www.plusindo.wordpress.com SOAL UN MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERUMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET K2C-F07 TAHUN PELAJARAN 2013/2014
1. Ekstrakurikuler pramuka suatu SMK akan menyelenggarakan kegiatan perkemahan. Untuk publikasinya mereka menggunakan kain spanduk dengan rancangan spanduk berukuran panjang 30 cm dan lebar 5 cm. Jika ukuran panjang spanduk yang akan dibuat adalah 6 m, maka lebar spanduk adalah .... m. A. 1 (kunci) B. 3 C. 5 D. 7 E. 9 Pembahasan: p: 30 cm → 6 m l: 5 cm → x m Termasuk perbandingan senilai karena semakin besar ukurannya panjangnya, berarti semakin besar juga ukuran lebarnya. 30 6 = 5 x 30 x = 6 x 5 6x5 x = 30 x = 1 Jadi, lebar spanduk 1 m. 2. Suatu rumah dapat dibuat dalam waktu 40 minggu dengan pekerja sebanyak 12 orang. Jika pembuatan rumah dipercepat menjadi 30 minggu, maka banyak pekerja yang harus ditambahkan adalah .... orang. A. 2 B. 3 C. 4 (kunci) D. 6 E. 16 Pembahasan: 40 minggu → 12 orang 30 minggu → x orang Termasuk perbandingan berbalik nilai karena semakin cepat proyek selesai, berarti pekerjanya semakin banyak. 40 x = 30 12 30 x = 40 x 12 40 x 12 x = 30 x = 16 Jadi, banyak pekerja yang harus ditambahkan = 16 – 12 = 4 orang. 3. Jarak kota A ke kota B pada peta adalah 9 cm. Jika skala peta tersebut 1 : 150.000, maka jarak sebenarnya adalah .... km. A. 1,35 B. 13,5 (kunci) C. 35 1
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com D. 40,5 E. 405 Pembahasan: JP S JS JP JS = S 9 cm = 1 150.000 150.000 = 9 cm . 1 = 1.350.000 cm = 13,5 km 2 3
1 6
3 4
4. Nilai dari 125 64 81 adalah .... A. –50 B. –25 C. 5 D. 25 E. 50 (kunci) Pembahasan: 2 3
1 6
125 64 81
3 4
2
1
3
= 53 3 26 6 34 4 = = = = =
x
2
x
1
3
53 3 26 6 34 x 4 52 21 33 25 – 2 + 27 23 + 27 50 2
ab 2c 2 5. Bentuk sederhana dari 2 3 adalah .... a bc A. a 2b 2c10 b2 B. 2 10 (kunci) ac a 2c10 C. b2 a 2b 2 D. c10 c10 E. 2 2 ab Pembahasan: ab 2c 2 2 3 a bc
2
a 2b 4c 4 = a 4b 2 c 6 = a 2 4b 4 2c 4 6 = a 2b 2c 10 b2 = 2 10 ac
6. Bentuk sederhana dari A. 4 2 3 B. 4 2 3
2 8 adalah …. 4 2 2 6
(kunci) 2
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com C. 8 4 3 D. 2 6 E. 8 2 4 6 Pembahasan: 2 8 2 8 4 2 2 6 = . 4 2 2 6 4 2 2 6 4 2 2 6 = = = = = =
2 8 4 22 6 4 2 .4 2 2 6 .2 6
2 8.4 2 2 8.2 6 16.2 4.6 8 16 4 48 32 24 8.4 4 16.3 8 32 4.4 3 8 32 16 3 8
2 8 = 42 3 4 2 2 6 7. Jika diketahui log 2 a dan log 3 b , maka nilai dari log120 adalah .... A. 1 a 2b B. 1 2a b (kunci) C. 1 a b 2 D. a 2b E. a b 2 Pembahasan: log 2 a log 3 b log120 = log4.3.10 = log 4 log 3 log10 = = = log120 =
log 22 b 1 2.log 2 b 1 2a b 1 1 2a b
8. Hasil dari 2 log16 3 log 9 2 log
1 adalah .... 2
A. –1 B. 0 C. 1 D. 2 E. 3 (kunci) Pembahasan: 1 = 2 = = = 1 2 log16 3 log 9 2 log = 2 2
log16 3 log 9 2 log
2
log 24 3 log 32 2 log 21
4.2 log 2 2.3 log 3 (1).2 log 2 4.1 2.1 1.1 4 2 1 3
3
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com 9. Nilai x yang memenuhi persamaan
2x 7 3 x adalah .... 4 4
A. 6 B. 5 (kunci) C. 4 D. –5 E. –6 Pembahasan: 2x 7 x 3 4 1 4 2x 7 4x 3 4 4 4(2 x 7) 4(4 x 3) 8 x 28 16 x 12 8 x 16 x 12 28 8 x 40 40 x 8 x5 10. Nilai x yang memenuhi pertidaksamaan
2 x 3 3x 3 8 adalah .... 3 2
4 A. x | x 12 , x R 5 3 B. x | x 12 , x R (kunci) 5 2 C. x | x 12 , x R 5 2 D. x | x 12 , x R 5 3 E. x | x 12 , x R 5 Pembahasan: 2 x 3 3x 3 8 3 2 2(2 x 3) 3(3 x 3) 8 6 4 x 6 9 x 9 8. 6 5 x 15 48 5 x 48 15 5 x 63 63 x 5 3 x 12 5 11. Diketahui dan merupakan akar-akar penyelesaian persamaan kuadrat 2 x 2 5 x 3 0 . Persamaan kuadrat baru yang akar-akar penyelesaiannya ( 2) dan ( 2) adalah .... A. 2 x 2 13x 15 0 (kunci) B. 2 x 2 13x 15 0 C. 2 x 2 13 x 15 0 D. x 2 13x 15 0 E. x 2 13x 15 0 4
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com Pembahasan: 2 x 2 5 x 3 0 dengan dan merupakan akar-akar penyelesaiannya. Persamaan kuadrat baru yang akar-akar penyelesaiannya ( 2) dan ( 2) adalah: 2( x 2)2 5( x 2) 3 0 2( x 2 2.x.(2) (2)2 ) 5 x 10 3 0 2( x 2 4 x 4) 5 x 7 0 2 x2 8x 8 5 x 7 0 2 x 2 13x 15 0 12. Himpunan penyelesaian dari pertidaksamaan kuadrat x 2 2 x 15, x R adalah .... A. x | x 5 atau x 3, x R B. x | x 5 atau x 3, x R C. x | 5 x 3, x R D. x | 5 x 3, x R (kunci) E. x | 5 x 3, x R Pembahasan: x 2 2 x 15 x 2 2 x 15 0 Pembuat nol: x 2 2 x 15 0 ( x 5)( x 3) 0 x 5 x 3 +++
--–5
0
+++ 3
Hp = x | 5 x 3, x R 13. Diketahui dan merupakan akar-akar penyelesaian persamaan kuadrat 5 x 2 6 x 4 0 . 1 1 Nilai dari 2 2 adalah .... A. –4 B. –1 3 C. 4 1 D. (kunci) 4 1 E. 4 Pembahasan: 5x 2 6 x 4 0 b ( 6) 6 a 5 5 c 4 . a 5 1 1 2 2 = 2 2 2 . 2
2 2 = ( . )2 ( ) 2 2( . ) = ( . )2
5
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com 2
=
=
=
=
= =
1 1 2 = 2
6 4 2 5 5 2 4 5 36 8 25 5 16 25 36 40 25 16 25 4 25 16 25 4 25 . 25 16 4 16 1 4
14. Harga 4 buku tulis dan 3 pensil adalah Rp25.000,00. Harga 6 buku tulis dan 5 pensil di toko yang sama adalah Rp39.000,00. Harga satu buku tulis dan satu pensil adalah .... A. Rp5.000,00 B. Rp7.000,00 (kunci) C. Rp7.800,00 D. Rp9.000,00 E. Rp11.000,00 Pembahasan: Harga 4 buku tulis dan 3 pensil adalah Rp25.000,00 → 4 x 3 y 25.000 | x 5 Harga 6 buku tulis dan 5 pensil adalah Rp39.000,00 → 6 x 5 y 39.000 | x 3 Sehingga: 20 x 15 y 125.000 18 x 15 y 117.000 2 x 8.000 8.000 x 2 x 4.000
4 x 3 y 25.000 4(4.000) 3 y 25.000 16.000 3 y 25.000 3 y 25.000 16.000 3 y 9.000 9.000 y 3 y 3.000 Harga satu buku tulis dan satu pensil = x y 4.000 3.000 7.000
6
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com 2x 5 2 dan Q = 15. Diketahui matriks P = 3 1 x y adalah …. A. –11 (kunci) B. –7 C. –4 D. 4 E. 7 Pembahasan: P QT
2x 5 2 3 1 3 2 x y 1 2x 5 2 3 2 3 1 x y 1 2 x 5 3 2 x 3 5 2 x 8 x 4 x y3 4 y 3 y 3 4 y7 x y 4 7 11
3 1 . Jika matriks P QT , maka nilai 2 x y
T
1 2 4 0 2 , B = 16. Diketahui matriks A = 2 3 5 1 7 A 2B C adalah .... 0 2 14 A. (kunci) 1 10 2 0 0 6 B. 7 1 1 2 1 4 C. 1 0 5 0 2 0 D. 2 4 2 3 2 5 E. 0 1 14 Pembahasan: 1 2 4 0 2 6 1 4 2 A 2B C = 2 3 5 1 7 1 3 1 1 2 4 0 4 12 1 4 = 2 3 5 2 14 2 3 1 4 12 2 1 0 1 2 4 4 = 2 2 3 3 14 1 5 (2) 5 0 2 14 A 2B C = 1 10 2
7
6 1 4 2 , dan C = . Matriks 1 3 1 5
2 5 2 5
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com 1 3 dan B = 17. Diketahui matriks A = 2 4 23 7 A. 34 6 23 7 B. 34 6 13 7 C. 34 6 13 7 D. 34 6 13 7 (kunci) E. 34 6 Pembahasan: 1 3 5 1 x A x B = 2 4 6 2 1.5 3.6 1.1 3.(2) = 2.1 4.(2) 2.5 4.6 5 18 1 6 = 10 24 2 8 13 7 A x B = 34 6
5 1 . Matriks A x B adalah .... 6 2
18. Untuk membuat barang A diperlukan 6 jam pada mesin I dan 4 jam pada mesin II. Sedangkan membuat barang B diperlukan 2 jam pada mesin I dan 8 jam pada mesin II. Kedua mesin tersebut setiap harinya masing-masing bekerja tidak lebih dari 18 jam. Jika setiap hari membuat x barang A dan y barang B, maka model matematika permasalahan tersebut adalah .... A. 2 x 3 y 9; 4 x y 9; x 0; y 0 B. 3 x 2 y 9; 2 x 4 y 9; x 0; y 0 C. 3 x y 9; 2 x 4 y 9; x 0; y 0 (kunci) D. x 3 y 9; 4 x 2 y 9; x 0; y 0 E. 4 x 3 y 9; x 2 y 9; x 0; y 0 Pembahasan: Jika: banyak barang A = x banyak barang A = y Model matematikanya: mesin I : 6 x 2 y 18 , karena mesin bekerja tidak lebih dari 18 jam, berarti disederhanakan menjadi 3 x y 9 ... (1) mesin II : 4 x 8 y 18 , karena mesin bekerja tidak lebih dari 18 jam, berarti disederhanakan menjadi 2 x 4 y 9 ... (2) model matematika wajib: x 0 ... (3) dan y 0 ... (4)
8
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com 19. Daerah penyelesaian dari sistem pertidaksaman linier 2 x y 6 ; 3 x y 3 ; x 0 ; y 0 ; x, y R adalah .... y A. I B. II C. III (kunci) D. IV 6 E. V III II
IV V 3
1
x
I –3
Pembahasan: y
6
–3x+y=–3 III 3x–y=3 II
IV V 1
I
3
x
6x+3y=18 2x+y=6
–3 Untuk menentukan atau , kita lihat dari posisi daerah penyelesaiannya. Jika daerah penyelesaiannya di sebelah kiri atau bawah, maka . Sedangkan jika daerah penyelesaiannya di sebelah kanan atau atas, maka . Berarti daerah yang memenuhi: 2 x y 6 ; 3 x y 3 ; x 0 ; y 0 adalah daerah III. 20. Daerah yang diarsir pada grafik di samping merupakan daerah penyelesaian dari sistem pertidaksamaan linier. Nilai minimum dari fungsi objektif f ( x, y ) 7 x 2 y adalah .... y A. 8 B. 12 C. 20 (kunci) D. 28 6 E. 56 4 4
8
x
9
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com Pembahasan: y Titik potong: 3 x 2 y 12 x 2y 8 2x 4 x2 x 2y 8 (2) 2 y 8 2y 8 2 2y 6 y 3 (2 , 3)
6 4
(2 , 3) x 8 4 4x+8y=32 6x+4y=24 x+2y=8 3x+2y=12
Titik Pojok (x , y) (8 , 0) (4 , 0) (2 , 3)
Fungsi Objektif: f ( x, y ) 7 x 2 y f (8,0) 7(8) 2(0) 56 f (4,0) 7(4) 2(0) 28 f (2,3) 7(2) 2(3) 14 6 20 .... Nilai minimum
21. Suatu hotel memiliki 72 kamar yang terdiri atas kamar tipe I dan kamar tipe II. Kamar tipe I berdaya tampung 2 orang dan kamar tipe II berdaya tampung 3 orang. Daya tampung kamar keseluruhan adalah 180 orang. Apabila sewa kamar tipe I Rp250.000,00 per hari dan kamar tipe II Rp150.000,00 per hari. Pendapatan maksimal yang diperoleh oleh pengelola hotel adalah.... A. Rp9.000.000,00 B. Rp10.800.000,00 C. Rp13.500.000,00 D. Rp14.400.000,00 (kunci) E. Rp18.000.000,00 Pembahasan: Jika: banyak kamar tipe I = x banyak kamar tipe II = y Model matematikanya: Banyak kamar : x y 72 .... (1) Banyak orang : 2 x 3 y 180 .... (2) Banyak kamar tipe I dan II tidak mungkin negatif, berarti: x 0 .... (3) y 0 .... (4) Grafik daerah penyelesaian: y 72 60
Titik potong kedua garis: 2 x 3 y 180 |x 1 → 2 x 3 y 180 x y 72 |x 2 → 2 x 2 y 144 (36 , 36) y 36 x y 72 x x 36 72 72 90 x 72 36 2x + 3y = 180 x + y = 72 x 36 Sehingga titik potong kedua garis tersebut (36 , 36)
10
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com Titik Pojok (x , y) (72 , 0) (0 , 60) (36 , 36)
Fungsi objektif f ( x, y ) 250.000 x 150.000 y
f (72,0) 250.000(72) 150.000(0) 18.000.000 f (0,60) 250.000(0) 150.000(60) 9.000.000 f (36,36) 250.000(36) 150.000(36) 9.000.000 5.400.000 14.400.000
Jadi, pendapatan maksimal adalah Rp14.400.000,00 22. Perhatikan gambar di bawah ini! 11 cm 7 cm 24 cm
Keliling bangun datar di atas adalah .... cm. A. 64 B. 68 C. 79 D. 86 E. 97 (kunci) Pembahasan: 3 Keliling bangun = .KO 11 7 2 242 24 (11 7) 4 3 = .2. .r 11 49 576 24 4 4 3 22 = .2. .7 11 625 28 4 7 3 = .44 39 25 4 = 33 64 Keliling bangun = 97
28 cm
23. Luas daerah yang diarsir pada gambar di bawah ini adalah .... cm 2 .
14 cm A. 77 B. 154 C. 308 D. 392 E. 777 (kunci) Pembahasan: 1 1 Luas bangun = L persegi panjang .LOkecil .LO besar 2 2 1 1 2 2 = p.l . .rk . .rb 2 2 11
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com 1 22 1 22 = 28.14 . .7 2 . .14 2 2 7 2 7 2 2 2 .7 = 392 11.7 11. 7 = 392 77 11.4.7 = 469 308 Luas bangun = 777
24. Mira membuat kue ulang tahun dengan ukuran panjang 50 cm dan lebar 40 cm. Ia menghias bagian pinggir kue dengan menggunakan coklat berwarna pink. Jika setiap 10 cm bagian pinggir kue membutuhkan 0,8 ons coklat dan harga 1 ons coklat Rp4.000,00, maka biaya yang dikeluarkan Mira untuk membeli coklat berwarna pink adalah ... A. Rp36.000,00 B. Rp42.000,00 C. Rp56.000,00 D. Rp57.600,00 (kunci) E. Rp72.000,00 Pembahasan: Luas yang akan diberi coklat = 2( p l ) = 2(50 40) = 180 180 Bagian coklat = 10 = 18 Kebutuhan coklat = 18 x 0,8 ons = 14,4 ons Biaya coklat = 14,4 x 4000 = 57.600 25. Suatu taman berbentuk lingkaran dengan jari-jari 14 m. Di tengah-tengah taman tersebut dibangun kolam renang berbentuk persegi panjang dengan ukuran 15 m x 20 m, sedangkan sisanya akan ditanami rumput. Luas lahan yang akan ditanami rumput adalah .... m 2 . A. 196 B. 210 C. 300 D. 316 (kunci) E. 616 Pembahasan: Luas lahan yang akan ditanami rumput = LO L persegi panjang = .r 2 p.l 22 2 = .14 15.20 7 22 = .(2.7) 2 300 7 22 2 2 = .2 .7 300 7 = 22.4.7 300 = 616 300 = 316 26. Jika rumus suku ke-n suatu barisan bilangan adalah Un 2n 2 7 n 12 , maka nilai suku ke15 barisan tersebut adalah .... A. 132 B. 142 C. 342 D. 345 12
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com E. 357 (kunci) Pembahasan: Un 2n 2 7 n 12 U15 2(15)2 7(15) 12 U15 2(225) 105 12 U15 450 105 12 U15 345 12 U15 357 27. Rumus suku ke-n dari barisan bilangan 3, 9, 15, 21, ... adalah .... A. Un 3n 1 B. Un 6n 3 (kunci) C. Un 3n 1 D. Un n 2 1 E. Un n 3 1 Pembahasan: 3, 9, 15, 21, ... Beda barisan di atas tetap yaitu 6, berarti barisan aritmatika dengan b 6 dan suku pertama a3 Rumus suku ke-n dari barisan tersebut adalah: Un a (n 1)b Un 3 (n 1)6 Un 3 6n 6 Un 6n 3 28. Suku ke-4 dan suku ke-9 suatu barisan aritmatika berturut-turut adalah –11 dan 4. Nilai suku ke-7 barisan tersebut adalah .... A. –9 B. –6 C. –2 (kunci) D. 1 E. 2 Pembahasan: Rumus suku ke-n dari barisan aritmatika adalah Un a (n 1)b U 4 11 → a 3b 11 U 9 4 → a 8b 4 5b 15 b3 a 8b 4 a 8(3) 4 a 24 4 a 4 24 a 20 U 7 a (7 1)b U 7 20 (6)3 U 7 20 18 U 7 2 29. Suku ke-5 dan suku ke-12 suatu deret aritmatika adalah 40 dan 117. Jumlah 17 suku pertama deret tersebut adalah .... A. 1.122 B. 1.428 (kunci) C. 1.496 D. 1.564 13
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com E. 2.244 Pembahasan: U 5 40 → a 4b 40 U12 117 → a 11b 117 7b 77 b 11 a 4b 40 a 4(11) 40 a 44 40 a 40 44 a 4 Jumlah n suku pertama deret aritmatika adalah S n =
n (2a (n 1)b) 2
Sehingga: 17 2(4) (17 1)(11) 2 17 = 8 (16)(11) 2 17 = 8 176 2 17 = 168 2 = 1784 =1.428
S17 =
S17
30. Unit produksi suatu SMK mendapat pesanan kartu nama. Banyak pesanan pada bulan pertama adalah 150 set kartu nama. Jika pada setiap bulan berikutnya banyak pesanan selalu 1 meningkat sebesar 22 set kartu nama, maka jumlah kartu nama yang diproduksi selama 2 tahun pertama adalah .... set kartu nama. A. 238 B. 260 C. 282 D. 1.230 (kunci) E. 1.296 Pembahasan: a 150 , b 22 n Sn = (2a (n 1)b) 2 6 S6 = (2(150) (6 1)22) 2 = 3(300 (5)22) = 3(300 110) = 3(410) S6 = 1.230 3 31. Suku pertama dan suku ke-6 suatu barisan geometri berturut-turut adalah dan 24. Nilai 4 suku-ke-9 barisan tesebut adalah .... A. 48 B. 64 C. 96 D. 192 (kunci) E. 384
14
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com Pembahasan: Barisan geometri: a
3 4
Un a.r n 1 U 6 24 3 6 1 .r 24 4 3 5 .r 24 4 4 r 5 24. 3 5 r 32 r 5 32 r2
Un a.r n 1 3 U 9 . 2 9 1 4 3 U 9 .28 4 3 U 9 .256 4 U 9 192 32. Suatu bakteri setiap 5 menit membelah menjadi 3. Banyak bakteri hasil pembelahan pada menit ke-20 adalah .... A. 18 B. 27 C. 39 D. 81 (kunci) E. 120
15
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com Pembahasan: Satu bakteri setiap 5 menit membelah menjadi 3, sehingga bentuk umumnya Un 3n . Membelah setiap 5 menit sekali, berarti menit ke-20 adalah U 4 . U 4 34 81 33. Suku pertama dan suku ke-3 suatu barisan geometri adalah –4 dan –16. Jumlah empat suku pertama barisan tersebut adalah .... A. –60 (kunci) B. –44 C. 14 D. 44 E. 60 Pembahasan: Suku ke-n barisan geometri adalah U n a.r n1 U 3 16 U1 4
a.r 2 4 a r2 4 r 4 r2 a 4 , r 2 sehinga r 1 . Sehingga: a.(r n 1) Sn = r 1 4.(24 1) S4 = 2 1 = 4.(16 1) = 4.(15) S 4 = 60 34. Diagram berikut menunjukkan data olahraga kegemaran 120 siswa kelas XII suatu SMK volly bulutangkis tenis meja 20% basket 15%
Sepak bola 30%
Jika setiap siswa hanya boleh memilih satu jenis olahraga yang digemari, banyak siswa yang gemar olahraga volly sebanyak .... siswa. A. 12 (kunci) B. 15 C. 20 D. 25 E. 30 Pembahasan: % Volly = 100% (25% 30% 15% 20%) = 100% 90% = 10% banyak siswa yang gemar olahraga volly = 10%.120 10 = .120 12 siswa 100 16
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com 35. Rata-rata berat badan 50 orang adalah 50 kg. Setelah ditambah 5 orang, rata-ratanya menjadi 52 kg. Rata-rata berat badan 5 orang tersebut adalah .... kg. A. 62 B. 64 C. 68 D. 70 E. 72 (kunci) Pembahasan: n .x1 n2 .x 2 x gabungan 1 n1 n2
50.50 5.x 2 50 5 2.500 5.x 2 52 55 52.55 2.500 5.x 2 2.860 2.500 5.x 2 2.860 2.500 5.x 2 5.x 2 360 360 x2 5 x 2 72 52
36. Cermati tabel berikut! Nilai Frekuensi 6 – 10 5 11 – 15 6 16 – 20 10 21 – 25 15 26 – 30 8 31 – 35 6 Jumlah 50 Median dari data pada tabel di atas adalah .... A. 21,56 B. 21,83 (kunci) C. 22,33 D. 22,50 E. 25,59 Pembahasan: Nilai Frekuensi Fk 6 – 10 5 5 11 – 15 6 11 16 – 20 10 21 21 – 25 15 36 26 – 30 8 44 31 – 35 6 50 Jumlah 50 1 Letak Median = .n 2 1 = .50 2 = 25 Kelas Median: 21 – 25
17
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com
letak Me fks Median = Tb .l f Me 25 21 = (21 0,5) .5 15 4 = 20,5 3 = 20,5 + 1,33 Median = 21,83 37. Simpangan baku dari data: 5, 8, 9, 12, 6 adalah .... 6 A. 5 B. 2 12 C. 5
19 5 E. 6 (kunci) Pembahasan: D.
5 8 9 12 6 5 40 = 5 x = 8
x =
n
(x
i
SB =
x) 2
i 1
n
=
(5 8) 2 (8 8) 2 (9 8) 2 (12 8) 2 (6 8) 2 5
=
9 0 1 16 4 5
=
30 5
SB =
6
38. Rata-rata dan simpangan baku dari sekumpulan datum adalah 6,3 dan 0,5. Salah satu datum adalah 5,8. Angka baku dari sekumpulan datum tersebut adalah .... A. –2 B. –1 C. 0 D. 1 E. 2 Pembahasan: AB = xi x
SB = 5,8 6,3 0,5 0,5 = 0,5 AB = 1
18
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd
www.plusindo.wordpress.com 39. Koefisien variasi dari data: 4, 5, 5, 4, 7, 5 adalah .... % A. 0,02 B. 0,2 C. 2 D. 20 E. 22 Pembahasan: Data: 4, 5, 5, 4, 7, 5 455 47 5 6 30 = 6
x =
x = 5 ( 4 5) 2 (5 5) 2 (5 5) 2 (4 5) 2 (7 5) 2 (5 5) 2 6
SB = =
1 0 0 1 4 0 6
=
6 6
= 1 SB = 1 KV = SB .100% x 1 = .100% 5
KV = 20% 40. Diketahui tan
15 untuk interval 180o 270o . Nilai cos adalah .... 8
15 7 15 B. 8 8 C. (kunci) 17 17 D. 15 15 E. 8 Pembahasan: 15 tan untuk interval 180o 270o , berarti sudut di kuadran III, sehingga cos 8 bernilai negatif.
A.
r 152 82
r 225 64 r 289 r 17 samping cos = miring 8 cos = 17
19
Pembahasan UN Mat SMK Pariwisata dkk Andri Nurhidayat, S.Pd