Změna skupenství - přehled Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/Vyuka/ Skupenství látek Látky se vyskytují ve třech skupenstvích – pevné, kapalné, plynné. Základní vlastnosti látek podle skupenství (opakování ze 6. třídy): Látky pevné – můžeme určovat tvrdost, křehkost, pružnost, tvárnost, barvu, špatně mění svůj tvar (výjimkou jsou sypké látky, které mění svůj tvar snadno jako kapaliny, proti kapalinám nemusí mít hladinu vždy vodorovně). Kapaliny – snadno mění svůj tvar, jsou téměř nestlačitelné, snad se dají dělit, mají hladinu vždy vodorovně, jsou tekuté. Plyny – dají se snadno stlačit, vždy vyplní celou nádobu, dají se snadno dělit, jsou tekuté. Uspořádání částic podle skupenství: Pevné látky Částice mají pevná místa a nemohou se od sebe vzdálit. Pevné látky dobře drží svůj tvar. Částice jsou blízko u sebe, není mezi nimi téměř žádné volné místo. Z toho také plyne, že mají stálý objem. Krystalické látky – částice jsou uspořádány do pravidelné mřížky, ve které se opakuje jeden vzor (sůl, led, diamant, tuha, kovy). Látky, ve kterých nejsou molekuly pravidelně uspořádány, jsou například plasty a sklo. Kapaliny Částice jsou blízko sebe tak, že se kapalina nedá téměř stlačit. V kapalinách po sobě částice volně kloužou, nemají žádné pevné místo. Molekuly jsou neuspořádané. Plyny Částice se volně pohybují, narážejí do sebe i na stěny nádoby. Síla, kterou tlačí vzduch v pneumatice na její stěny, je způsobena těmito nárazy částic vzduchu na stěny. Pokud plyn stlačíme, částice narážejí na stěnu častěji. Podobně je častější narážení, když plyn zahřejeme. Zvyšujeme tak tlak. Otázky: 1) Jak se nazývají tři skupenství vody? 2) V čem se shodují a v čem se od sebe liší led, voda a vodní pára? 3) Popiš následující příklady změn skupenství: vločka po dopadu na teplou ruku, kapka vody stříknutá na rozpálenou žehličku, ledová kostka vhozená do limonády, orosení skleničky, do které nalijeme vychlazenou minerálku. 4) Při vaření vody na čaj pozorujeme u ústí čajové konvice bílý obláček. V jakém skupenství je v tomto obláčku voda?
Tání a tuhnutí Tání V pevné látce jsou částice pevně uspořádány, každá částice má svoje místo, kolem kterého kmitá. Když pevnou látku zahříváme, částice kmitají rychleji. Při dostatečném zvýšení teploty se částice ze své pevné polohy utrhnou a začnou se volně pohybovat. V tento okamžik se začne pevná látka měnit na kapalnou. Tomuto ději říkáme tuhnutí a říkáme, že látka taje. Teplota tání – teplota, při které se pevná látka začne měnit na kapalnou. Tuhnutí Když kapalnou látku chladíme, začne se při určité teplotě tuhnout a měnit se na látku pevnou. Částice, které se volně pohybovaly, se při snižování teploty pohybují stále pomaleji až se k sobě přitáhnou a usadí se v určité poloze, kolem které pak kmitají. Z kapaliny se stává látka pevná. Tomuto ději říkáme tuhnutí, látka tuhne. Teplota tuhnutí – teplota, při které se kapalná látka začne měnit na pevnou. Teplota tání a tuhnutí je u krystalických látek stejná. Co se děje při tání? Pokus: Dáme do kádinky led a zahříváme. V okamžiku, kdy začne led tát, naměříme teplotu 0°C. Teplota zůstane 0°C po celou dobu, kdy je
v kádince ještě nějaký led. Jakmile je všechen led přeměněn na vodu, začne se teplota zvyšovat. Teplota se během přeměny nezvyšuje, všechno dodávané teplo se spotřebuje na změnu skupenství. Graf průběhu tání ledu – teplota stoupá až do bodu 0°C. V čase t1 až t2 se mění led na vodu, tzn. že v této době existuje voda ve skupenství pevném i kapalném. Skupenské teplo tání Skupenské teplo tání je množství energie, které se spotřebuje na roztátí pevné látky. Látka tuto energii pohlcuje. Když látka tuhne, tak tuto energii vydává. Kolik tepla se spotřebuje, závisí na druhu látky, její hmotnosti a tlaku. Měrné skupenské teplo tání Měrné skupenské teplo tání je množství tepla, které přijme 1 kg pevné látky při teplotě tání, aby se změnila na kapalinu téže látky stejné teploty při normálním tlaku (1,013 25 . 105 Pa) Měrné skupenské teplo … značíme lt … jednotky J/kg, kJ/kg Příklad: Teplota tání ledu je 0°C a měrné skupenské teplo tání ledu je 334 kJ/kg. To znamená, že na přeměnu 1 kg ledu o 0°C na vodu o teplotě 0°C spotřebujeme 334 kJ tepla. Teplota tání zinku je 420°C a měrné skupenské teplo tání zinku je 102 kJ/kg. To znamená, že na přeměnu 1 kg zinku v pevném skupenství o teplotě 420°C na kapalný zinek o teplotě 420°C spotřebujeme 120 kJ tepla. Diskuze grafu tání olova Popis časových úseků: AB … olovo je ve skupenství pevném, pevná látka se zahřívá, zvyšuje se teplota BC … olovo je ve skupenství pevném i kapalném, látka se mění z pevné na kapanou, teplota se nemění CD … olovo je ve skupenství kapalném, kapalina se zahřívá, zvyšuje se teplota Popis skupenství v jednotlivých bodech: X1 … skupenství pevné X2 … skupenství pevné a kapalné X3 … skupenství kapalné Otázky: 1) Co je teplota tání a tuhnutí? 2) Co se děje pří tání látky? Co se děje při tuhnutí látky? 3) Co je měrné skupenské teplo látky? Co je skupenské teplo látky? 4) Najdi v tabulkách teplotu tání a měrné skupenské teplo látek: hliník, měď, rtuť, stříbro, wolfram. 5) Vysvětli, co znamená, že cín má měrné skupenské teplo tání 60 kJ/kg. 6) V jakém skupenství (pevném nebo kapalném) je při teplotě 1000°C při normálním tlaku hliník, měď, platina, stříbro, zlato? 7) Uspořádej následující kovy podle vzrůstající teploty tání při normálním tlaku: cín, hliník, olovo, železo, stříbro. Rozhodni, které z kovů lze tavit v hliníkové nádobě? 8) V mrazničce se časem udělá vrstva sněhu a ledu. Odkud se bere? Jakou změnou skupenství vzniká? Jakou změnou skupenství se odstraňuje? Proč je třeba ji odstranit? Jak můžeme, co nejvíce zpomalit její tvoření? 9) Jakou nejnižší teplotu můžeme měřit rtuťovým teploměrem? Jakou lihovým? 10) Můžeme roztavit zinek v hliníkové lžíci? Vysvětli. 11) Můžeme roztavit olovo v cínovém kelímku? Vysvětli. 12) Roztaví se pevný cín, jestliže ho vhodíme do roztaveného olova? Vysvětli. 13) Popiš grafy: a) Jedná se o graf tání mědi – doplň hodnotu teploty do grafu a popiš skupenství olova ve vyznačených bodech. b) Urči, o jakou se jedná látku. Popiš skupenství látky ve vyznačených bodech.
Graf a)
Graf b)
Skupenské teplo tání Skupenské teplo tání Skupenské teplo tání je množství tepla, které musíme dodat látce v pevném skupenství při teplotě tání, aby se změnila na kapalinu o stejné teplotě.
Měrné skupenské teplo tání Měrné skupenské teplo tání je množství tepla, které přijme 1 kg pevné látky při teplotě tání, aby se změnila na kapalinu téže látky stejné teploty při normálním tlaku (1,013 25 . 105 Pa) Měrné skupenské teplo … značíme lt … jednotky J/kg, kJ/kg Příklad: měrné skupenské teplo niklu je 300 kJ/kg (lt = 300 kJ/kg), to znamená, že na roztavení 1 kg niklu při teplotě tání spotřebujeme 300 kJ tepla, abychom získali stejné množství niklu v kapalném stavu při stejné teplotě za normálního tlaku. Výpočet skupenského tepla tání Skupenské teplo tání značíme Lt a vypočítáme ho ze vztahu Lt = m . lt Kde m je hmotnost a lt je měrné skupenské teplo tání. Příklad 1: Urči teplo, které musíme dodat 2,5 kg železa zahřátého teplotu tání, aby roztálo. m = 2,5 kg lt = 289 kJ/kg Lt = ? (kJ) -----------------------------Lt = m . lt Lt = 2,5 . 289 Lt = 722,5 kJ Na roztavení 2,5 kg železa při teplotě tání potřebujeme 722,5 kJ tepla. Příklad 2: Do sklenice s vodou byly vhozeny 3 kostky ledu, každá kostka měla hmotnost 50 g a měly teplotu -10°C. Kolik tepla odebraly kostky ledu vodě v okamžiku, kdy všechny roztály. Příklad rozdělíme na dvě části – množství tepla, které přijme led, než dosáhne teploty tání, a množství tepla, které spotřebuje na roztátí. m = 150 g = 0,15 kg m = 150 g = 0,15 kg c = 2,09 kJ/kg.°C lt = 334 kJ/kg Q = ? (kJ) Lt = ? (kJ) ------------------------------ -----------------------------Q = c.m. (t2 – t1) Lt = m . lt Q = 2,09 . 0,15 . 10 Lt = 0,15 . 334 Q = 3,135 kJ Lt = 50,1 kJ Qc = Q + Lt = 3,135 + 50,1 = 53,235 kJ Kostky ledu ubraly vodě 53,235 kJ tepla. Otázky: 1) Co je měrné skupenské teplo látky? Co je skupenské teplo látky? 2) Najdi hodnotu měrného skupenského tepla stříbra a vysvětli, co hodnota vyjadřuje. 3) Kolik tepla se spotřebuje na roztátí 600 g ledu o teplotě 0°C při normálním tlaku na vodu o teplotě 0°C? 4) Kolik tepla se spotřebuje na roztátí 32 kg železa při teplotě tání při normálním tlaku při přeměně na kapalinu o stejné teplotě? 5) Kolik tepla se uvolní při tuhnutí 700 g hliníku při teplotě tání a normálním tlaku, jestliže se přemění na pevnou látku o stejné teplotě. 6) Kolik tepla potřebujeme na roztavení 350 g železa za normálního tlaku při teplotě tání? 7) Kolik tepla za normálního tlaku potřebujeme na přeměnu měděné kostky o teplotě 22°C a hmotnosti 500 g na kapalinu? 8) Kolik tepla se uvolní, když se 2,5 l vody o teplotě 5°C změní na led o teplotě -5°C. 9) Nakresli graf přeměny křemíku z pevné látky na kapalinu.
Vypařování a kapalnění Jak schne vyprané prádlo pověšené venku na šňůře? Uschne vlastně vždy, jedině nesmí pršet. To znamená, že uschne při jakékoliv teplotě. Doba, za kterou prádlo uschne, je ale různá. Závisí na tom, zda svítí slunce nebo je pod mrakem, zda je vlhký den nebo větrný den. Co je vypařování a co se děje při vypařování? Vypařování je přeměna kapalné látky na plynnou. Molekuly se v látkách stále pohybují. Některé molekuly na povrchu dosáhnou velké rychlosti a uvolní se. Překonají přitažlivou sílu a odletí. Při vypařování vzniká plyn. Tento plyn nazýváme pára nebo páry. Např. páry lihu, páry rtuti, vodní pára. Na čem závisí rychlost vypařování? Na teplotě – čím vyšší teplota, tím je vypařování rychlejší. Při vyšší teplotě se pohybují molekuly rychleji, proto částice dříve dosáhnou vyšší rychlosti a překonají přitažlivé síly. Můžete si ověřit – kápněte kapku na plotýnku vařiče, chvíli pozorujte. Vypařování bude těžko pozorovatelné. Pokud plotýnku vařiče zapnete, můžete pozorovat, jak kapka vypařováním začne mizet.
Na větru – při větru je vypařování rychlejší. Za bezvětří se molekuly utrhnou, ale některé se opět vrátí, za větru, se molekuly utrhnou a díky větru odletí a nevrací se zpět. Můžete ověřit – udělej si dvě čáry vlhkou houbou na tabuli, jednu nech v klidu a na druhou foukej studeným fénem vzduch. Fénovaná čára uschne rychleji. Na povrchu – čím větší povrch, tím je vypařování rychlejší. Molekuly se utrhnou z povrchu, čím větší povrch, tím více molekul se může utrhnout. Můžete si ověřit – namoč dvě stejná trička, jedno zmačkej do klubíčka, druhé pověs na šňůru. Pověšené tričko uschne mnohem rychleji, smotané tričko uschne na povrchu, ale uvnitř je stále mokré. Na druhu látky – záleží na tom, jaké jsou přitažlivé síly mezi molekulami příslušné látky. Látky těkavé, jako například éter, se vypařují velmi rychle. Proč se látky při vypařování ochlazují? Pokud si nasliníte prst a budete na něj foukat, ze strany odkud foukáte, pocítíte chlad. Pokud chcete zjistit, odkud fouká vítr, stačí mít vlhký prst a podle toho, kde cítíme chlad, určíme směr větru. Za horkého letního dne, pokud si namočíme naše šaty, pociťujeme chlad. Pokud chci v láhvi uchovat studenou vodu, obalím ji mokrým hadrem. Z hadru se vypařuje voda a láhev se ochlazuje. K ochlazování dochází tím, že látka při vypařování ztrácí rychlejší molekuly (ty se odtrhnou) a zůstávají ty pomalejší. Teplota látky je dána pohybem molekul, proto po odtržení rychlejších, chladne. Co je kapalnění? Změna plynné látky na kapalnou se nazývá kapalnění. Při kapalnění dochází k tomu, že se molekuly shlukují a začínají vytvářet kapičky. Aby se molekuly mohly shluknout, je třeba mít dostatečně nízkou teplotu. Nejčastěji se setkáváme s kapalněním vodní páry. Všechny obláčky, které pozorujeme – nad hrncem, při dýchání v chladu, nejsou vlastně pára, ale je to vysrážená mlha. Vzniká tam, kde se vzduch dostatečně ochladí. Můžeme pozorovat, když vyndáme skleničku z ledničky – je dostatečně studená a na jejím povrchu se vysráží pára obsažená ve vzduchu. Kapalnění se cizím slovem nazývá kondenzace. Otázky: 1) Když chceme poznat, odkud fouká vítr, navlhčíme prst. Jak poznáme směr větru? 2) Jak nejrychleji usušíte barevný nátěr, prádlo v sušičce, vlasy po koupání? 3) Jak se dá urychlit chladnutí horkého čaje? 4) Vysvětli co je vypařování a co se při něm děje. 5) Na čem závisí rychlost vypařování? Vysvětli jednotlivé závislosti. 6) Proč cítíme při vypařování chlad? Uveď nějaké příklady. 7) Co je kondenzace? 8) Vysvětli slovo pára. 9) Proč se v zimě při vstupu z venkovního prostředí do vytopené místnosti zamlžují brýle?
Var - Jaký je rozdíl mez vypařováním a varem? • Vypařování i var je změna skupenství kapalného na plynné. • Vypařování se děje při každé teplotě, kapalina se vypařuje z povrchu. Rychlost vypařování závisí na teplotě, čím vyšší teplota tím rychleji se kapalina vypařuje. • Když kapalina dosáhne určité teploty, začne se pára uvolňovat z celého objemu, tzn. ne jen z povrchu, ale i uvnitř. Když vaříme vodu, můžeme pozorovat bubliny – v okamžiku, kdy nastává var, unikají bublinky ze zdola nahoru.
Co je to var a na čem závisí? • Var je vypařování z celého objemu. Uvnitř kapaliny se tvoří bubliny, které se nafukují, zvětšují se a stoupají k hladině. • Teplota varu je teplota, při které dochází k varu. Tato teplota závisí na tlaku vzduchu a druhu kapaliny. • Teploty varu uvedené v tabulkách jsou za normálního tlaku (101 235 Pa). Npař. Voda má teplotu varu 100°C, etanol 78,3°C, rtuť 357°C, olovo 1 740°C.
Jak se mění teplota varu při změně atmosférického tlaku? • Za normálního tlaku je teplota varu vody 100°C. Pokud má voda nižší teplotu, bublinky vody nepřetlačí tlak působící shora. Atmosférický tlak vlastně bublinu zamáčkne. Pokud teplotu zvyšuju, zvyšuje se i tlak bublin, které po dosažení 100°C přetlačí atmosférický tlak a začnou stoupat vzhůru a uvolňovat se ve formě páry.
• Pokud je tlak vzduchu na hladinu menší, je třeba i menší tlak uvnitř bublin vzduchu, aby se dostaly na povrch. Z toho plyne, že i teplota varu je v tento okamžik nižší, protože tlak uvnitř bublin závisí na teplotě. Pokud by na hladinu vody nic netlačilo, vařila by se voda i při pokojové teplotě. Pokud jsme na horách, začne se nám voda vařit dříve než v nížině. Musíme však vařit věci déle, protože je vlastně vaříme při nižší teplotě. • Pokus: Dáme kádinku s vodou o pokojové teplotě do vývěvy. Začneme vyčerpávat vzduch. Po chvíli se začnou z kádinky s vodou uvolňovat bublinky z celého objemu, voda se vaří. • Pokud je tlak vzduchu na hladinu větší než normální atmosférický tlak, potřebují i bubliny, které se vytváření, větší tlak, aby se mohly dostat nad hladinu. Potřebujeme tedy vyšší teplotu, aby se zvýšil tlak bublin. Voda se tedy vaří v tomto případě při vyšší teplotě. Toho se využívá v tlakovém hrnci. V něm vytváříme vyšší tlak, var proto nastává při vyšší teplotě. Vyšší teplota je výhodná, protože jídlo se uvaří dříve.
Skupenské teplo varu Skupenské teplo varu je množství tepla, které musíme dodat látce v kapalném skupenství při teplotě varu, aby se změnila na plyn o stejné teplotě.
Měrné skupenské teplo varu Měrné skupenské teplo varu je množství tepla, které přijme 1 kg kapalné látky při teplotě varu, aby se změnila na plyn téže látky stejné teploty při normálním tlaku (1,013 25 . 105 Pa). Měrné skupenské teplo varu … značíme lv … jednotky J/kg, kJ/kg Příklad: měrné skupenské teplo varu vody je 2 256 kJ/kg (lv = 2 256 kJ/kg), to znamená, že na přeměnu 1 kg vody při teplotě varu spotřebujeme 2 256 kJ tepla, abychom získali stejné množství vody v plynném stavu při stejné teplotě za normálního tlaku. Výpočet skupenského tepla varu Skupenské teplo varu značíme Lv a vypočítáme ho ze vztahu Lv = m . lv Kde m je hmotnost a lv je měrné skupenské teplo varu. Příklad 1: Roman si dal vařit půl litru vody na čaj do konvice. Odešel k sobě do pokoje. Když se vrátil, voda se už dlouho vařila a v konvici zůstalo je 0,3 l vody. Kolik tepla se zbytečně spotřebovalo? m = 0,2 kg lv = 2 256 kJ/kg Lv = ? (kJ) -----------------------------Lv = m . lv Lt = 0,2 . 2 256 Lt = 451,2 kJ Zbytečně se spotřebovalo 451,2 kJ tepla. Otázky: 1) Najdi v tabulkách, při jaké teplotě se začne vařit voda v nadmořské výšce 3 850 m. 2) V chemické továrně se zahřívá voda při talku 490 kPa. Pomocí tabulek zjisti, při jaké teplotě se začne vařit. 3) Proč lidé na horách musí polévku vařit déle než v nížině? 4) Co má větší vnitřní energii: led o teplotě 0°C nebo voda o stejné teplotě? Proč? 5) Voda v nádobě má 100°C, ale přesto není ve varu. Kdy tento jev může nastat? Vysvětli. 6) Jaký je rozdíl mezi vypařováním a varem? 7) Na čem závisí teplota varu? Proč? 8) Vyhledej v tabulkách teplotu varu při normálním tlaku u látek: kyslík, glycerol, zinek, rtuť, chrom. 9) Vyhledej v tabulkách měrné skupenské teplo varu látek z úlohy 8. 10) Kolik tepla potřebujeme dodat 2 kg vařící vody při normálním tlaku, aby se změnila na páru. Porovnej s teplem, které musíme dodat 12 kg ledu při teplotě tání., aby roztál při normálním tlaku. 11) Kolik tepla je potřeba k přeměně 100 g rtuti při teplotě varu na páru při normálním tlaku.
Sublimace a desublimace, graf závislosti teploty na čase Sublimace Jedná se o změnu pevného skupenství přímo na plynné. Příkladem je například sušení prádla za mrazu, sníh se vypařuje. Desublimace Jedná se o změnu plynného skupenství přímo na pevné. Příkladem je například vznik jinovatky. Schéma zachycující změny mezi skupenstvími
Graf závislosti teploty na čase Graf zachycuje změnu teploty při zahřívání rtuti. Časový úsek t0 až t1: teplota se zvyšuje, pevná látka se ohřívá až na bod tání Časový úsek t1 až t2: teplota se nemění, všechna energie se spotřebuje na změnu skupenství pevné látky na kapalinu – tání Časový úsek t2 až t3: teplota se zvyšuje, kapalina se ohřívá až na bod varu Časový úsek t3 až t4: teplota se nemění, všechna energie se potřebuje na změnu skupenství kapalina na plyn – var Časový úsek od t4: teplota se zvyšuje, ohřívá se plyn Popis skupenství v jednotlivých bodech: A – pevné B – pevné a kapalné – probíhá změna skupenství za teploty tání C – kapalina – právě se všechna pevná rtuť změnila na kapalinu D – kapalina E – kapalina a plyn – probíhá změna skupenství kapaliny na plyn za teploty varu F – plyn Příklad: V tabulce doplň hodnoty pro jednotlivé látky a posuď pro uvedené teploty, v jakém je látka skupenství
Otázky: 1) Narýsuj a popiš graf závislosti teploty na čase pro olovo. 2) V zimě vzniká na oknech námraza – ledové květy. Z které strany je led? Odkud se tam bere? Jakou změnou skupenství vzniká? Proč vzniká na jednoduchých oknech a málokdy na dvojitých?
3) Popiš následující grafy závislosti teploty na čase a urči, o jakou se jedná látku.
4) V tabulce doplň hodnoty pro jednotlivé látky a posuď pro uvedené teploty, v jakém je látka skupenství
Vlastnosti vody Jak se mění objem látek při tuhnutí Většina látek při tuhnutí zmenší svůj objem. Molekuly se při tuhnutí uspořádají těsně vedle sebe a látka má tudíž menší objem. Například hodíme-li kuličku parafínu do rozteklého parafínu, klesá ke dnu. Molekuly vody se při tuhnutí uspořádají velmi neúsporně. Voda tedy při tuhnutí zvětší svůj objem. Led ve vodě plave. Anomálie vody Jedná se o zvláštní vlastnost vody. Její hustota je největší při 4°C. Voda má tedy nejmenší objem právě při 4°C. Kdyby voda neměla tuto zvláštní vlastnost, promrzly by jezera a moře až ke dnu. Ale díky této vlastnosti je u dna vždy teplota 4°C.
Proč je anomálie vody důležitá Bez této vlastnosti vody by nebyl možný život v jezerech, řekách, mořích atp. Kdy nám anomálie vody vadí Pokud zamrznou vodovodní trubky, popraskají. Vodovodní trubky musí být dostatečně pod zemí. V domech, kde se v zimě netopí, je třeba vodu vypustit. V zimě na silnicích, voda zatéká do skulin, potom zmrzne a silnice popraská. Pokud se dostane voda do omítky a zmrzne, omítka je poškozená. Proč jsou zmrazené jahody jiného tvaru než čerstvé Buňky obsahují velké množství vody, ta po zmražení zvětší svůj objem. Stěny buněk se roztrhají a jahoda nedrží původní tvar. Rozbitými buněčnými stěnami vytéká šťáva. Otázky: 1) Když v domě nejsou v pořádku okapy, dostává se dešťová voda do omítky. Co se může stát, když promočená omítka v zimě zmrzne? 2) Kde všude by bylo potřeba v zimě použít nemrznoucí směs, tedy směs, která má teplotu tuhnutí menší než 0°C? 3) Proč má led menší hustotu než voda? Jaký to pro nás má význam? 4) Jak se mění objem většiny látek při tuhnutí? 5) Vysvětli pojem anomálie vody. Jaké jsou klady a jaké zápory této vlastnosti vody?