dibanding jarak bintang terdekat tetangganya. Jadi ke dua bintang tersebut dapat dianggap sebagai sistem 2-benda yang dinamik.
Gaya gravitasi sistem bintang ganda: 𝑓=−
𝐺𝑚1 𝑚2 𝑟 𝑟3
(3.87)
Dengan 𝑟 = 𝑟2 − 𝑟1 dan massa tereduksi: 𝜇 = 𝑚1 𝑚2 𝑑 2 𝑟 = 𝑚1 +𝑚2 𝑑𝑡 2 𝑑2 𝑟 𝐺𝑀 = − 𝑟 𝑑𝑡 2 𝑟3
−
𝐺𝑚1 𝑚2 𝑟 𝑟3
, dengan 𝑀 = 𝑚1 + 𝑚2
𝑚1 𝑚2 𝑚1 +𝑚2
, maka 𝑓 =
𝑚1 𝑚2 𝑑 2 𝑟 , 𝑚1 +𝑚2 𝑑𝑡 2
sehingga
(3.88), (3.89) (3.2!)
Monday, February 17, 2014
36
Untuk koordinat polar, solusi dapat dinyatakan dalam : 𝑟 = 𝑟 cos 𝜃, 𝑟 sin 𝜃 , 0 Dengan 𝑟 = Dan
𝑑𝜃 𝑑𝑡
=
𝑎 1−𝑒 2
(3.92)
1−𝑒 cos 𝜃
ℎ 𝑟2
Dengan 𝑎 =
(3.91)
(3.93) ℎ2 1−𝑒 2 𝐺𝑀
(3.94)
Di sini, ℎ adalah konstan, dan bidang orbit berimpit dengan bidang 𝑥 − 𝑦. Bintang sekunder, memiliki orbit Keplerian yang eliptik, dengan setengah sumbu panjang orbit adalah 𝑎 dan eksentrisitas 𝑒 relatif terhadap bintang primer, demikian pula sebaliknya. Dari persamaan (3.33), kita dapatkan bahwa periode revolusi sistem bintang ganda ini adalah: 𝑇=
4𝜋 2 𝑎 3 𝐺𝑀
Monday, February 17, 2014
(3.95)
37
Jika 𝑛 = 𝑛=
2𝜋 , 𝑇
maka:
𝐺𝑀
(3.96)
𝑎3 2
Dalam kerangka inersial dengan pusat merupakan pusat sistem (disebut sebagai kerangka pusat massa), vektor posisi kedua bintang tersebut adalah: 𝑟1 = −
𝑚2 𝑟 𝑚1 +𝑚2
(3.97)
𝑚1 𝑟 1 +𝑚2
(3.98)
𝑟2 = − 𝑚
𝑚
Coba gambarkan skema orbit sistem bintang ganda bila 𝑚1 = 0.5 dan 𝑒 = 0.02 2
Monday, February 17, 2014
38