Hutnické listy č.1/2008
Výroba oceli
Zkušenosti s provozním využíváním modelu směsných oblastí na ZPO č. 2 v Třineckých železárnách, a.s. Prof. Ing. Karel Michalek, CSc., Ing. Karel Gryc, Katedra metalurgie, VŠB-Technická univerzita Ostrava Ing. Jan Morávka, Ph.D., Ing. Vladislav Mrajca, CSc., Třinecký inženýring, a. s., Třinec Ing. Jan Klapsia, Ing. Miroslav Szymanik, Ing. Petr Walek, Třinecké železárny, a. s., Třinec Příspěvek je věnován řízení rozsahu směsné oblasti na ZPO č. 2 v Třineckých železárnách, a.s. na základě využití moderních experimentálních a matematicko-statistických metod. Prvního června 2007 uplynuly dva roky od doby, kdy byla na ZPO č. 2 zcela zprovozněna SW aplikace tzv. modelu směsných oblastí (MSO). V předkládaném příspěvku je nejprve provedeno vyhodnocení přínosu řízení směsné oblasti původní, vytvořenou SW aplikací MSO. Druhá část je věnována stručné rekapitulaci rozsáhlé interdisciplinární vědecko-výzkumné činnosti řešitelského kolektivu, která umožnila precizní funkčnost celého systému řízení směsných oblastí. Jsou shrnuty postupy provozní verifikace, matematického modelování pomocí CFD programu FLUENT, fyzikálních simulací na vodním modelu mezipánve, aproximačních a matematicko-statistických metod vedoucích k vytvoření vlastního modelu řízení směsné oblasti.
1. Úvod Jedním ze základních předpokladů zvyšování produktivity plynulého odlévání oceli je zvětšování počtu taveb odlévaných v jedné sekvenci pokud možno bez přerušení lití a následných restartů. Praktická realizace tohoto požadavku však zákonitě vede k nutnosti odlévání různých značek oceli v jediné sekvenci. V průběhu změny značky oceli dochází v mezipánvi a rovněž i v tekutém jádře tuhnoucího předlitku ke vzájemnému smíchávání těchto ocelí, což vede ke vzniku takové oceli, která svým složením neodpovídá ani předchozí značce a ani následně odlévané značce. V plynule odlévaném předlitku tak vzniká tzv. směsná oblast, jejíž chemické složení je mimo tolerance chemického složení odlévaných značek ocelí (obrázek 1). Snahou provozovatelů ZPO je minimalizovat rozsah této oblasti, resp. verifikovat její skutečný rozsah s cílem implementovat tyto výsledky do automatického systému řízení ZPO a sledování kvality předlitku.
Na rozsah směsné oblasti v případě sekvenčního odlévání má zásadní vliv stupeň odlišnosti chemického složení [1] obou odlévaných ocelí a jeho povolená tolerance. V oblasti výzkumu směsných oblastí bylo dosaženo řady významných poznatků a to především díky využívání možností, které nabízí fyzikální a numerické modelování v kombinaci s provozním měřením.
2. Model řízení směsné oblasti v provozní praxi Po přípravných pracích a off-line ověřování SW aplikace MSO byla tato dne 1. 6. 2005 na základě rozhodnutí technologů, spuštěna v on-line režimu, tzn. byla zahájena běžná výroba s tímto modelem (do té doby byl používán původní model firmy CONCAST). MSO je od té doby plně funkční a pracuje automaticky ve třech základních režimech, a to v režimu tzv. ostrého rozhraní (bez směsných oblastí – v TŽ, a.s. se nepoužívá), v režimu klasické směsné oblasti a v režimu pro odlévání kordové jakosti oceli (modifikovaný klasický režim se změnou u první a poslední tavby v sekvenci). 2.1 Provozní verifikace
Obr. 1 Směsná oblast v plynule litém předlitku Fig. 1 Transition zone in the continuously cast billet
V průběhu provozování nového modelu MSO se naskytla možnost vzájemného porovnání rozsahu směsných oblastí (sochorů) stanovených modelem MSO s výsledky stanovení chemického složení oceli po délce odlitých sochorů. K tomu účelu bylo využito tří taveb T1 až T3, u kterých se lišil obsah hliníku – viz obrázek 2. Spektrální analýza zaměřena na obsah Al byla provedena u 7 vybraných sochorů (S1 až S7) odlitých na licím proudu č. 8. Tento licí proud byl vybrán z důvodu jeho největší vzdálenosti od ústí stínicí trubice do mezipánve.
21
Hutnické listy č.1/2008
Výroba oceli •
Měřené hodnoty obsahu Al v sochorech S1 až S7 100
hm. obsah Al [0.001 %]
90
•
80 70 H10
A1
A2
60 A1
A2
3
4-9
H10
50 tavba tavba 54 T2 678
40 S1
S2
S3
S4
S5
S6
S7
Obr. 2 Průběh měřených hodnot obsahu hliníku v následných sochorech Fig. 2 Course of measured Al concentrations in sequential billets
Sochor S1 náležel k tavbě T1 (provozní označení H10 – směsná oblast konce tavby, 10. předlitek tavby). Sochory S2 a S3 představovaly první a druhý předlitek tavby T2 (provozní značka A – směsná oblast na začátku tavby). Experimentální označení S4 přísluší 3. předlitku odlitému na licím proudu č. 8 v tavbě T2. Systém MSO jej již, zcela korektně, identifikoval jako plně odpovídající chemickému složení této tavby. Na 4. až 9. předlitku z daného proudu nebyly analýzy prováděny. Byl analyzován až 10. předlitek tavby T2 (H10) a následující první dva předlitky z tavby T3. Z uvedeného obrázku je patrné, že provozovaná aplikace MSO velmi dobře a s rezervou určila nejen počet směsných sochorů, ale i rozhraní jednotlivých taveb. Nejvýraznější změny chemického složení byly detekovány právě na tomto stanoveném rozhraní, tzn. v rámci sochorů H10 a A1. Ze současného pohledu je provozovaný model směsných oblastí hodnocen jako robustní, stabilní, přitom poměrně jednoduchý a dostatečně přesný. 2.2 Hodnocení přínosu Vyhodnocení výskytu a parametrů všech čistých i směsných předlitků v průběhu provozování modelu bylo uskutečněno vícekrát. Porovnával se podíl směsných oblastí při používání původního modelu firmy CONCAST a nově vytvořeného modelu MSO [2]. Za první rok provozu modelu MSO (od 1. 6. 2005 do 31. 5. 2006) bylo na ZPO č. 2 vyrobeno 6450 taveb, z toho u 968 taveb byla jedna nebo obě směsné oblasti přeřazeny na jinou jakost, což činí asi 15 %. Z dostupných údajů cen za sledované období bylo zjištěno, že ocel z přeřazené směsné oblasti je průměrně o 6 % levnější oproti oceli z čisté oblasti. Lze odhadnout, že samotné snížení počtu směsných sochorů asi o 46 % může ročně přinést velmi výrazné úspory. Pokud bude komplexněji a dlouhodoběji hodnocen ekonomický přínos MSO, pak lze předpokládat [3], že dojde ke: • zvýšení podílu krytí jednotlivých zakázek z jedné tavby, • snížení nákladů na realizaci zakázek,
22
•
snížení nákladů spojených s nutností přeřadit směsné předlitky na jinou značku oceli a na zakázku, ke které byla tavba odlita, snížení nároků na skladovací prostor, manipulaci a důkladnější chemické analýzy, zvýšení produktivity práce.
Nezanedbatelným přínosem MSO je zvýšení komfortu práce obsluhy na velínu pálicích strojů – pracovníci a technologové dnes mají na inovovaných moderních monitorech a díky inovovanému SW velmi dobrý přehled o počtech a číslech předlitků na jednotlivých licích proudech, jako i o stavu jejich ložení, odsunu a chlazení včetně velmi propracované grafické vizualizace jejich pohybu. Bez výhrad lze tedy konstatovat, že používaný model MSO v technologické praxi ZPO č. 2 je významným inovativním krokem v modernizaci a optimalizaci části procesu plynulého dolévání sochorů.
3. Historie vývoje modelu směsné oblasti Vlastnímu zprovoznění MSO předcházel dlouhodobý a náročný výzkum v oblasti fyzikálního a numerického modelování pochodů při vzájemném směšování dvou tavenin v podmínkách mezipánve plynulého odlévání. Výsledky z těchto simulací bylo nutné vhodným způsobem pomocí matematicko-statistických metod dále zpracovat, tzn. provést tzv. identifikaci procesu. Získané matematické vztahy pak byly použity pro algoritmizaci celé úlohy a sestavení SW aplikace. Celý komplex prací kolem řešení směsných oblastí byl doplněn a v podstatě zahájen cíleným provozním pokusem, který byl zaměřen i na provozní verifikaci skutečného rozsahu směsných oblastí v odlévaných předlitcích. Průběh hlavních vývojových a implementačních operací je znázorněn na obrázku 3 a bude detailněji diskutován v následujících kapitolách.
Fyzikální a numerické modelování
Aproximace a regrese
DOE
Algoritmus
SW aplikace MSO
Provozní ověřování
Obr. 3 Schéma tvorby a ověřování MSO na ZPO 2 v TŽ, a.s. Fig. 3 Schema of CCM No. 2 MSO developing and verifying in TŽ, a.s.
3.1 Provozní ověření rozsahu směsné oblasti Provozní experiment byl proveden již v březnu roku 2002 a jeho podstata spočívala v křížovém nalegování dvou po sobě odlévaných taveb přísadou niklu a mědi [4]. Na odlitých sochorech pak byly pomocí mobilního spektrometru stanoveny obsahy uvedených prvků, a to nejen po jejich délce v rozestupu cca 50 cm, ale i na vybraných příčných řezech – viz obrázek 4. Výsledky získané z tohoto provozního experimentu byly po zpracování použity k verifikaci výsledků fyzikálního a numerického modelování.
Hutnické listy č.1/2008
Výroba oceli
Obr. 4 Vybrané sochory a detail na příčnou spektrální analýzu provozního experimentu Fig. 4 Selected billets and cross spectral analysis detail of plant experiment
3.2 Fyzikální a numerické modelování vzniku a rozsahu směsné oblasti
Na obrázku 7 je pak provedeno porovnání výsledků fyzikálního modelování (křivka) a již zmiňovaného provozního experimentu (body). Z grafu je patrná poměrně dobrá shoda obou trendů. Mírné odlišnosti jsou způsobeny nižší rychlostí doplňování mezipánve při fyzikálním modelování a taktéž vyšším rozdílem mezi výchozí (8 t) a nominální (15 t) hmotností lázně. Čas dosažení nominální hladiny lázně v případě fyzikálního modelu je 368 s, v provozním případě pak 250 s. 1,1
bezrozměrná koncentrace; 1
Stěžejní části řešení problematiky směsných oblastí bylo provedení fyzikálního a numerického modelování pochodů v mezipánvi při vzájemném směšování dvou různých tavenin. Pro modelový výzkum byl použit fyzikální model v délkovém měřítku 1:3, na kterém bylo provedeno více než 110 samostatných experimentů, které byly zaměřeny na posouzení základních modelových variant a vlivu změn okrajových podmínek (licí rychlosti, hmotnosti oceli v mezipánvi, rozdílu teplot oceli, vlivu zastavení licích proudů ad.). Pro vybrané varianty byly rovněž provedeny numerické simulace pomocí CFD programu Fluent.
Obr. 6 Teplotní pole a detail výpočetní sítě z numerického modelování v prostředí CFD programu FLUENT Fig. 6 Temperature field and computational mash from numerical modeling in the CFD program FLUENT
1,0 0,9 0,8 0,7 0,6 0,5 0,4
LP 6
ST
Ni
0,3 0,2 0,1 0,0 0
100
200
300
400
500
čas; s
Obr. 7 Porovnání výsledků provozního experimentu s výstupy fyzikálního modelování u předlitků licího proudu č. 6 Fig. 7 Comparison of plant experiment and physical modeling results of No. 6 casting strand
Obr. 5 Vizualizace fyzikálního modelování rozsahu směsné oblasti Fig. 5 Physical modeling visualization of transition zone extent
Na obrázku 5 je zachycena vizualizace jednoho z prováděných pokusů na fyzikálním vodním modelu včetně celkového pohledu na vlastní model mezipánve „B“ ZPO č. 2. Obrázek 6 pak nabízí pohled na výsledky numerické simulace, konkrétně se zde jedná o výsledky rozložení teplotního pole a výřez výpočetní sítě v oblasti licího proudu č. 5.
Porovnání průběhů přechodových křivek z numerického a fyzikálního modelování pro podmínky 15 t oceli v mezipánvi a neizotermický charakter proudění je uvedeno na obrázku 8, a to pro licí proudy č.6 a č.7. Z obrázků je patrná nejen poměrně dobrá shoda časových relací, ale i shoda průběhu křivek, která vypovídá i o dosažení analogického charakteru proudění ve fyzikálním modelu a v prostředí numerické simulace. Obdobné shody bylo dosaženo i pro další licí proudy a rovněž pro izotermické podmínky proudění. Výsledky získané z fyzikálního modelování sloužily ke zpřesnění a verifikaci výsledků numerického modelování.
23
Hutnické listy č.1/2008
Výroba oceli
numerical
Matematický tvar modelu vychází z průběhu přechodové funkce (tj. z přechodové charakteristiky) znázorněné na obrázku 9:
physical
1.0
dimensionless concentration; -
0.9 0.8 0.7
h(t)
0.6
1
0.5 0.4 0.3
T2
0.2
hp
0.1 0.0 -200
0
200
400
600
800
1000
1200
P
1400
time; s
Obr. 8 Porovnání průběhů přechodových křivek z numerického a fyzikálního modelování pro podmínky 15 t oceli v mezipánvi a neizotermický charakter proudění u licího proudu č.6 a č.7 Fig. 8 Transition curves comparison of numerical and physical modeling for non-isothermal flow character, 15 tons of steel in the tundish, casting strands No. 6 and 7 conditions
3.3 Matematicko-statistické zpracování dat V další části řešení byly výsledky z modelového studia zpracovány pomocí aproximačních metod s cílem nalézt vyhovující způsob implementace výsledků do provozní praxe. Byl navržen a s úspěchem ověřen původní tzv. překryvný aproximační model, vycházející z Laplaceovy transformace a umožňující výstižnou aproximaci přechodových dějů také při neizotermických podmínkách a u krajních výtoků z mezipánve (licích proudů). Uvedený aproximační model je originální, nestandardní, tzv. dvoustupňový, kombinovaný, paralelně–sériový, nespojitý (v derivaci, ale ne v samotné přechodové funkci) typu NSp2dz (nespojitý model typu soustava proporcionální nekmitavá 2.řádu s dopravním zpožděním), umožňující popsat: • dopravní zpoždění (prodlevu) v počáteční fázi přechodového děje, • rychlý počáteční nárůst koncentrace, či teploty po odeznění dopravního zpoždění, • další navazující pozvolný nárůst (obou) veličin. Představa vychází z hypotetického modelu MP podle [1], obsahujícího tři části: • kde po odeznění dopravního zpoždění Td (způsobeného „pístovým” tokem oceli), • dochází na krátkou dobu ke strmému nárůstu koncentrace (způsobeného „mrtvým” objemem oceli, resp. zmenšením celkového objemu MP o mrtvý objem, malá časová konstanta T1 – čím větší je mrtvý objem, tím menší je časová konstanta), • který je posléze překryt „zkratovým prouděním” (působícím od počátku změny koncentrace jako úplné promíchávání celého objemu MP, velká časová konstanta T2). Dalším a jiným vysvětlením fungování modelu by mohla být interakce přímého a od stěny odraženého zpětného, reverzního toku, či toku spodního a horního (zvláště v případě neizotermického proudění).
24
T1 A
B
Td
C
t
tp
ts
Obr. 9 Přechodová křivka překryvného aproximačního modelu Fig. 9 The transition curve of the original non-standard approximate model
Matematický model přechodové funkce obsahuje 3 časové konstanty Td, T1, T2 a má tři na sebe navazující části A, B, C (časově oddělené dopravním zpožděním Td a dobou přepnutí, či překrytí tp), ve kterých platí následující dílčí podmínky a vztahy: ⎧ A : t ≤ Td ⎪ ⎨B : Td < t ≤ t p ⎪ ⎩C : t > t p
⎫ hA (t ) = 0 ⎪ hB (t ) = 1 − exp(−(t − Td ) / T1 ) ⎬ ⎪ hC (t ) = 1 − exp(−t / T2 ) ⎭
(1)
Aproximované přechodové charakteristiky získané z jednotlivých pokusů byly dále podrobeny matematicko-statistické analýze spojené s využitím metody plánovaného experimentu (DOE – Design Of Experiment).
4. Algoritmizace a provozní aplikace modelu verifikace a řízení směsných oblastí V poslední fázi řešení byl ze statisticko-matematicky zpracovaných výsledků fyzikálního a numerického modelování vytvořen model verifikace a řízení směsných oblastí (obrázek 10). VSTUPY:
VÝSTUPY pro každý aktivní licí proud:
čísla taveb staré (old) a nové (new) délky předlitků v tavbách
časové charakteristiky směsné oblasti
DTP ocelí taveb (min/max, 12 prvků) chemická analýza taveb teploty ocelí v tavbách čas otevření licí pánve (LP) váha oceli v mezipánvi (MP)
Model stanovení směsných oblastí (MSO)
délky a hmotnosti směsné oblasti předlitky patřící do směsné oblasti vizualizace směsné oblasti (předlitky) ukládání výstupů to tabulek databáze
počet otevřených licích proudů (LPr) časy otevření licích proudù rychlosti výtoků oceli licích proudù
Obr. 10 Schéma modelu směsných oblastí (MSO) Fig. 10 Diagram of transition zone model
Hutnické listy č.1/2008
MSO pracuje jako kombinovaný staticko-dynamický rekurentní výpočtový model. Znamená to, že v 1. verzi modelu bez uvažování chemického složení ocelí: • statická část vychází z počátečních podmínek v období po otevření licí pánve (LP), ze kterých se uskuteční jednorázově výpočet směsných oblastí pro dvojici navazujících taveb, • dynamická část v období od otevření LP do konce směsné oblasti počítá rekurentně (s periodou 5 s) tyto oblasti na základě změn počtu aktivních licích proudů a výtokové rychlosti oceli z jednotlivých výlevek mezipánve. Dalším výstupem této části je stanovení tzv. rozhraní taveb umožňující určit rozdělení vypočtené směsné oblasti do předchozí a následující tavby. MSO byl a je ověřován simulačně (v off-line režimu) v tabulkovém procesoru Excel, kde jsou jednotlivé parametry modelu nastavovány a verifikovány. Při simulacích se také zkoušejí extrémní provozní situace. Po jeho testování a ladění, byl model řízení směsné oblasti (MSO) naprogramován a implementován do systému řízení ZPO č. 2 v TŽ, a.s. Jak již bylo uvedeno výše, je softwarová aplikace modelu směsných oblastí v plném provozu od 1. června 2005. Otestovaný algoritmus modelu směsných oblastí (MSO) Visual Basic byl naprogramován v jazyce a implementován jako SW aplikace „ZPO2 Licí stroj“ do tzv. systému V.I.S. – výrobního informačního systému Třineckých železáren, a.s. Aplikace obsahuje 4 obrazovky: Stojan, Oblouk, Oblouk cross a Cross transfer. Na obrázku 11 jsou znázorněny příklady uvedených on-line obrazovek, dostupných obsluze při monitoringu výroby na licím stroji.
Obr. 11 Pohled na grafický výstup MSO dostupný obsluze ZPO č. 2 Fig. 11 View on the monitor display of transition zone model for CCM No. 2 operators
Obrazovka „Stojan“ prezentuje situaci na licím stojanu a v obou mezipánvích ZPO č. 2. Světlejší odstín (žluté barvy) lázně představuje „čistou“ ocel předchozí (světlejší část v mezi-pánvích) s uvedením zbývající tonáže předchozí tavby. V licí pánvi je následující tavba, která vtéká oběma stínícími trubicemi uvedeným
Výroba oceli
hmotnostním průtokem do mezipánví. Tmavější část (zelené barvy) taveniny v mezipánvích představuje, velice zjednodušeně, podíl směsné oceli. Na obrazovce „Oblouk“ může obsluha ZPO č. 2 sledovat posun jednotlivých předlitků (dělených příčnou čarou) z úrovně krystalizátorů až po pálicí stroj. Ve středech jednotlivých předlitků jsou uvedena jejich čísla příslušející k tavbě a licímu proudu. Tmavější předlitky (fialové barvy pro počáteční směsné předlitky v tavbě, tzv. směsné A, hnědé barvy pro koncové směsné předlitky v tavbě, tzv. směsné H) opět představují sochory s nevyhovujícím chemickým složením – směsnou oblast. Světlá (žlutá) barva představuje tzv. „čistou“ jakost. Situaci za paličkami je možno monitorovat v on-line režimu prostřednictvím obrazovky „Cross transfer“. V dolní části obrazovky lze sledovat vertikální pohyb upálených sochorů na pozicích zarážka, ražení a cross. V pravé části obrazovky je viditelný horizontální posun sochorů na odsunovacím roštu chladicího lože. Podrobnější popis principů, přístupů a metod tvorby MSO je uveden v publikovaných materiálech [5], [6], [7], [8].
5. Závěr Z dvouletého bezproblémového provozování SW aplikace Modelu směsných oblastí MSO na ZPO č. 2 v Třineckých železárnách, a. s. lze vyzdvihnout zejména následující skutečnosti: • zavedením MSO do řízení výroby došlo k rapidnímu snížení podílu směsných předlitků ke všem předlitkům z 51 % na 27 %, což znamená pokles relativního výskytu směsných předlitků asi o 46 % (na základě analýzy prvního roku provozu), • výrazné snížení rozsahu směsných oblastí bylo predikováno již výsledky z provozního experimentu a dat postupně získávaných z fyzikálního i numerického modelování, • verifikace, čili ověření správnosti výpočtu délek směsných oblastí byla provedena na tavbě s vyšším výskytem obsahu hliníku v oceli. SW aplikace bezpečně stanovila směsné sochory, • stávající model MSO v provozované SW aplikaci se jeví jako robustní, stabilní, jednoduchý a dostatečně přesný. Umožňuje s rezervou stanovovat směsné předlitky. MSO je výsledkem dlouhodobé a výborné interdisciplinární spolupráce několika teoretických i provozních pracovišť. Ukázkově dokumentuje proklamované spojení teorie s praxí a může být příkladem pro další oblasti řešení problému technologie. V současnosti jsou díky úspěšnému řešení MSO na ZPO č. 2 získané zkušenosti a prověřené postupy řešení problematiky řízení rozsahu směsné oblasti v maximální míře využívány a dále rozšiřovány a prohlubovány při
25
Hutnické listy č.1/2008
Výroba oceli vývoji modifikované a složitější varianty MSO na pracovišti ZPO č. 1 v TŽ, a.s.
[6]
Literatura [1]
[2]
[3]
[4]
[5]
Michalek, K. Využití fyzikálního a numerického modelování pro optimalizaci metalurgických procesů. VŠB-TU Ostrava, 2001, 125 s. ISBN 80-7078-861-5. Klapsia, J., Morávka, J., Mrajca, V. aj. Provozní ověřování modelu směsných oblastí na ZPO 2 v TŽ, a.s. Třinec. In Sborník přednášek 22. celostátní konference s mezinárodní účastí Teorie a praxe výroby a zpracování oceli, Rožnov pod Radhoštěm. Ostrava: Tanger, 4.-5.4.2006, s. 126-132. ISBN 80-86840-15-8. Gryc, K. Problematika vzniku přechodových jakostí u plynule odlévaných předlitků. Diplomová práce. Ostrava: KM FMMI VŠB-TU Ostrava, 15.5.2003, 120 s. Michalek, K., Pindor, J., Sawová M., Gryc K., Pieprzyca, J. Plant observation´s results of the transition zones in blanks 150 × 150 mm continuously cast at CC-machine No. 2 in Třinecké železárny, a.s. In XIII. International Scientific Conference "Iron and Steelmaking", Szczyrk, 2003, s. 207-210. ISBN 83-89776-00-6. Michalek, K., Morávka, J., Mrajca, V. aj. Modelování vzniku směsné oblasti a možnosti implementace výsledků do systému řízení ZPO. In Sborník přednášek 20. celostátní konference s mezinárodní účastí Teorie a praxe výroby a zpracování oceli,
[7]
[8]
Rožnov pod Radhoštěm. Ostrava: Tanger, 5.-6.4.2004, s. 105-111. ISBN 80-86840-08-5. Klapsia, J., Mrajca, V., Morávka, J. aj. SW aplikace modelu minimalizace směsných oblastí na ZPO Č. 2 v Třineckých železárnách, a.s. In Sborník přednášek XV. International Scientific Conference Iron and Steelmaking, sekce II – Technologie výroby oceli, 14.-16.9. Malenovice. 1.vyd. Ostrava: VŠB-TU, listopad 2005, s.194-197. ISBN 80-248-0947-8. Michalek, K., Sawová M., Gryc, K. aj. Modelling of transition phenomena in tundish during grade change of CC-steel. In Sborník přednášek 1.mezinárodní konference SteelSim 2005 Simulation and modelling of metalurgical processes in steelmaking, Brno, 25-27 October. Třinec: T-print, říjen 2005, s.115-130. ISBN 80-239-5005-3. Morávka, J., Mrajca, V., Michalek, K. aj. Possible ways of processing results of transition phenomena occuring in the tundish using approximation methods and their implementation in field practice. In Sborník přednášek 1. mezinárodní konference SteelSim 2005 Simulation and modelling of metalurgical processes in steelmaking, Brno, 25-27 October. Třinec: T-print, říjen 2005, s.131-145. ISBN 80-239-5005-3.
Recenze: Ing. Jaroslav Pindor, Ph.D.
_____________________________________________________________________________________________
International Conference on
CLEAN TECHNOLOGIES IN THE STEEL INDUSTRY 23 - 25 September 2008 Ostrava, Czech Republic FIRST ANNOUNCEMENT CALL FOR PAPERS
...........
CLEAN TECHNOLOGIES IN THE STEEL INDUSTRY organised by the
Czech Metallurgical Society (CMS), Technical University (TU) Ostrava Czech Republic www.trz.cz/conference
26