ZÁKLADNÍ PŘEHLED DOSTUPNÝCH INFORMACÍ O KŘIŠŤÁLOVÝCH KŘEMENECH Z OBLASTI ALP
Obsah:
1. Úvod 2. Geologické jednotky Alp 3. Metodika 4. Lokality a výsledky vyhledaných výskytů křišťálů v Alpách 5. Křišťály 6. Závěr 7. Literatura 8. Přílohy (Elektronická příloha obsahuje 25 map z internetového zdroje www.maps.google.cz, zobrazujících detaily skupin lokalit).
ÚVOD
Rešerše je vytvořena za účelem sledování zdrojů pro křišťálové artefakty, kdy Alpy jsou jednou z možných zdrojových oblastí křišťálové suroviny. Studium je součástí výzkumného záměru MSM 00021622427. Alpy jsou evropské pohoří mající tvar oblouku táhnoucího se od italského Janova k severovýchodu přes území sedmi států- Francie, Německo, Švýcarsko, Lichtenštejnsko, Rakousko, Itálie, Slovinsko. Zaujímají rozlohu 180 000 km2. Z regionálně- geografického hlediska je nejběžnější členění Alp na dva celky- Západní a Východní Alpy, kdy Východní zabírají větší část. Západní Alpy se rozkládají na území Švýcarska a Východní nejvíce v Itálii, Rakousku, Slovinsku. Cílem práce je sledovat rozmístění lokalit s výskytem křišťálů v Alpách a charakter geologického prostředí a geologických jednotek, ve kterých se případné křišťály nacházejí.
1
GEOLOGICKÉ JEDNOTKY ALP
Alpy vznikly v mezozoiku v období spodní křídy během alpinské orogeneze, ale počátek tvorby jednotlivých horstev se udál dříve. Nejprve se na dno mořské rozsedliny v oceánu Thetys usazovaly sedimenty. Tyto vrstvy sedimentů se začaly vrásnit vlivem natlačování Africké desky na Euroasijskou, výrazné vyzdvihování probíhalo na přelomu terciéru a kvartéru. Terciérní deformace v Alpách se projevily během vrásnění přesunutím centralid přes pásmo externid. Většina příkrovů je sunuta na sever (Burkhard M., Sommaruga A. 1998); (Kalvoda 1998). Další etapou modelování pohoří bylo pleistocénní zalednění.Z geografického hlediska se Alpy dělí na Západní Alpy táhnoucí se od Janova linií na sever k Rýnu a Východní sahající po vídeňskou pánev. Odlišují se paleogeografickým vývojem, zachováním různých skupin příkrovů, aj. Na jihu se oddělují alpsko-dinarskou jizvou od Jižních Alp, které mají odlišnou polaritu od severnějších částí Alp. Tvořeny jsou převážně permem a triasem s vulkanity (Anderson 1978: In Suk 1998). Schematicky lze jednotky Západních Alp rozčlenit na: Alpskou předhlubeň (nejsevernější pásmo), Předalpy, Helvetikum, Penninikum, Austridy (Obr.1.). Západní Alpy mají zachovány spodní skupiny příkrovů a sestávají se z geologických jednotek helvetid a penninika a austridy zastupuje jeden příkrov. Helvetidy představují nejsevernější zónu tvořenou horninami hercynského stáří. Penninikum je nasunuto na helvetikum, v jeho vnitřní části převládá alpinský vývoj triasu s karbonátovým vývojem. V nejvyšší křídě nastoupila flyšová sedimentace. Východní Alpy se od západních liší zastoupením tektonicko-sedimentárních jednotek. Hlavní, především svrchní skupiny příkrovů, tvoří austridy, jejichž sedimentační prostor se rozdělil na oblast s pánevní a s mělkovodní sedimentací. Penninikum zastupují jen tři tektonická okna, kde se objevují ofiolity a pánevní facie. Helvetikum vystupuje sporadicky . Zastoupeny jsou nejvíce sedimenty triasu (Rogers 1994: In Kalvoda et al. 1998).
2
Obr. 1.: Jednotky Alp, podle Kalvoda J., Bábek O., Brzobohatý R. (1998)
METODIKA
Vyhledávání lokalit s výskytem křišťálů v oblasti Alp bylo prováděno především s pomocí elektronických zdrojů (map, odkazů- 1, 2, 3, 4) protože na toto téma nebyla vypracována žádná publikace. Nápomocné byly články s vědeckou tématikou na internetových stránkách například www.mindat.org a další (viz. doporučená literatura-odkazy č.2, 4). Zásadní byla klíčová slova „křišťál“, „rock crystal“, „bergkristall“, „Alps“, „rock crystal in Alpen“, „bergkristall in den Alpen aj“. Přehlednějších publikací není mnoho, např. (Seemann et al. 1994).
LOKALITY A VÝSLEDKY VYHLEDANÝCH VÝSKYTŮ KŘIŠŤÁLŮ V ALPÁCH
Krystaly křišťálů pokrývají stěny dutin křemenných žil v Alpách, tzv. křišťálové sklepy . Křišťály se vyskytují po celém alpském oblouku, z největší části i vzhledem k rozloze Alp je to území Rakouska.
3
Lokality jsou shrnuty pod větší oblasti, zejména podle údolí jako hlavního geografického aspektu.
Seznam lokalit- bez uvedení konkrétního množství křišťálu viz. Tab.č.1.
Tabulka č.1.: Seznam lokalit s výskytem křišťálů z oblasti Alp geografická charakteristika
geologická charakteristika blízkého okolí
Rakousko Spolk.republika Korutany 1. Gaitaler Alpen a Karnische Alpen
Karnské Alpy mají horninovou náplň prehnitpumpellyitové facie, zasahují do jednotky Jižních Alp; Gaitalerské Alpy jsou z nemetamorfovaných hornin metamorfity facie zelených břidlic, amfibolitové facie, granit hercynského stáří se zelenými břidlicemi, polohy migmatitů metamorfity facie zelených břidlic metamorfity nízkotlaké amfibolitové facie přetlačené podmínkami střednětlaké amfibolitové facie břidličnaté slídy, ruly vápnité silikáty metamorfity amfibolitové facie
2. Kreuzeck group 3. Gurktaler Alpen 4. Saualpe Mts. 5. Koralpe Mts. (přesněji Kamp, Fraßgraben) (přesněji Ettendorf, Lamprechtsberg)
(Obr. 4.) 6. Packalpe Mts. 7. Hohe Tauern Mts. 8. Ankogel group (přesněji Plattenkogel
metamorfity nízkotlaké a střednětlaké amfibolitové facie aplitická rula skupina amfibolitové facie a zelené břidlice střednětlaké amfibolitové facie přetlačené facií zelených břidlic zelené břidlice, horniny střednětlaké amfibolitové facie
Mt.-south slope)
9. Malta valley 10. Reiseck group Spolk. republika Salzbursko Hohe Tauern Mts. 11. Gastein valley (přesněji Ankogel
albitická rula, amfibolit, facie zelených břidlic
Mt.-west slope) amfibolity, zelené břidlice zelené břidlice aplitická rula, granit hercynského stáří přetlačený facií zelených břidlic zelené břidlice metamorfity střednětlaké amfibolitové facie s polohami hornin facie zelených břidlic, granit hercynského stáří metamorfovaný v podmínkách facie zelených břidlic
12. Kaprun valley 13. Rauris valley 14. Krimmler valley 15. Lungau 16. Radstädter Tauern Mts. Spolk. republika Štýrsko 17. Schlaminger Tauern
metamorfity střednětlaké amfibolitové facie s polohami hornin facie zelených břidlic, granit hercynského stáří metamorfovaný v podmínkách facie zelených břidlic metamorfity střednětlaké amfibolitové facie s polohami facií zelených břidlic metamorfity nízkotlaké a střednětlaké amfibolitové facie metamorfity amfibolitové facie
18. Niedere Tauern Mts. 6. Packalpe Mts. 5. Koraple 4
metamorfity střednětlaké amfibolitové facie
19. Stubalpe Spolková republika Tyrolsko East Tyrol 20. Virgen valley North Tyrol 21. Ötz valley
granitová horninová náplň amfibolit, střednětlaké amfibolitové facie přetlačené facií zelených břidlic metamorfity facie zelených břidlic
22. Ziller valley
Švýcarsko 23. Leventina valley
migmatity v granitu metamorfovaném na střednětlaké amfibolitové facie migmatity v granitu metamorfovaném na střednětlaké amfibolitové facie migmatity v granitu metamorfovaném na střednětlaké amfibolitové facie
24. Medel valley 25. Vorderrhein valley
Vysvětlivky: čísla 1, 2, ..25- odkazy k mapce na obr. 2.
Obr. 2.: Pozice lokalit na geografickém podkladu
5
KŘIŠŤÁLY Alpy jsou klasickou oblastí výskytu křišťálu (Obr. 3). Dá se říct, že stáří křišťálů je přibližně stejné jako Alp. Tlak vyzdvihl zemskou kůru nahoru a tak se vytvořilo pohoří, hmoty hornin do sebe narážely, rozpadaly se a ohýbaly. Někdy se mezi nimi vytvořily otvory, nazývané jeskyně či trhliny. Horké roztoky cirkulovaly v dutinách a puklinách hornin a z nich pak vykrystalizovaly křišťály. (Swiss news 2007). Křišťál je nejčistší krystalický křemen-oxid křemičitý. Bývá přirovnáván k „ledu“ z hlediska jeho optické příbuznosti- bezbarvosti, průhlednosti, čirosti a pocitu chladu vycházejícího z něj. V případě krystalizace magmatických hornin vzniká křemen jako poslední člen Bowenova reakčního schématu. Běžný méně průhledný křemen je součástí celé řady hornin, vyskytuje se v magmatických, metamorfovaných horninách chudých na Ca, a i v sedimentech. Alpská naleziště křišťálu jsou známá již od starověku. V Bernských Alpách v Zinggenstocku v oblasti Grimsel ve Švýcarsku byl téměř před třemi sty lety roku 1719 bratry Moorovými nalezen tzv. křišťálový sklep, z něhož bylo vytěženo přes 100 tun křišťálu. Největší kus vážil přes 700 kilogramů (Bohatý 1997). Křišťál se vyskytuje i na dalších alpských žilách a to například Saurősselu a Mırchnerkaru (Cícha 2008). Křišťál, jako jeden z mnoha, se označuje jako minerál alpské parageneze, což je název odvozený právě od klasických výskytů v Alpách. Minerály alpské parageneze vznikají metamorfózou na puklinách metamorfovaných i magmatických hornin (Obr. 5.). Pukliny se během tektonických procesů otevřely a nasály fluida z okolních hornin, která obsahují řadu různých prvků, z nichž posléze vykrystalovaly různé minerály v závislosti na minerálním a chemickém složení horniny. Mineralogické složení alpských žil závisí na složení fluid, zda jsou bohatá více na H2O či CO2 a dále na teplotě a tlaku. Pro minerály alpské parageneze je typické, že nejdříve vznikají vysokoteplotní a pak nízkoteplotní minerály. Horní hranice teploty vzniku alpské parageneze leží přibližně mezi 500-400 °C a dolní se pohybuje kolem 100 °C, ale i méně. Tlak je většinou okolo 1-2 kbar, maximální tlak může být 3-4 kbar (= 1015 km). Pro přesnější odhady teplot a tlaků vzniku alpské parageneze se může využít složení jednotlivých minerálů, dále jejich izotopické složení nebo minerální asociace v jednotlivých typech hornin (Mullis 1995).
6
Obr. 3.: Křemen-křišťál; Lokalita: Schınbach valley, Habach valley, Hohe Tauern Mts., Salzburg, Austria; Velikost: 9, 5x 7x 7 cm; Gerd Stefanik
Obr. 4.: Křemen-křišťál; Lokalita: Mexbauer, Steinweißwald, Koralpe, Carinthia, Austria; Velikost: 9, 5x 5x 6, 5 cm; Gerd Stefanik
Obr. 5.: Křemen-křišťál; Lokalita: Elfriede tunnel, Zillergrund, Ziller valley, North Tyrol, Tyrol, Austria; Velikost: 20 cm vysoký křišťál v rule, malé množství chloritu, malé muskovity; Gerd Stefanik
7
ZÁVĚR
Křemeny a křišťály patří k nejrozšířenějším hydrotermálním minerálům v Alpách, což je také jedním z důvodů, proč byly využity ke studiu podmínek formování Alp- deformace a metamorfózy hornin (Mullis et al. 1994). Bylo zjištěno, že lokality s výskytem křišťálů jsou rozprostřeny v podstatě skoro po celém území Alp, ve všech státech a to převážně v Rakousku a Švýcarsku. Desítky lokalit byly pro svou přílišnou podrobnost shrnuty z hlediska geografického aspektu do větších celků- údolí, která jsou uvedena v tabulce č.1 a následně pak zakreslena do mapky č.1. Jako nejbohatší oblast výskytu se jeví Taurské okno, konkrétně Vysoké Taury, ve kterých se nachází nespočet nalezišť křišťálových artefaktů. Horninová výplň geologických jednotek, ve kterých se křišťály vyskytují je převážně amfibolitová, dále jsou to území s horninami metamorfovanými do facie nízkotlakých a střednětlakých zelených břidlic a pozůstatky přeměněného granitu. K významným metodám studia podmínek a původu vzniku křišťálů patří mikrotermometrie a obecně studium fluidních inkluzí. Analýzou fluidních inkluzí v alpských puklinách křemene na lokalitách v Centrálních Alpách, které představuje nejvíce Švýcarsko, byly studovány vrstvy sedimentů zvrásněné a metamorfované vlivem natlačování Africké desky na Euroasijskou (Mullis et al. 1994). Křišťály jsou sbírány po staletí, nejen z důvodu jejich atraktivity pro sběratele, což dokazuje velké množství internetových odkazů na muzea, kde se vystavují, vykupují atd., ale i protože jsou nadále důležitým předmětem studia i použití na další výzkum. Předmětem přehledu informací o křišťálových křemenech z oblasti Alp bylo vyhledání lokalit na tomto území a posouzení jejich výskytu. Tento přehled povede k dalšímu studiu a to fluidních inkluzí v křišťálech, které dále více vypoví něco o vzniku křišťálů na konkrétních lokalitách, což může vést k definici provenience křišťálových artefaktů. Práce má elektronickou přílohu obsahující 25 map, které jsou k dispozici v Ústavu geologických věd u vedoucího práce.
8
LITERATURA: •
Anderson J. G. C. (1978): The Structure of Western Europe.- Pergamon Pr.
•
Bohatý M. (1997): Křišťál.- Minerál- Svět nerostů a drahých kamenů, 5, 1, 3-13. Brno.
•
Burkhard M., Sommaruga A. (1998): Evolution of the western Swiss Molasse basin: structural relations with the Alps and the Jura belt. Geological Society, London, Special Publications 134: 279-298.
•
Cícha J. (2008): Mırchnerkar a Saurőssel- významné lokality alpských žil v Zillertálských Alpách.- Minerál- Svět nerostů a drahých kamenů, 16, 4, 352. České Budějovice.
•
Kalvoda J., Bábek O., Brzobohatý R. (1998): Historická geologie.- MS. Přírodovědecká fakulta Univerzity Palackého. Olomouc.
•
Mísař Z. (1987): Regionální geologie světa.- Academia. Praha.
•
Mullis J., Dubessy J., Poty B. (1994): Fluid regimes during late stages of a continental collision- Physical, chemical, and stable isotope measurements of fluid inclusion in fissure quartz from a geotraverse through the Central Alps, Switzerland.Geochimica et cosmochimica acta, 58, 10, 2239-2267.
•
Mullis J. (1995): Genesis of Alpine fissure minerals.- Scientific and Technical Information, 11., 2, 54-64.
•
Novák M. (2008): Alpská parageneze.- Minerál- Svět nerostů a drahých kamenů, 16, 4, 291-294. České Budějovice.
•
Rogers J. J. W. (1994): A History of the Earth.- Cambridge University Press.
•
Seemann R. et al (1994): Mineral & Erz.- Naturhistorisches Museum Wien. Wien.
•
Suk M. (1998): Přehledná geologie Země.- MS. Přírodovědecká fakulta Masarykovy univerzity. Brno.
•
Swiss news (2007): Crystal miners of the Alps. 14-17. Schwitzerland.
1. http://www.geo.arizona.edu/geo5xx/geo527/Alps/overview1.html, 22.11.2008, 20-22.12.2008 2. http://www.kristalle.ch/sammlung/slidesSeedorf.asp, 9.12.2008 3. http://maps.google.cz/, 28.10.2008, 3.11.2009, 9-13.12.2008, 14.1.2009 4. http://www.mindat.org/show.php?id=6128&ld=1, 9-13.12.2008, 5-14.1.2009, 26-28.1.2009 9