Verbetering randvoorwaardenmodel DEELRAPPORT 5 – ACTUALISATIE VAN HET 3D SCHELDEMODEL
00_018
WL Rapporten
Verbetering randvoorwaardenmodel Deelrapport 5 – Actualisatie van het 3D Scheldemodel Verheyen, B.; Vanlede, J.; Decrop, B.; Verwaest, T.; Mostaert, F.
April 2013
WL2013R00_018_5rev2_0 I/RA/11382/12.152/VBA
F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
This publication must be cited as follows:
Verheyen, B.; Vanlede, J.; Decrop, B.; Verwaest, T.; Mostaert, F. (2013). Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel. Version 2_0. WL Rapporten, 00_018. Flanders Hydraulics Research & IMDC: Antwerp, Belgium.
Published by:
Waterbouwkundig Laboratorium Flanders Hydraulics Research B-2140 Antwerp Tel. +32 (0)3 224 60 35 Fax +32 (0)3 224 60 36 E-mail:
[email protected] www.watlab.be
In collaboration with:
International Marine and Dredging Consultants nv Coveliersstraat 15 B-2600 Antwerpen Tel: +32 (0) 3 270 92 23 Fax: +32 (0) 3 235 67 11 www.imdc.be
Nothing from this publication may be duplicated and/or published by means of print, photocopy, microfilm or otherwise, without the written consent of the publisher.
F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Contents 1.
Introduction ............................................................................................................................................... 1
2.
Units and reference plane ........................................................................................................................ 2
3.
Abbreviations ............................................................................................................................................ 3
4.
Available data ........................................................................................................................................... 4 4.1.
Water levels ...................................................................................................................................... 4
4.2.
Flow Velocity ..................................................................................................................................... 6
4.3.
Discharge .......................................................................................................................................... 7
4.4.
Transects with ebb and flood discharge ............................................................................................ 7
4.5.
Salinity ............................................................................................................................................... 9
5.
Methodology ........................................................................................................................................... 10
6.
Model description ................................................................................................................................... 11 6.1.
The NEVLA model .......................................................................................................................... 11
6.2.
Bathymetry ...................................................................................................................................... 11
6.3.
Boundary conditions ........................................................................................................................ 11
6.4.
Model parameters ........................................................................................................................... 12
7.
Actualization of the 3D Nevla model ...................................................................................................... 17 7.1.
List of executed scenarios ............................................................................................................... 17
7.2.
Model changes ................................................................................................................................ 17
8.
7.2.1.
Model grid and bathymetry improvements ............................................................................... 17
7.2.2.
Training walls: strek- and leidam.............................................................................................. 18
7.2.3.
Bathymetry Belgian Continental Shelf...................................................................................... 19
7.2.4.
Initial conditions........................................................................................................................ 21
7.2.5.
Discharge Merelbeke ............................................................................................................... 21
Model results .......................................................................................................................................... 24 8.1.
Comparison to reference run (simG19) ........................................................................................... 24
8.2.
Annual run with the actualized model simG34 (year 2006) ............................................................. 36
9.
Conclusions and recommendations ....................................................................................................... 44 9.1. 9.2.
10.
Conclusions ..................................................................................................................................... 44 Recommendations .......................................................................................................................... 44 List of references ................................................................................................................................ 46
Appendix A
Definition of statistical parameters .......................................................................................A1
Appendix B
Hypsometric curves ..............................................................................................................A4
Appendix C
Tidal analysis ........................................................................................................................A8
Appendix D
Discharges .........................................................................................................................A42
Appendix E
Time series of stationary velocities ....................................................................................A47
Appendix F
Time series of salinities ......................................................................................................A54
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
I
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
List of tables Table 4-1: Available stations with water level measurments for the year 2006. .............................................. 4 Table 4-2: Stationary velocity measurement. .................................................................................................. 6 Table 4-3: Overview available discharge data. ................................................................................................ 7 Table 4-4: Overview of available transects with ebb and flood discharges. .................................................... 7 Table 4-5: Overview of available stations with salinity measurements. ........................................................... 9 Table 6-1: Layer distribution in the 3D Nevla model. ..................................................................................... 12 Table 7-1: Overview of executed scenarios. ................................................................................................. 17 Table 10-2: Model qualification for different RMAE ranges, based on Sutherland et al. (2003). ...................A3
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
II
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
List of figures Figure 4-1: Available measurement locations. ................................................................................................ 6 Figure 4-2: Overview transects with ebb and flood discharges. ...................................................................... 8 Figure 6-1: Grids of the overall ZUNO model (blue) and detailed NEVLA model (red). ................................ 13 Figure 6-2: Grid domain NEVLA 3D model (simG19 and simG34). .............................................................. 14 Figure 6-3: Bathymetry (mNAP) NEVLA 3D model (simG34). ...................................................................... 15 Figure 6-4: Bottom roughness (in Manning) in the Nevla 3D model (simG34). ............................................. 16 Figure 7-1: Model grid adaptions for simG28 and simG34, compared to simG19, in Lower Sea Scheldt (upper) and Upper Sea Scheldt (lower). ........................................................................................................ 18 Figure 7-2: Model bathymetry near the training walls for simG19 (upper) and sisimG29 and simG34 (lower). ....................................................................................................................................................................... 19 Figure 7-3: Bathymetry of the BCS before the new interpolation (top) and after the new interpolation (below). Note the bad representation and transition in the western part of the BCS in the upper figure. ...... 20 Figure 7-4: Difference in new and old bathymetry (positive values indicate a deeper new bathymetry). The figure clearly shows the discontinuous old bathymetry in the West and the bad interpolation of the sand banks. ............................................................................................................................................................ 21 Figure 7-5: Velocity field in the Dijle 15 minutes before the simulation crashes due to a too high velocity gradient. ......................................................................................................................................................... 22 Figure 7-6: Model grid in the section of the Dijle where the high velocity gradient occurred. Outer dike areas are clearly present in the model. ................................................................................................................... 22 Figure 7-7: Bathymetry and discharge location at Merelbeke for simG19. .................................................... 23 Figure 7-8: Bathymetry and discharger location at Merelbeke for simG34. .................................................. 23 Figure 8-1: Analysis of modelled (simG19, simG34) and measured tidal component M2 for amplitude (upper) and phase (lower). ............................................................................................................................ 25 Figure 8-2: Analysis of modelled (simG19, simG34) and measured amplitude of tidal components M4 (upper) and M6 (lower). ................................................................................................................................ 26 Figure 8-3: RMSE between simG34 and simG19 of the complete timeseries of water level along the Scheldt estuary. .......................................................................................................................................................... 27 Figure 8-4: Calculated water level (simG19 and simG34) and measured water level in Schoonaarde. The new reference run (simG34) reproduces better the LW. ............................................................................... 27 Figure 8-5: Velocity field of the old reference run (simG19) around the training walls. The current cannot pass over the training wall. ............................................................................................................................ 28 Figure 8-6: Velocity field of the new reference run (simG34) around the training walls. The current can pass over the training wall around high water. ....................................................................................................... 29 Figure 8-7: Stationary velocities for simG19 and simG34 in BCS, Westhinder (upper) and Wandelaar (lower). ........................................................................................................................................................... 30 Figure 8-8: Stationary velocities for simG19 and simG34 around training wall, downstream in Bath (upper) and between both training walls in Zandvliet (lower). .................................................................................... 31 Figure 8-9: Stationary velocities for simG19 and simG34 in Sea Scheldt, upstream training wall in the Lower Sea Scheldt in Antwerp (upper) and in the Upper Sea Scheldt in Schoonaarde (lower)............................... 32 Figure 8-10: Stationary velocities for simG19 and simG28 up to simG34 around the training walls, between both training walls in Zandvliet (upper), and just upstream in Boei 97 (lower). ............................................. 33 Figure 8-11: Modelled (simG19 and simG34) and measured discharges in the Western Scheldt over Gat van Ossenisse (upper) and Middelgat (lower). .............................................................................................. 34 Figure 8-12: Modelled (simG19 and simG34) and measured discharges in the Lower Sea Scheldt, Oosterweel (upper) and the Upper Sea Scheldt, Schoonaarde (lower). ....................................................... 35 Figure 8-13: Analysis of modelled (simG34) and measured tidal component M2 for amplitude (upper) and phase (lower). ................................................................................................................................................ 38
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
III
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-14: Analysis of modelled (simG34) and measured properties of assymetry of vertical tide, amplitude ratio M4/M2 (upper) and phase shift 2M2-M4 (lower). .................................................................. 39 Figure 8-15: Vector difference (simG34 versus measurements) of the 10 main components (Z0, M2, N2, S2, L2, MU2, K1, O1, M4, M6) for the different stations along the Scheldt estuary. ........................................... 40 Figure 8-16: Low passed average error at Vlissingen of model results (simG34) minus measurements. .... 40 Figure 8-17: Modelled (simG34) and observed velocities in the BCS, Wandelaar (upper) and Bol van Heist (lower). ........................................................................................................................................................... 41 Figure 8-18: Modelled (simG34) and observed velocities in the BCS, A2B Boei (MOW1) (upper) and in the Lower Sea Scheldt, Oosterweel (lower). ....................................................................................................... 42 Figure 8-19: Modelled (simG34) and observed salinities at the mouth of the Scheldt, Vlakte van de Raan (upper) and upstream in the Lower Sea Scheldt, Boei 84 (lower). ................................................................ 43 Figure 10-1: Definition of straight and oblique setup (after Adema, 2006). ...................................................A1
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
IV
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
1.
Introduction
In the framework of the project “Verbetering randvoorwaardenmodel” a constant maintenance and improvement of the NEVLA model is performed. This hydrodynamic model is designed with the SIMONA software and includes a large part of the BCS, the Scheldt estuary and all its tributaries which are tidally influenced. The NEVLA model is extensively used in research both internally and externally of Flanders Hydraulics Research, among which the LTV O&M projects considering the themes “Veiligheid” and “Toegankelijkheid”. Already a large effort has been done improving the performance of the depth averaged (2D) version of the NEVLA model. A sensitivity analysis and first calibration are described in ‘Verbetering randvoorwaardenmodel – Deelrapport 1: Gevoeligheidsanalyse’ (Vanlede et al., 2008a) and ‘Verbetering randvoorwaardenmodel – Deelrapport 2: Afregelen van het Scheldemodel’ (Vanlede et al., 2008b). Further detailed improvements were performed and can be found in ‘Verbetering randvoorwaardenmodel – Deelrapport 3: Kalibratie bovenlopen’ (Maximova et al., 2009a) and ‘Verbetering randvoorwaardenmodel – Deelrapport 4: Extra aanpassingen Zeeschelde’ (Maximova et al., 2009b). Future research will focus more on the 3D development of the NEVLA model. Previous 3D versions of the NEVLA model are described in van Kessel et al. (2008) and (2010) where the hydrodynamic output of the NEVLA model was used as a driving force for a mud transport model. The present document describes the developments in the NEVLA3D model with respect to the 3D model used in van Kessel et al. (2010). The model grid and bathymetry improvements made by FHR in 2009 in the 2D NEVLA model (Maximova et al, 2009a & 2009b) are integrated in the 3D NEVLA model. Furthermore, an update of the bathymetry of the BCS is performed, the discharge location and local bathymetry at Merelbeke have been changed and a new initial condition is applied. The hydrodynamic scenario used in van Kessel et al. (2010) (simG19) is used as reference run in the description. Run-ID’s higher then simG19 represent consecutive changes, which resulted in the hydrodynamic scenario simG34. In simG34 the hydrodynamics of the year 2006 are calculated. The model settings (viscosity, roughness, time step) are not changed from simG19 to simG34. The actualized model simG34 is used for sediment transport calculations in van Kessel et al (2011). A new calibration of the roughness field for the 3D model is scheduled in 2012 at FHR (Vanlede et al., 2012 in preparation).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
1
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
2.
Units and reference plane
Times are represented in MET. Depths, altitudes and water levels are represented in meters NAP. Depths are positive downwards and water levels are positive upwards. The horizontal coordinate system is RD Parijs.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
2
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
3.
Abbreviations
ADCP
Acoustic Doppler Current Profiler
aMT
Afdeling Maritieme Toegang
BCS
Belgian Continental Shelf
BMM DGD
Beheerseenheid van het Mathematisch Model van de Noordzee (zie ook MUMM) Deurganckdok
FHR
Flanders Hydraulics Research
HIC
Hydrologisch InformatieCentrum
HMCZ
Hydro Meteo Centrum Zeeland
HW
High Water
KNMI
Koninklijk Nederlands Meteorologisch Instituut
LW
Low Water
MAE
Mean absolute error
MET
Mean European Time
MVB
Meetnet Vlaamse Banken
MUMM NAP
Management Unit of the North Sea Mathematical Models and the Scheldt Estuary (zie ook BMM) Normaal Amsterdams Peil (vertical reference system)
NEVLA
Nederlands-Vlaams waterbewegingsmodel
RD Parijs
Rijksdriehoekscoördinaten Parijs (horizontal reference system)
RMAE
Relative mean absolute error
RMSE
Root mean square error
RWS
Rijkswaterstaat
TAW
Tweede algemene waterpassing (vertical reference system)
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
3
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
4.
Available data
4.1.
Water levels
For the year 2006, water level measurements are available at 48 stations with time-interval of 10 minutes, see Table 4-1. The locations of these stations are represented in Figure 4-1. The data are obtained from MVB, HMCZ and HIC. Table 4-1: Available stations with water level measurments for the year 2006.
Nr
Measuring station
Data source
1.
Antwerpen
HIC
2.
Antwerpen
HMCZ
3.
Appelzak (MOW2)
MVB
4.
Baalhoek
HMCZ
5.
Bath
HMCZ
6.
Bol Knokke
MVB
7.
Boom
HIC
8.
Borssele
HMCZ
9.
Boudewijnsluis
HIC
10.
Breskens
HMCZ
11.
Cadzand
HMCZ
12.
Dendermonde
HIC
13.
Duffel
HIC
14.
Emblem
HIC
15.
Hansweert
HMCZ
16.
Hemiksem
HIC
17.
Hombeek
HIC
18.
Kallo
HIC
19.
Kallo
HMCZ
20.
Kessel
HIC
21.
Liefkenshoek
HMCZ
22.
Liefkenshoek
HIC
23.
Lier Maasfort
HIC
24.
Lief Molbrug
HIC
25.
Mechelen stuw afwaarts
HIC
26.
Melle
HIC
27.
Nieuwpoort
MVB
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
4
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
28.
Oostende
MVB
29.
Overloop Hansweert
HMCZ
30.
Rijmenam
HIC
31.
Schaar Van De Noord
HMCZ
32.
Schelle
HIC
33.
Schoonaarde
HIC
34.
St Amands
HIC
35.
Temse
HIC
36.
Terneuzen
HMCZ
37.
Tielrode
HIC
38.
Vlakte Van De Raan
HMCZ
39.
Vlissingen
HMCZ
40.
Walem
HIC
41.
Walsoorden
HMCZ
42.
Wandelaar
MVB
43.
Westhinder
MVB
44.
Westkapelle
HMCZ
45.
Wetteren
HIC
46.
Zandvliet
HIC
47.
Zeebrugge
MVB
48.
Zemst
HIC
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
5
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 4-1: Available measurement locations.
4.2.
Flow Velocity
Available stationary velocity measurements for the year 2006 are listed in Table 4-2. The location of the stations can be found in Figure 4-1. Table 4-2: Stationary velocity measurement.
Nr
Measuring station
Data source
1.
Bol van Heist (MOW3)
MVB
2.
Wandelaar
MVB
3.
Tripod deployment MOW1 (ADP)
BMM
4.
Tripod deployment Blankenberge (ADP)
BMM
A2B-boei (MOW1)
IMDC
5.
Availability 1/01/2006 – 30/06/2006 & 3/07/2006 – 1/01/2007 1/01/2006 – 1/01/2007 14/02/2006 – 27/02/2006 & 15/05/2006 – 15/06/2006 8/11/2006 – 15/12/2006 30/06/2006 – 26/08/2006 & 1/09/2006 – 10/11/2006 & 20/12/2006 – 1/01/2007 1/01/2006 – 12/01/2006 &
6.
Oosterweel
IMDC
26/01/2006 – 22/06/2006 & 29/06/2006 – 24/08/2006 & 28/09/2006 – 1/01/2007
7.
Boei 97
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
IMDC
WL2013R00_018_5rev2_0
20/12/2006 – 1/01/2007
6
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
4.3.
Discharge
Upstream of the model 8 sources with discharges are imposed. Table 4-3 lists the data used for these boundary conditions. The location of the stations can be found in Figure 4-1. Table 4-3: Overview available discharge data.
Nr
Location
Data source
Data description
1.
Scheldt – Merelbeke
HIC
Measured daily averaged time series at Melle
2.
Dender – Dendermonde
HIC
Measured daily averaged time series at Appels
3.
Zenne – Zemst
HIC
Measured (Q-H) daily averaged time series at Eppegem
4.
Dijle - Haacht
HIC
Measured (Q-H) daily averaged time series at Haacht
5.
Grote Nete - Itegem
HIC
Measured (Q-H) daily averaged time series at Itegem
6.
Kleine Nete - Grobbendonk
HIC
Measured (Q-H) daily averaged time series at Grobbendonk
7.
Kanaal Gent-Terneuzen
HIC
Hourly values
8.
Spuikanaal Bath
RWS Zeeland
10 minute values
4.4.
Transects with ebb and flood discharge
Based on sailed ADCP transects, ebb and flood discharges are defined. These discharges represent a 13 hour measurement of one tidal cycle. Table 4-4 list all the available transects for which a 13 hour measurement is available. Figure 4-2 gives an overview of the location of the transects. Table 4-4: Overview of available transects with ebb and flood discharges.
Nr
Transect
Data source
1.
Raai 13: Oostgat-Deurloo-Wielingen
RWS Zeeland
2.
Raai 12: Wielingen-Deurloo-Oostgat
RWS Zeeland
3.
Raai 11: Wielingen-Sardijngeul
RWS Zeeland
4.
Raai 10: Vaarwater langs hoofdplaat – Honte
RWS Zeeland
5.
Raai 9: Vaarwater langs hoofdplaat –Honte/Schaar van Spijker
RWS Zeeland
6.
Raai 8: Pas van Terneuzen – Everingen
RWS Zeeland
7.
Raai 7: Pas van Terneuzen – Everingen
RWS Zeeland
8.
Raai 7a: Zuid–Everingen
RWS Zeeland
9.
Raai 6: MIddelgat-Gat van Ossenisse
RWS Zeeland
10.
Raai 5: Zuidergat-Schaar van Waarde
RWS Zeeland
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
7
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
11.
Raai 3: Overloop van Valkenisse-Zimmermangeul
RWS Zeeland
12.
Raai 2: Schaar van de Noord
RWS Zeeland
13.
Raai 1: Vaarwater boven Bath-Ballastplaat
RWS Zeeland
14.
Liefkenshoek
MONEOS
15.
Oosterweel
MONEOS
16.
Kruikbeke
MONEOS
17.
Schoonaarde
MONEOS
18.
Boom
MONEOS
Figure 4-2: Overview transects with ebb and flood discharges.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
8
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
4.5.
Salinity
Five stations with salinity data are available and are listed in Table 4-5. In every station two time series of salinities are present, one for the upper part of the water column and one for the lower part of the water column. The location of the stations can be found in Figure 4-2. Table 4-5: Overview of available stations with salinity measurements.
Nr
Measuring station
Data source
1.
Vlakte Van De Raan
HMCZ
2.
Hoofdplaat
HMCZ
3.
Baalhoek
HMCZ
4.
Boei 97
HMCZ
5.
Boei 84
HMCZ
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
9
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
5.
Methodology
This chapter describes the methodology to analyze the model performance. Model and measurements are compared and analyzed using the MATLAB tool VIMM v2.7, developed at FHR. The following output is generated: -
Tidal analysis of water levels (amplitudes and phases of constituents, vector difference).
-
Statistical evaluation of time series of water levels (Bias, RMSE, RMSE0) and of levels of HW and LW and time of HW and LW
-
Low pass averaged differential signal between model results and measurements
-
Time series of velocities and statistical evaluation (MAE, RMAE) of components and (BIAS, RMSE, RMSE0) of magnitude and direction of currents.
-
Time series of discharges and statistical evaluation (Bias, RMSE) of discharge.
-
Vectorplots representing the calculated velocity fields.
The tidal analysis presented in this report is performed in MATLAB using t_tide, as developed by Pawlowicz et al. (2002). Amplitudes and phases are derived for the main tidal components M2, S2, O1, K1 and Z0 for comparison of simG19 with the actualized model. For the annual run of the actualized model the 10 main components are derived: Z0, M2, N2, S2, M4, L2, K1, MU2, M6, O1. Furthermore the model results are summarized in an overall error, the summed vector differences at a number of selected stations (Gerritsen et al., 2003) and (de Brye et al., 2010). This error includes the evaluation between model and observations for both the amplitude and phase of each harmonic component. Appendix A contains the mathematical expression of this analysis. The asymmetry of the vertical tide can be analyzed based upon the tidal components M2, M4 (Wang et al., 2002). The amplitude ratio M4/M2 describes the asymmetry of the vertical tide. The phase difference 2M2M4 indicates the nature of the tidal asymmetry. If 2M2-M4 equals 0°, there is no asymmetry in the system. A positive difference (0° to 180°) means the duration of the ebb phase is longer than the duration of flood and thus maximum currents occur during flood (flood dominant). A negative value means the ebb phase is shorter and thus maximum currents occur during ebb (ebb dominant). Measured discharges over transects are available for specific through-tide measurements. To be able to use these measurements for analysis with model results, a comparable tide is searched in the modeled period. It is selected based on the smallest RMSE0 value between the observed tides during the measurement and during the selected modeling period. Using these discharges over transect, flow through ebb and flood channels can be analyzed. Stationary velocity measurements are analyzed for the magnitude and direction of currents. Also an analysis of the components of the currents is performed based on Sutherland et al. (2003). This results in a MAE (mean absolute error), combining magnitude and direction, and a RMAE (relative mean absolute error), allowing to evaluate the performance of the model. Appendix A contains more details.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
10
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
6.
Model description
This chapter gives a general description of the NEVLA hydrodynamical model, and focusses further on model version simG19, as used for sediment transport calculations in van Kessel et al. (2010). Model version simG19, is the reference simulation for the actualization discussed in chapter 7.
6.1.
The NEVLA model
The NEVLA (NEderlands-VLAams) model is a hydrodynamic model, designed in the SIMONA software. SIMONA (SImulatie MOdellen NAtte waterstaat) is a program developed by Rijkswaterstaat, for 2D (WAQUA module) and 3D (TRIWAQ module) modelling of water movement, particle dispersion and fluid mud transport and consists of a number of programs for preprocessing (preparation of simulations), computing and post processing (visualisation of the model results). The NEVLA model domain includes a large part of the BCS, the Scheldt estuary and all its tributaries which are tidal dependent, Durme, Rupel, Nete, Dijle and Zenne. Boundary conditions are imposed downstream and upstream. Upstream, measured discharges are imposed. For the downstream boundary conditions can be chosen between two set-ups. One set-up of downstream boundary condition is located at the mouth (Cadzand-Westkapelle) and is based on water level measurements. The other set-up is located offshore and based on nesting in the larger scale ZUNO model. The roughness field in the model is defined in Manning and is variable over the model domain. The model has 231015 active cells with maximal grid dimensions in M and N direction of 379 and 3000 cells. Figure 6-1 and Figure 6-2 present the model grid domain. The NEVLA model was primarily developed in depth averaged state (2D) and was calibrated and improved in different stages by Vanlede et al. (2008a en 2008b) and Maximova et al. (2009a en 2009b). Meanwhile, based on the work in Vanlede et al. (2008b), a 3D version of the NEVLA model was derived. The model is presented in van Kessel et al. (2008) and (2010). The 3D model also includes salinity. The model used in van Kessel et al. (2010), called simG19, is the reference simulation. This model will be described in the following paragraphs and the model changes discussed in chapter 7, are compared to simG19. The SIMONA version simona2007-01 has been applied for the simulations.
6.2.
Bathymetry
The bathymetry of the NEVLA model simG19 is designed to represent the situation for the year 2006 and is more extensively prescribed in Vanlede et al. (2008). In the Upper Sea Scheldt surveys of 2001 were used (aMT). The Rupel basin has been taken from the model M729_09 (Adema, 2006). The bathymetry in the Lower Sea Scheldt is based upon surveys of 2004-2005 (Flemish Hydrography, Antwerp). Data for 2006 was used to create a bathymetry for the Western Scheldt, with the intertidal areas based on laser-altimetry surveys of 2003 (RWS-Zeeland). Also the area around the mouth is based upon surveys of 2003 (RWS Zeeland). The remaining bathymetry of the offshore Belgian and Dutch coastal area is made out of the bathymetry of the Kustzuid model version 5. Figure 6-3 presents the final bathymetry.
6.3.
Boundary conditions
At the North Sea boundary the model is coupled with the larger ZUNO-grof (Zuidelijke Noordzee) model, as shown in figure 6-1. The ZUNO model was run with time- and space varying wind. The two boundaries perpendicular to the coastline (east and west in Figure 6-1) are implemented as velocity boundaries. The boundary parallel to the coastline (north in Figure 6-1) is implemented as a Riemann boundary. The boundary conditions for the year 2006, obtained from the ZUNO model, were corrected for the phases of the components M4 and M6 by subtracting respectively 40° and 15°, both for water levels and velocities. The ZUNO model (the finer grid version) is described in detail in Leyssen et al., 2012.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
11
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Upstream at Grobbendonk (Kleine Nete), Itegem (Grote Nete), Eppegem (Zenne), Haacht (Dijle), Dendermonde (Dender) en Merelbeke (Bovenschelde en Leie) measured daily median discharges were imposed. Also a discharge is imposed for the Bath canal and the canal Gent-Terneuzen. The measured wind direction and speed at Vlissingen (source: KNMI) for the year 2006 is uniformly imposed on the model domain.
6.4.
Model parameters
The bottom roughness field is defined by a space-varying Manning coefficient, as represented in figure 6-4. The roughness is prescribed in different zones throughout the model domain. The roughest zone is present between Bath and Zandvliet (0.028 m-1/3s), the smoothest section occurs upstream of Sint-Amands (0.017 m-1/3s). The model has 6 layers with a thickness, represented in table 6-1, in a quasi-logarithmic distribution, in which the upper layer is divided in two. This vertical distribution allows to represent enough vertical resolution close to the bottom and surface. The horizontal viscosity en diffusivity are constant and are respectively 1 m²/s and 10 m²/s. In the vertical, a k-ε turbulence model is applied. The time step is 7.5 seconds. Table 6-1: Layer distribution in the 3D Nevla model.
Layer 1 (surface) 2 3 4 5 6 (bottom)
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
Thickness (% water column) 10 20 30 20 15 5
WL2013R00_018_5rev2_0
12
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 6-1: Grids of the overall ZUNO model (blue) and detailed NEVLA model (red).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
13
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 6-2: Grid domain NEVLA 3D model (simG19 and simG34).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
14
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 6-3: Bathymetry (mNAP) NEVLA 3D model (simG34).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
15
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
0.024
0.025 0.028 0.020 0.022 0.025 0.017
Figure 6-4: Bottom roughness (in Manning) in the Nevla 3D model (simG34).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
16
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
7.
Actualization of the 3D Nevla model
The following paragraphs describe the actualization of the existing 3D NEVLA model simG19. All changes are accumulated in the new reference run simG34. Therefore the different changes will be discussed by comparing simG34 with simG19.
7.1.
List of executed scenarios
Table 7-1 lists the executed simulations. All six simulations (simG28 up to simG33) contain one or more improvements or model changes which have accumulated in a new reference run simG34. Also an extra simulation, simG35, has been done which represents a smaller period for comparison with the previous runs. Table 7-1: Overview of executed scenarios.
Name simulation simG19 simG28 simG29 simG30 simG31 simG32 simG33 simG34 simG35
7.2.
Description
Period
Reference run. Adaptation of grid and bathymetry as reported in Maximova et al. (2009). Strek- and leidam represented in the bathymetry, previous thin dams removed. Bathymetry BCS actualized. Check of numerical instability in Dijle, New set of initial conditions. Location of discharge at Merelbeke and local bathymetry changed. Check of discharge at Merelbeke during high discharge. New reference run. Similar to simG34 but with similar output period for comparisons.
1/10/2006 8:00 – 1/01/2007 0:00 1/10/2006 8:00 – 1/11/2006 8:00 1/10/2006 8:00 – 1/11/2006 8:00 1/10/2006 8:00 – 1/11/2006 8:00 5/01/2006 5:30 – 6/03/2006 5:30 1/10/2006 8:00 – 1/11/2006 8:00 2/02/2006 0:00 – 20/02/2006 0:00 5/01/2006 5:30 – 5/01/2007 5:30 1/10/2006 8:00 – 1/11/2006 8:00
Model changes
In this paragraph the model changes in simG34 with respect to simG19 are discussed. 7.2.1.
Model grid and bathymetry improvements
The model grid adaptations reported in Maximova et al (2009a & 2009b) are integrated in the 3D hydrodynamic model. They include intertidal areas along the Sea Scheldt and its tributaries in the model grid. Most changes were implemented in the Upper Sea Scheldt (see figure 7-1). The Durme river was extended until its tidal border (figure 7-1). Also the numerical schematisation in the area of the Deurganckdok was refined. The total area of Deurganckdok was included in the model and a higher resolution was obtained. Together with the model grid improvements, the bathymetry of the calibrated model of Maximova et al. (2009b) is imposed. The bathymetry differs with simG19 in local bathymetrical changes in the Zenne and in the Upper Sea Scheldt. In Maximova et al., (2009a), a renewed gridcell averaging interpolation method was used. The bathymetry also contains the strek- and leidam near the Zandvliet - Berendrecht sluices (Maximova et al., 2009b). Appendix B contains the hypsometric curves and shows the change in volume storage between the bathymetries from simG19 and simG28 and further on. In the Western Scheldt nothing is changed. Although the grid has extended in simG28, the storage volume is decreased in the Sea Scheldt and the Rupel basin, also for the intertidal areas that are situated circa between -3mNAP and +4mNAP.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
17
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 7-1: Model grid adaptions for simG28 and simG34, compared to simG19, in Lower Sea Scheldt (upper) and Upper Sea Scheldt (lower).
7.2.2.
Training walls: strek- and leidam
Originally the training wall near the Zandvliet - Berendrecht sluices are represented as thin dams in the 3D model. Water cannot flow over these dams, in reality though, flow over the dams is possible beyond a certain water level between low and high water. Maximova et al (2009b) already removed the thin dams in the 2D model by adapting the bathymetry.Based on the samples used by Decrop et al. (2010), a new interpolation is made of the bathymetry of the training wall, making sure the crest height is represented by
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
18
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
at least one cell. The thin dams are removed in the 3D model. Figure 7-2 presents the bathymetry of simG19 and simG34 near the training wall.
Figure 7-2: Model bathymetry near the training walls for simG19 (upper) and sisimG29 and simG34 (lower).
7.2.3.
Bathymetry Belgian Continental Shelf
The bathymetry in the Western part of the Belgian Continental Shelf (BCS) was based on samples with a coarse resolution (triple the grid resolution), which resulted in a poor interpolation of topographic features such as sandbanks. Furthermore the western part of the model was extended in a later phase without assuring a smooth transition between the existing bathymetry and the new interpolated part.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
19
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Samples of the BCS (2007, Afdeling Kust) with a resolution of 25m were used to create a new bathymetry of the BCS (Figure 4.4). Attention has been paid that the transition between the existing bathymetry and the newly interpolated one is smoothly enough to avoid numerical spurious oscilation due to discontinuities in the transition. Figure 7-3 shows both bathymetries in the BCS and Figure 7-4 represents the difference between the new and old bathymetry. Furthermore a spike in the bathymetry around the Kallo sluice is removed.
Figure 7-3: Bathymetry of the BCS before the new interpolation (top) and after the new interpolation (below). Note the bad representation and transition in the western part of the BCS in the upper figure.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
20
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 7-4: Difference in new and old bathymetry (positive values indicate a deeper new bathymetry). The figure clearly shows the discontinuous old bathymetry in the West and the bad interpolation of the sand banks.
7.2.4.
Initial conditions
During the simulation of the year 2006, numerical instabilities (no convergence for the momentum solver) were discovered. A high velocity gradient was observed during a flood discharge in the Dijle. Due to the high imposed initial conditions (9 mNAP for waterlevel), water was available on the dike’s crest. With the high water level in the Dijle due to the flood discharge, this platform of water made contact with the river and a high local velocity gradient was observed. Figure 7-5 displays the velocity field 15 minutes before the model crashes, the contact with the platform was already made. Therefore a new initial condition was applied imposing a lower water level of 1.5 mNAP downstream of Schelle and 3 mNAP upstream of SintAmands and in the Zenne, Dijle and Nete. Furthermore the grid contains also outer dike areas, areas beyond the river bank’s crest (figure 7-6). These areas don’t have impact on the normal hydrodynamics in the river, but when wet due to a uniform initial condition, they can cause numerical instabilities. It is therefore recommended to remove these inactive cells from the model grid. 7.2.5.
Discharge Merelbeke
The discharge locations imposed in Maximova et al. (2009b) have been used. At Merelbeke, the discharge was imposed at the actual location of the weir. The model also contained the quay walls of the sluices. This lead locally to high velocities during high discharges. The bathymetry and discharge location were therefore changed locally to guarantee a smooth inflow. Figure 7-7 and figure 7-8 represent the old and new bathymetry and discharge at Merelbeke.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
21
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 7-5: Velocity field in the Dijle 15 minutes before the simulation crashes due to a too high velocity gradient.
Figure 7-6: Model grid in the section of the Dijle where the high velocity gradient occurred. Outer dike areas are clearly present in the model.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
22
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 7-7: Bathymetry and discharge location at Merelbeke for simG19.
Figure 7-8: Bathymetry and discharger location at Merelbeke for simG34.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
23
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
8.
Model results
The results of the actualized 3D hydrodynamical model are presented in two parts. First, a comparison is made with the model results of the reference run simG19. This comparison is made for the last quarter of 2006. Secondly, the results of the actualized model simG34 are summarized for the entire year 2006.
8.1.
Comparison to reference run (simG19)
A harmonic analysis for the water level M2 component shows a similar behavior for both simG19 and simG34 (figure 8-1). The average difference in amplitude M2 is about 1 cm. The phases of the two runs are nearly identical (difference smaller than 1°). A greater difference between the two models becomes apparent when analyzing the higher harmonics (M4, M6), Figure 8-2. This difference is mainly due to the difference in implementation of the training wall near the Dutch-Belgian border, discussed in Section 7.2.2. In simG19, these structures were implemented as impermeable “thin dams”. In simG34, these structures are implemented as obstacles in the model bathymetry that will flood above a certain water level. This results in a difference in amplitude of the higher harmonics upstream the Dutch-Belgian border, and has a possible impact on the modeled tidal asymmetry. The difference in M4 and M6 amplitude due to the different implementation of the training wall is around 1 cm. The difference in phase around Antwerp is 3° for M4 and 2° for M6. Comparing the water levels of simG19 and simG34 results in an overall RMSE (figure 8-3). The difference in calculated water levels is limited to 1 à 2 cm in the BCS and the Western Scheldt. At Bath the difference increases to 3 cm due to the removal of the thin dams, but at Zandvliet the difference lowers again to 2 cm. Further upstream the bathymetry of Maximova et al (2009b) has been used and the difference increases up to 4 cm, with a local larger effect that is only present in Schoonaarde (figure 8-4), and better represents the LW. The effect of the removal of the thin dams is shown in the velocity fields in figure 8-5 and figure 8-6. Currents around high water are more accurate in the new reference run. The change in the bathymetry of the BCS can locally be observed (for example in modeled velocities at Westhinder, figure 8-7). But outside this region, the effect of the bathymetrical change is limited (for example modeled velocities at Wandelaar in figure 8-7). The effect of the training walls is visible in the current at Bath, especially in Zandvliet where the peak velocities have tripled (figure 8-8). The effect on currents in Zandvliet is also not limited to the period around high water. The effect seems to work up to Antwerpen Loodsgebouw (figure 8-9). But comparison of simG28 (new bathymetry, thin dams) and simG29 (new bathymetry, no thin dams) indicates that the effect of the removal of the thin dams is very local (figure 8-10). The observed effect on the currents at Antwerpen must be due to the extended bathymetrical influence of the training wall and or due to the overall influence of the new bathymetry of Maximova et al. (2009b). Also the bathymetrical change in the Upper Sea Scheldt has an impact on the currents. This can be seen in for example Schoonaarde. Discharges in the Western Scheldt are the same between simG19 and simG34 (figure 8-11), but a decrease in discharge in the Sea Scheldt has been observed in simG34 (figure 8-12), which can be explained by the decrease in storage volume in intertidal areas (paragraph 7.2.1).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
24
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-1: Analysis of modelled (simG19, simG34) and measured tidal component M2 for amplitude (upper) and phase (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
25
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-2: Analysis of modelled (simG19, simG34) and measured amplitude of tidal components M4 (upper) and M6 (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
26
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-3: RMSE between simG34 and simG19 of the complete timeseries of water level along the Scheldt estuary.
Figure 8-4: Calculated water level (simG19 and simG34) and measured water level in Schoonaarde. The new reference run (simG34) reproduces better the LW.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
27
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-5: Velocity field of the old reference run (simG19) around the training walls. The current cannot pass over the training wall.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
28
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-6: Velocity field of the new reference run (simG34) around the training walls. The current can pass over the training wall around high water.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
29
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-7: Stationary velocities for simG19 and simG34 in BCS, Westhinder (upper) and Wandelaar (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
30
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-8: Stationary velocities for simG19 and simG34 around training wall, downstream in Bath (upper) and between both training walls in Zandvliet (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
31
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-9: Stationary velocities for simG19 and simG34 in Sea Scheldt, upstream training wall in the Lower Sea Scheldt in Antwerp (upper) and in the Upper Sea Scheldt in Schoonaarde (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
32
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-10: Stationary velocities for simG19 and simG28 up to simG34 around the training walls, between both training walls in Zandvliet (upper), and just upstream in Boei 97 (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
33
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-11: Modelled (simG19 and simG34) and measured discharges in the Western Scheldt over Gat van Ossenisse (upper) and Middelgat (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
34
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-12: Modelled (simG19 and simG34) and measured discharges in the Lower Sea Scheldt, Oosterweel (upper) and the Upper Sea Scheldt, Schoonaarde (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
35
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
8.2.
Annual run with the actualized model simG34 (year 2006)
The results of simG34 are discussed for the entire year 2006. Tidal components Figure 8-13 shows the computed and observed M2 amplitude as analysed for the entire year 2006, for different points along the estuary. M2 is the most important tidal component and contains most of the tidal energy. The model reproduces the combined effects of convergence of the estuary and friction. This is shown by the peak in amplitude around Schelle, which is visible in both measurements and model. The average difference in M2 amplitude between model and measurements is 4 cm. The difference varies between -4 cm (Antwerp, -2%) and +1 cm (BCS, +1%). The difference in M2 phase is smaller than 4°. The phase difference 2M2-M4 and the amplitude ratio M4/M2 describe the asymmetry of the vertical tide (Wang, 2002). These parameters are well calculated in the Western Scheldt and Sea Scheldt as can be seen in figure 8-14. A summary of the main tidal components based on measurements and model results are presented in Appendix C. The overall vector difference, based on the 10 main tidal components and over all available stations, is 0.78 m. Figure 8-15 represents the value for the stations in the BCS and the Scheldt. The value is smallest in the BCS and downstream the Western Scheldt and increases upstream in the Western Scheldt and in the Sea Scheldt where the tidal interaction becomes more complex. Water levels The Root Mean Square Error (RMSE) of computed water levels varies between 20 cm at sea to 30 cm at the upstream end of the model, at Ghent. This error is higher than the M2 amplitude difference, as other tidal components also contribute to the RMSE. In addition, the error in the non-tidal part of the water level curve plays a role, such as set-up or set-down by wind. This non-tidal part is mainly included in the boundary conditions. The RMSE on the high water and low water level are respectively 10 à 15 cm and 5 à 10 cm. HW and LW are on average 10 to 15 min later in the model. Error with low-pass filter Figure 8-16 shows the error between modeled and measured water levels at Vlissingen, passed through a low-pass Godin filter (Godin, 1972) in order to remove the tidal signal. What remains is the slowly varying part of the modeling error. It seems that the model overestimates the water level in the first part of the year, and under-estimates the water level in the last quarter. Such error may be expected as the model is steered at its downstream boundary by a train of different models (in this case the Continental Shelf Model and the Southern North Sea Model), and not by a time series of measured water levels. Leyssen et al. (2012) validated the larger scale ZUNOfijn, which is comparable to but not identical to the ZUNOgrof model this model simG34 is nested in. Analysis of the ZUNOfijn model for the year 2009 showed similar differences as the NEVLA model for the water levels and phases of the tidal components. Discharges Based on a comparable tide, the model is analysed for discharges over transects. Appendix D contains the results of modeled (simG34) and measured discharges. The RMSE value is 1980 m³/s (maximum flood and ebb discharges at the mouth have an order of magnitude of respectively 100000 m³/s and 75000 m³/s). The shape of the discharges are well represented by the model. In the Western Scheldt, the peak flood discharge tends to be underestimated and the peak ebb discharge tends to be better represented. Ebb and flood channel behave similar at Pas van Terneuzen, Zuidergat and Overloop van Valkenisse. The Gat van Ossenisse seems to transport relative to the Middelgat too much volume during flood. In the Lower Sea Scheldt (Oosterweel) the discharges are underestimated, while in the Upper Sea Scheldt (Schoonaarde) the discharges are overestimated.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
36
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Velocities at the stationary current measurement stations The currents have been analysed in the stations Wandelaar, Bol van Heist and A2B (MOW1) in the BCS and Oosterweel in the Lower Sea Scheldt (figure 8-17 and figure 8-18). Appendix E contains a more elaborated set of time series with modeled and measured velocities. In the BCS, the model reproduces smaller magnitudes for flood- and ebb currents with a RMSE value of 12 cm/s for station Wandelaar (bin 4), a RMSE of 25 cm/s for station Bol van Heist (bin 4) and RMSE values at A2B Boei of 22 cm/s and 15 cm/s at top and bottom. The maximum currents are underestimated about 30%. The directions are quite well prescribed at Wandelaar, Bol van Heist and A2B with an average deviation of respectively 11°, 19° and 18°. At Wandelaar, the MAE of the velocity components is about 12 cm/s and a corresponding RMAE about 27% which results in a good representation of the currents according to Sutherland et al. (2003) (Appendix A). At Bol van Heist the MAE of the velocity components is about 25 cm/s, with a RMAE around 45%. This corresponds to a reasonable/fair quality of the model. The MAE in A2B is about 0.20 cm/s with a RMAE of 39% what is just within limits of a good representation. The error increases from offshore towards the mouth of the Scheldt (Wandelaar, A2B, Bol van Heist). The stations Wandelaar and Bol van Heist are located near the Scheur, the shipping lane toward the mouth of the Scheldt. A2B boei is located closer to Zeebrugge. In the Lower Sea Scheldt a comparison is made with the current measurements at Oosterweel (top and bottom). The magnitude of the currents has a RMSE of 18 cm/s at the top and 14 cm/s at the bottom. The current is well represented during flood, but is underestimated during ebb. The deviation of the current is on average 11° at the top. On the bottom frequent erroneous measurements of the direction are present for the month of October and no analysis is made. The MAE of the components at the top is 18 cm/s, and the RMAE is 26% which results in a good quality of the model at this location. Salinity Figure 8-19 shows the computed and measured salinity at location Boei 84 (Sea Scheldt, in the vicinity of Deurganckdok). The model performs well, bearing in mind that salinity is modeled without separate calibration. The model has a slight systematic underestimation of one half parts per thousand (ppt), which is less than the accuracy of salinity measurements. The most offshore measurements are in station Vlakte van de Raan (Figure 8-19). The model represents the main variations in salinity, with a difference up to 1 à 2 ppt, although sometimes with a much slower response time. Appendix F contains time series of modeled and observed salinities. The results gives confidence in the model that the processes advection and diffusion that dominate the salt transport, are well represented.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
37
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-13: Analysis of modelled (simG34) and measured tidal component M2 for amplitude (upper) and phase (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
38
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-14: Analysis of modelled (simG34) and measured properties of assymetry of vertical tide, amplitude ratio M4/M2 (upper) and phase shift 2M2-M4 (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
39
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-15: Vector difference (simG34 versus measurements) of the 10 main components (Z0, M2, N2, S2, L2, MU2, K1, O1, M4, M6) for the different stations along the Scheldt estuary.
Figure 8-16: Low passed average error at Vlissingen of model results (simG34) minus measurements.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
40
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-17: Modelled (simG34) and observed velocities in the BCS, Wandelaar (upper) and Bol van Heist (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
41
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-18: Modelled (simG34) and observed velocities in the BCS, A2B Boei (MOW1) (upper) and in the Lower Sea Scheldt, Oosterweel (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
42
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Figure 8-19: Modelled (simG34) and observed salinities at the mouth of the Scheldt, Vlakte van de Raan (upper) and upstream in the Lower Sea Scheldt, Boei 84 (lower).
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
43
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
9.
Conclusions and recommendations
9.1.
Conclusions
This report presents an actualization of the 3D NEVLA model with respect to the 3D NEVLA model (simG19) used in van Kessel et al. (2010). The following model changes were performed: •
• • • •
Update of the model grid and bathymetry based on Maximova et al. (2009a and 2009b) to include all intertidal areas and the Durme until the tidal border and to improve the numerical schematization of the Deurganckdok. The training walls (strek- and leidam) are defined in the model bathymetry and the previous imposed thin dams are removed. The bathymetry in the BCS is improved by a better interpolation. A new set of initial conditions has been defined. The discharge at Merelbeke is optimized for smooth inflow through a new discharge location and new local bathymetry.
The changes have led to a new reference run for the 3D NEVLA model, simG34, in which the hydrodynamics and salt transport for the year 2006 have been calculated. A comparison was made with the previous reference run simG19. The general behavior of the model remains the same, though local changes occur. The removal of the thin dams as a training wall and the bathymetrical change in the BCS cause only local changes in currents. The former also influences the higher harmonics upstream the Dutch-Belgian border. The bathymetry of Maximova et al. (2009b) has a smaller tidal storage volume and causes smaller ebb- and flood discharges in the Sea Scheldt. The model results of simG34 for 2006 show that the model is capable of reproducing the tidal hydrodynamics in the BCS and the Scheldt estuary. The model reproduces the combined effects on the main tidal components of convergence of the estuary and friction. A low pass filter of the model error is evaluated and indicates that a non-tidal error is already introduced at the boundary of the model. Analysis of current velocities indicates a good to reasonable quality of the model. Discharges through ebb and flood channels have similar shape in the model and measurements. The salinity in the model is reasonably well reproduced, which shows that the processes advection and diffusion that dominate the salt transport, are well represented.
9.2.
Recommendations
A number of further improvements could be investigated: •
Remove non-active cells. Based on a long term calculation (one year), the model results showed several cells never participated in the model. This became clear when velocity gradients occurred during flood discharges in the more upstream parts. Outer dike areas became initially wet due to high initial water level conditions in what was seen as ‘good modelling practice’. Due to the high initial water level were a stagnant water column of water is present at extended crests and outer dike areas. During flood events these “reservoirs” come in contact with the riverbeds causing high gradients in flow and non-convergence in the momentum equations. Research showed the model contains several non-active cells that never take part in the hydrodynamic cycle of flooding and drying but can lead to instabilities. Therefore it is recommended to remove these inactive cells where possible.
•
Application of a more recent version of SIMONA. Both simG19 and simG34 are calculated in Simona2007-01. More recent versions of the software have since become available.
•
Weir Mechelen: In the 2D NEVLA model (WAQUA) it is possible to include a weir schematization. This is not possible in the 3D version (TRIWAQ) in the simona2007 version. The application of a new version of SIMONA would allow a better representation of the water levels in the Dijle.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
44
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
•
Reducing error import at downstream boundaries. A non-tidal and tidal error are introduced at the boundaries of the model due to the modeling accuracy of the model train (ZUNO, CSM). A better representation of the hydrodynamics at the BCS in the ZUNO and CMS model will improve the NEVLA model performance. Alternatively the boundary conditions from the ZUNO model can separately be improved based on measurements near the model boundaries.
•
Velocity field on intertidal areas. The quality of reproduction of velocities on intertidal areas is not known, but is important regarding to ecological aspects. A detailed analysis and calibration of the velocities in shallow and intertidal areas is recommended to improve future model applications.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
45
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
10. List of references Adema, J (2006) Evaluatie van hydraulische modellen voor operationele voorspellingen. Deelopdracht 3: Afregelen van Vlaamse rivieren in het Kustzuid model en vergelijking Kalman sturing. Rapport Alkyon A1401R3r2, in opdracht van WL Borgerhout (M.729-09) De Brye, B., de Brauwere, A., Gourgue, O., Kärnä, T., Lambrechts, J., Comblen, R., Deleersnijder, E. (2010). A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. Coastal Engineering, 57, (2010), pp. 850-863. Decrop, B.; Vanlede, J.; Verwilgen, J.; van Holland, G. Mostaerd, F. (2010): Permanente verbetering modelinstrumentarium. Stroming aan de toegang tot het Zandvliet-Berendrecht sluizencomplex. Rapport 2D numeriek modelonderzoek. WL Rapporten, 753_10. Waterbouwkundig Laboratorium en IMDC rapport nr. I/RA/11313/09.090/BDC, Antwerpen, België Gerritsen, H;, E.J.O. Schrama and H.F.P. van den Boomgaard “Tidal model validation of the seas of SouthEast Asia using altimeter data and adjoint modelling”, Proc. XXX IAHR Congress, Thessaloniki, 24-28 August 2003, Vol. D, pp. 239-246 Godin, G. (1972). The analysis of tides. University of Toronto Press: Toronto. ISBN 0-8020-1747-9. xxi, 264 pp. Leyssen, G.; Vanlede, J.; Mostaert, F. (2012). Modellentrein CSM-ZUNO. Deelrapport 1: Opzet en gevoeligheidsanalyse. Versie 2-0. WL Rapporten, 753_12. Waterbouwkundig Laboratorium & IMDC: Antwerpen, België Leyssen, G.; Vanlede, J.; Decrop, B.; Mostaert, F. (2012). Modellentrein CSM-ZUNO. Deelrapport 2: Validatie. WL Rapporten, 753_12. Waterbouwkundig Laboratorium & IMDC: Antwerpen, België Maximova, T.; Ides, S.; Vanlede, J.; De Mulder, T.; Mostaert, F., (2009a). Verbetering 2D randvoorwaardenmodel. Deelrapport 3: Calibratie bovenlopen. WL Rapporten, 753_09. Flanders Hydraulics Research, Antwerp, Belgium. Maximova, T.; Ides, S.; De Mulder, T.; Mostaert, F. (2009b). Verbetering 2D randvoorwaardenmodel. Deelrapport 4: Extra aanpassingen Zeeschelde. WL Rapporten, 753_09. Flanders Hydraulics Research, Antwerp, Belgium. Pawlowicz, R; Beardsley, B; Lentz, S. (2002) Classical tidal harmonic analysis including error estimates in MATLAB using t_tide. Computers and geoscience, 28, pp. 929-937. Sutherland, J., Walstra, D.J.R., Chesher, T.J., Van Rijn, L.C., Southgate, H.N. (2003) Evaluation of coastal area modelling systems at an estuary mouth. Coastal Engineering, 51 (2004), pp. 119– 142 van Kessel, T.; Vanlede, J.; Eleveld, M.; Van der Wal, D., (2008) Mud transport model for the Scheldt estuary in the framework of LTV. Deltares, Flanders Hydraulics, NIOO, IVM. van Kessel, T.; Vanlede, J. (2010) Impact of harbour basins on mud dynamics Scheldt estuary. Deltares and Flanders Hydraulics. van Kessel, T.; Vanlede, J.; Eleveld, M.; van der Wal, D.; De Maerschalck, B. (2011) Validation and Application of Mud Model Scheldt Estuary in the framework of LTV. Deltares, Flanders Hydraulics, NIOO, IVM. Vanlede, J.; Decrop, B.; De Clercq, B.; Ides, S.; De Mulder, T.; Mostaert, F., (2008a). Permanente verbetering modelinstrumentarium: verbetering randvoorwaardenmodel. Deel 1: gevoeligheidsonderzoek. WL Rapporten, 753_09. Flanders Hydraulics Research, Antwerp, Belgium.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
46
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Vanlede, J.; Decrop, B.; De Clercq, B.; Ides, S.; De Mulder, T.; Mostaert, F., (2008b). Permanente verbetering modelinstrumentarium: verbetering randvoorwaardenmodel. Deel 2: afregelen van het Scheldemodel. WL Rapporten, 753_09. Flanders Hydraulics Research, Antwerp, Belgium. Wang, Z.B., Jeuken, M.C.J.L., Gerritsen, H., de Vriend, H.J., Kornman, B.A. (2002). Morphology and asymmetry of the vertical tide in the Westerschelde estuary. Continental Shelf Research, 22, 2599-2609.
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
47
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Appendix A A.1
Definition of statistical parameters
Time series of water levels, velocities and discharges
Straight setup (Figure 10-1) is defined as the instantaneous difference between two time series. It gives an overall idea of the bias between the measured and modelled complete time series. The RMSE0 (unbiased Root Mean Square Error) shows the variation of the error between modelled and measured data. Oblique setup (Figure 10-1) only takes into account the high and low waters. This way, the level and the timing of those events can be studied separately. Bias and RMSE0 are calculated separately for level and timing of high and low waters.
Figure 10-1: Definition of straight and oblique setup (after Adema, 2006).
For both straight and oblique setup the statistical parameters bias, RMSE (root mean square error) and unbiased RMSE (RMSE0) can be calculated. A positive bias value means that (in the case of water level or velocity magnitude) the modelled time series are an overestimation of the observed time series or (in the case of difference in timing) that the modelled time series lags behind the observed time series. A negative bias value means that (in the case of water level or velocity magnitude) the modelled time series are an underestimation of the observed time series or (in the case of difference in timing) that the modelled time series proceeds on the observed time series. Hereafter, the reference time series will be presented as y. The mean values of the time series are represented by
1 N x ∑ i =1 i N 1 N y = ∑i =1 y i N
x=
where
x
x
and the time series that is subject to the test as
(reference) and
y
(subject to test).
N is the length of the time series.
The bias is the difference between the mean of the tested and the reference time series. The closer the bias is to zero, the better both time series correspond.
bias = y − x
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A1
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
The root mean square error (RMSE) is defined as:
∑ (x N
RMSE =
i =1
i
− yi )
2
N
Corresponding time series will result in RMSE values close to zero. An important, extra source of information is the unbiased root mean square error or RMSE0. If the tested time series shows apart from a constant offset (bias) to the reference time series no other differences in its signal, the RMSE0 will be zero, while both bias and RMSE will be non-zero. If x and y are time series of a tidal signal (water level, current), an RMSE0 value of zero means that both signals are equal in phasing and amplitude. This does not imply there is no constant bias between both.
∑ [(x N
RMSE0 =
i =1
i
(
− yi ) − x − y
)]
2
N
The relative error or Scatter Index of the tested time series is given by the quotient of the RMSE and the mean value of the reference time series.
RMSE x
S .I . =
The correlation between both signals is given by Pearson’s correlation coefficient, defined as:
∑ (x N
r=
i =1
∑ (x N
i =1
A.2
i
i
−x
)(
− x yi − y
) ∑ (y 2
N
i =1
i
)
−y
)
2
Harmonic analysis
A parameter combining the evaluation of both the amplitude and the phase between the observed and modeled tidal components is the vector difference. The vector difference can be calculated over one tidal station for the different considered tidal components or different tidal station can be considered. The first summation takes all the errors of the different considered harmonic constituents in account in a certain station. Then the errors in all stations are summed and averaged (de Brye et al., 2010). Nc
es = ∑
[A
c ,i
i =1
1 e = Ns
cos(ϕc ,i ) − Am ,i cos(ϕo ,i )] + [Ac ,i sin (ϕc ,i ) − Am,i sin (ϕo ,i )] 2
2
Ns
∑e s =1
s
The error es is the vector difference for a specific station with Ac,i en φc,i the calculated amplitude and phase of harmonic constituent i and Ao,i en φo,i the observed amplitude and phase of harmonic constituent i. The total error over all specified stations is e.
A.3
Velocities
Sutherland et al. (2003) proposed a method to evaluate the combined effect of magnitude and direction of the current. The MAE (mean absolute error) can be used to analyze vectors and is calculated based on the calculated (Y1,Y2) and observed (X1,X2) components of the current. A relative mean absolute error is derived (RMAE) to identify the order of magnitude of the error compared to the observed velocities. A value of zero implies a perfect match between predictions and observations. This will never happen as in reality
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A2
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
the RMAE includes also measurement errors. To remove this contribution the estimated error could be subtracted from the MAE. A table was proposed in which the RMAE was used to identify the model quality to represent the current. Different categories of RMAE ranges and corresponding model classifications are proposed.
MAE = Y − X Y−X RMAE = X
1 N (Y1,n − X 1,n )2 + (Y2,n − X 2,n )2 ∑ N n=1
=
=
MAE X
Table 10-1: Model qualification for different RMAE ranges, based on Sutherland et al. (2003).
Model qualification Excellent Good Reasonable/fair Poor Bad
RMAE <0.2 0.2-0.4 0.4-0.7 0.7-1.0 >1.0
Furthermore a statistical analysis can be performed on the magnitude and direction of currents as represented below.
BIAS = MAE =
1 N 1 N
RMSE =
N
Y ,n
− MAG X ,n )
Y ,n
− MAG X ,n
∑ (MAG n =1 N
∑ MAG n =1
1 N
N
− MAG X ,n )
∑ (MAG
2
Y ,n
n =1
DIRY ,n − DIRX ,n if − 180 ≤ DIRY ,n − DIRX ,n ≤ 180 ∆DIRn = DIRY ,n − DIRX ,n + 360 if DIRY ,n − DIRX ,n < −180 DIR − DIR − 360 if DIRY ,n − DIRX ,n > +180 Y ,n X ,n BIAS = MAE =
1 N 1 N
RMSE =
N
∑ ∆DIR
n
n =1 N
∑ ∆DIR
n
n =1
1 N
N
∑ (∆DIR ) n =1
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
n
2
WL2013R00_018_5rev2_0
A3
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Appendix B
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
Hypsometric curves
WL2013R00_018_5rev2_0
A4
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A5
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A6
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A7
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Appendix C
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
Tidal analysis
WL2013R00_018_5rev2_0
A8
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.1
Average water level Z0
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A9
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Average water level Z0 Amplitude [m] Station
Measurement
simG34
Value
Error
Value
Error
Westhinder
0,02
0,00
0,05
0,00
Nieuwpoort
0,01
0,00
0,07
0,00
Oostende
-0,02
0,00
0,08
0,00
Wandelaar
-0,03
0,00
0,08
0,00
Zeebrugge
0,00
0,00
0,08
0,00
Bol Knokke
0,00
0,00
0,08
0,00
Vlakte van de Raan
-0,03
0,00
0,07
0,00
Appelzak
-0,01
0,00
0,09
0,00
Westkapelle
-0,02
0,00
0,08
0,00
Cadzand
-0,04
0,00
0,10
0,00
Vlissingen
0,00
0,00
0,11
0,00
Borssele
0,03
0,00
0,15
0,00
Terneuzen
0,07
0,00
0,18
0,00
Hansweert
0,10
0,00
0,23
0,00
Walsoorden
0,11
0,00
0,23
0,00
Baalhoek
0,13
0,00
0,25
0,00
Schaar van de Noord
0,15
0,00
0,27
0,00
Bath
0,15
0,00
0,31
0,00
Zandvliet
0,17
0,00
0,31
0,00
Liefkenshoek (HIC)
0,19
0,00
0,31
0,00
Liefkenshoek (HMCZ)
0,12
0,00
0,31
0,00
Boudewijnsluis
0,20
0,00
0,34
0,00
Kallosluis (HIC)
0,19
0,00
0,34
0,00
Kallosluis (HMCZ)
0,13
0,00
0,34
0,00
Antwerpen Loodsgebouw (HIC)
0,23
0,00
0,37
0,00
Antwerpen Loodsgebouw (HMCZ)
0,14
0,00
0,37
0,00
Hemiksem
0,35
0,00
0,42
0,00
Schelle
0,35
0,00
0,43
0,00
Temse
0,37
0,00
0,49
0,00
Tielrode
0,41
0,00
0,52
0,00
Sint-Amands
0,42
0,00
0,64
0,00
Dendermonde
0,69
0,00
0,82
0,00
Schoonaarde
0,95
0,00
1,05
0,00
Wetteren
1,05
0,00
1,19
0,00
Final version
WL2013R00_018_5rev2_0
F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
A10
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Boom
0,41
0,00
0,55
0,00
Walem
0,50
0,00
0,69
0,00
Hombeek
1,08
0,00
1,31
0,00
Zemst
1,67
0,00
1,74
0,00
Rijmenam
2,94
0,00
3,02
0,00
Duffel-sluis
0,83
0,00
1,01
0,00
Lier Maasfort
1,53
0,00
1,59
0,00
Lier Molbrug
1,29
0,00
1,39
0,00
Emblem
1,72
0,00
1,81
0,00
Kessel
1,74
0,00
1,90
0,00
Final version
WL2013R00_018_5rev2_0
F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
A11
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.2
Tidal component M2
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A12
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Tidal component M2 Amplitude [m] Station
Phase [°]
Measurement
simG34
Measurement
simG34
Value
Error
Value
Error
Value
Error
Value
Error
Westhinder
1,70
0,00
1,71
0,00
24
0
30
0
Nieuwpoort
1,96
0,00
1,94
0,00
29
0
35
0
Oostende
1,83
0,00
1,84
0,00
33
0
39
0
Wandelaar
1,66
0,00
1,65
0,00
38
0
44
0
Zeebrugge
1,68
0,00
1,68
0,00
42
0
47
0
Bol Knokke
1,64
0,00
1,63
0,00
47
0
54
0
Vlakte van de Raan
1,52
0,00
1,52
0,00
45
0
50
0
Appelzak
1,71
0,00
1,67
0,00
45
0
51
0
Westkapelle
1,56
0,00
1,53
0,00
53
0
58
0
Cadzand
1,69
0,00
1,66
0,00
48
0
55
0
Vlissingen
1,77
0,00
1,73
0,00
59
0
66
0
Borssele
1,85
0,00
1,81
0,00
65
0
71
0
Terneuzen
1,90
0,00
1,87
0,00
69
0
74
0
Hansweert
2,01
0,00
2,00
0,00
79
0
85
0
Walsoorden
2,06
0,00
2,03
0,00
82
0
88
0
Baalhoek
2,11
0,00
2,08
0,00
86
0
92
0
Schaar van de Noord
2,14
0,00
2,10
0,00
88
0
94
0
Bath
2,17
0,00
2,12
0,00
90
0
97
0
Zandvliet
2,15
0,00
2,15
0,00
94
0
101
0
Liefkenshoek (HIC)
2,21
0,00
2,18
0,00
96
0
104
0
Liefkenshoek (HMCZ)
2,23
0,00
2,18
0,00
95
0
104
0
Boudewijnsluis
2,28
0,00
2,20
0,00
97
0
105
0
Kallosluis (HIC)
2,24
0,00
2,21
0,00
98
0
107
0
Kallosluis (HMCZ)
2,28
0,00
2,21
0,00
97
0
107
0
Antwerpen Loodsgebouw (HIC)
2,29
0,00
2,24
0,00
105
0
113
0
Antwerpen Loodsgebouw (HMCZ)
2,29
0,00
2,24
0,00
104
0
113
0
Hemiksem
2,30
0,00
2,29
0,00
114
0
122
0
Schelle
2,30
0,01
2,30
0,00
117
0
124
0
Temse
2,28
0,00
2,28
0,00
122
0
130
0
Tielrode
2,29
0,00
2,23
0,00
126
0
135
0
Sint-Amands
2,14
0,00
2,03
0,00
133
0
144
0
Dendermonde
1,69
0,00
1,73
0,00
153
0
162
0
Schoonaarde
1,30
0,00
1,36
0,00
178
0
186
0
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A13
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Wetteren
1,14
0,01
1,23
0,00
204
0
211
0
Boom
2,28
0,00
2,18
0,00
124
0
134
0
Walem
2,14
0,00
2,04
0,00
131
0
143
0
Hombeek
1,50
0,00
1,36
0,00
146
0
165
0
Zemst
0,96
0,00
0,91
0,00
148
0
167
0
Rijmenam
0,27
0,00
0,34
0,00
178
1
194
1
Duffel-sluis
1,77
0,00
1,61
0,00
149
0
163
0
Lier Maasfort
0,85
0,00
0,88
0,00
180
0
197
0
Lier Molbrug
1,18
0,00
1,10
0,00
165
0
181
0
Emblem
0,67
0,00
0,73
0,00
192
0
210
0
Kessel
0,57
0,00
0,58
0,00
205
0
224
0
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A14
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.3
Tidal component S2
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A15
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Tidal component S2 Station
Amplitude [m]
Phase [°]
Measurement simG34
Measurement
simG34
Value
Error
Value
Error
Value
Error
Value
Error
Westhinder
0,50
0,00
0,54
0,00
79
0
81
0
Nieuwpoort
0,58
0,00
0,62
0,00
83
0
87
0
Oostende
0,53
0,00
0,58
0,00
88
0
91
0
Wandelaar
0,48
0,00
0,52
0,00
94
0
96
0
Zeebrugge
0,48
0,00
0,52
0,00
98
0
100
0
Bol Knokke
0,47
0,00
0,50
0,00
103
0
107
0
Vlakte van de Raan
0,43
0,00
0,47
0,00
101
0
102
0
Appelzak
0,48
0,00
0,52
0,00
101
0
104
0
Westkapelle
0,44
0,00
0,47
0,00
109
0
110
0
Cadzand
0,48
0,00
0,51
0,00
105
0
108
0
Vlissingen
0,49
0,00
0,52
0,00
117
0
120
0
Borssele
0,51
0,00
0,54
0,00
124
0
127
0
Terneuzen
0,51
0,00
0,55
0,00
129
0
131
0
Hansweert
0,53
0,00
0,58
0,00
142
0
144
0
Walsoorden
0,54
0,00
0,59
0,00
145
0
147
0
Baalhoek
0,55
0,00
0,60
0,00
149
0
151
0
Schaar van de Noord
0,56
0,00
0,61
0,00
151
0
155
0
Bath
0,57
0,00
0,61
0,00
155
0
157
0
Zandvliet
0,56
0,00
0,62
0,00
159
0
162
0
Liefkenshoek (HIC)
0,57
0,00
0,62
0,00
161
0
166
0
Liefkenshoek (HMCZ)
0,58
0,00
0,62
0,00
161
0
166
0
Boudewijnsluis
0,59
0,00
0,63
0,00
163
0
167
0
Kallosluis (HIC)
0,58
0,00
0,63
0,00
163
0
169
0
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A16
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Kallosluis (HMCZ)
0,59
0,00
0,63
0,00
163
0
169
0
Antwerpen Loodsgebouw (HIC)
0,59
0,00
0,64
0,00
171
0
176
0
Antwerpen Loodsgebouw (HMCZ)
0,59
0,00
0,64
0,00
171
0
176
0
Hemiksem
0,59
0,00
0,64
0,00
182
0
186
0
Schelle
0,58
0,01
0,64
0,00
185
1
188
0
Temse
0,57
0,00
0,63
0,00
192
0
195
0
Tielrode
0,57
0,00
0,61
0,00
196
0
201
0
Sint-Amands
0,53
0,00
0,54
0,00
202
0
209
0
Dendermonde
0,39
0,00
0,45
0,00
225
1
229
1
Schoonaarde
0,29
0,00
0,35
0,00
251
1
253
1
Wetteren
0,25
0,00
0,31
0,00
277
1
279
1
Boom
0,57
0,00
0,60
0,00
194
0
200
0
Walem
0,52
0,00
0,54
0,00
202
0
209
0
Hombeek
0,37
0,00
0,36
0,00
217
1
232
1
Zemst
0,26
0,01
0,26
0,00
219
1
234
1
Rijmenam
0,10
0,00
0,12
0,01
234
2
257
2
Duffel-sluis
0,42
0,00
0,42
0,00
221
1
230
0
Lier Maasfort
0,20
0,00
0,22
0,00
250
1
265
1
Lier Molbrug
0,28
0,00
0,28
0,00
236
1
248
1
Emblem
0,17
0,00
0,19
0,00
261
1
278
1
Kessel
0,14
0,00
0,15
0,00
276
1
292
1
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A17
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.4
Tidal component N2
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A18
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Tidal component N2 Station
Amplitude [m]
Phase [°]
Measurement simG34
Measurement
simG34
Value
Error
Value
Error
Value
Error
Value
Error
Westhinder
0,30
0,00
0,32
0,00
358
1
7
0
Nieuwpoort
0,34
0,00
0,37
0,00
2
1
14
0
Oostende
0,31
0,00
0,35
0,00
6
1
17
0
Wandelaar
0,29
0,00
0,31
0,00
11
1
22
0
Zeebrugge
0,29
0,00
0,31
0,00
15
1
25
0
Bol Knokke
0,28
0,00
0,30
0,00
19
1
31
0
Vlakte van de Raan
0,26
0,00
0,28
0,00
17
1
28
1
Appelzak
0,29
0,00
0,31
0,00
17
1
29
0
Westkapelle
0,27
0,00
0,28
0,00
24
1
35
1
Cadzand
0,29
0,00
0,31
0,00
21
1
32
0
Vlissingen
0,30
0,00
0,32
0,00
31
1
43
0
Borssele
0,31
0,00
0,33
0,00
37
1
49
1
Terneuzen
0,32
0,00
0,34
0,00
42
1
52
0
Hansweert
0,34
0,00
0,35
0,00
52
1
63
0
Walsoorden
0,34
0,00
0,36
0,00
55
1
65
0
Baalhoek
0,35
0,00
0,37
0,00
59
1
69
0
Schaar van de Noord
0,36
0,00
0,37
0,00
62
1
72
1
Bath
0,36
0,00
0,37
0,00
63
1
74
0
Zandvliet
0,36
0,00
0,37
0,00
67
1
78
1
Liefkenshoek (HIC)
0,36
0,00
0,38
0,00
69
1
81
1
Liefkenshoek (HMCZ)
0,37
0,00
0,38
0,00
69
1
81
1
Boudewijnsluis
0,37
0,00
0,38
0,00
70
1
83
0
Kallosluis (HIC)
0,37
0,00
0,38
0,00
71
1
84
1
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A19
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Kallosluis (HMCZ)
0,37
0,00
0,38
0,00
71
1
84
0
Antwerpen Loodsgebouw (HIC)
0,37
0,00
0,39
0,00
78
1
90
0
Antwerpen Loodsgebouw (HMCZ)
0,38
0,00
0,39
0,00
78
1
90
1
Hemiksem
0,38
0,00
0,39
0,00
87
1
99
1
Schelle
0,37
0,01
0,39
0,00
89
1
101
1
Temse
0,37
0,00
0,38
0,00
96
1
107
1
Tielrode
0,37
0,00
0,38
0,00
100
1
112
1
Sint-Amands
0,34
0,00
0,34
0,00
105
1
120
1
Dendermonde
0,27
0,00
0,29
0,00
126
1
138
1
Schoonaarde
0,21
0,00
0,23
0,00
151
1
162
1
Wetteren
0,19
0,01
0,21
0,00
177
1
187
1
Boom
0,37
0,00
0,37
0,00
98
1
111
1
Walem
0,34
0,00
0,34
0,00
105
1
119
1
Hombeek
0,26
0,00
0,23
0,00
120
1
145
1
Zemst
0,16
0,01
0,17
0,00
120
2
151
2
Rijmenam
0,05
0,00
0,08
0,00
145
5
181
4
Duffel-sluis
0,28
0,00
0,27
0,00
123
1
139
1
Lier Maasfort
0,14
0,00
0,15
0,00
155
2
175
1
Lier Molbrug
0,19
0,00
0,18
0,00
139
1
157
1
Emblem
0,11
0,00
0,13
0,00
166
2
190
2
Kessel
0,10
0,00
0,10
0,00
179
2
204
2
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A20
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.5
Tidal component L2
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A21
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Tidal component L2 Station
Amplitude [m]
Phase [°]
Measurement simG34
Measurement
simG34
Value
Error
Value
Error
Value
Error
Value
Error
Westhinder
0,17
0,00
0,19
0,00
54
1
67
1
Nieuwpoort
0,20
0,01
0,22
0,00
57
2
70
1
Oostende
0,19
0,01
0,21
0,00
63
2
76
1
Wandelaar
0,18
0,00
0,20
0,00
70
1
83
1
Zeebrugge
0,19
0,00
0,21
0,00
74
2
86
1
Bol Knokke
0,18
0,01
0,21
0,00
79
2
93
1
Vlakte van de Raan
0,17
0,01
0,19
0,00
79
2
91
1
Appelzak
0,18
0,01
0,21
0,00
76
2
90
1
Westkapelle
0,17
0,01
0,20
0,00
86
2
98
1
Cadzand
0,19
0,00
0,21
0,00
80
2
93
1
Vlissingen
0,20
0,00
0,23
0,00
90
1
104
1
Borssele
0,22
0,01
0,24
0,00
97
1
108
1
Terneuzen
0,23
0,00
0,25
0,00
98
1
111
1
Hansweert
0,25
0,01
0,27
0,00
108
1
120
1
Walsoorden
0,26
0,01
0,28
0,00
110
1
122
1
Baalhoek
0,27
0,01
0,29
0,00
114
1
126
1
Schaar van de Noord
0,27
0,01
0,29
0,00
114
1
128
1
Bath
0,28
0,01
0,30
0,00
118
1
130
1
Zandvliet
0,28
0,01
0,30
0,00
121
1
134
1
Liefkenshoek (HIC)
0,29
0,01
0,31
0,00
123
1
137
1
Liefkenshoek (HMCZ)
0,29
0,01
0,31
0,01
123
1
137
1
Boudewijnsluis
0,30
0,01
0,31
0,01
125
1
138
1
Kallosluis (HIC)
0,30
0,01
0,31
0,01
125
1
140
1
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A22
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Kallosluis (HMCZ)
0,30
0,01
0,31
0,01
125
1
140
1
Antwerpen Loodsgebouw (HIC)
0,31
0,01
0,32
0,01
132
1
146
1
Antwerpen Loodsgebouw (HMCZ)
0,30
0,01
0,32
0,01
131
1
146
1
Hemiksem
0,31
0,01
0,33
0,01
141
1
154
1
Schelle
0,32
0,01
0,33
0,01
144
2
156
1
Temse
0,33
0,01
0,33
0,01
150
1
162
1
Tielrode
0,32
0,01
0,33
0,01
153
1
167
1
Sint-Amands
0,30
0,01
0,30
0,01
159
1
175
1
Dendermonde
0,24
0,01
0,25
0,01
180
2
194
1
Schoonaarde
0,19
0,01
0,20
0,01
204
2
217
2
Wetteren
0,16
0,01
0,17
0,01
231
3
242
2
Boom
0,32
0,01
0,32
0,01
151
1
166
1
Walem
0,31
0,01
0,30
0,01
157
1
174
1
Hombeek
0,18
0,01
0,16
0,01
169
2
200
2
Zemst
0,13
0,01
0,08
0,01
161
3
210
5
Rijmenam
0,02
0,01
0,01
0,01
196
20
288
41
Duffel-sluis
0,26
0,01
0,23
0,01
175
1
195
1
Lier Maasfort
0,11
0,01
0,11
0,01
202
3
230
3
Lier Molbrug
0,16
0,01
0,15
0,00
188
2
212
2
Emblem
0,07
0,01
0,08
0,01
210
5
243
5
Kessel
0,06
0,01
0,06
0,01
221
6
254
6
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A23
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.6
Tidal component MU2
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A24
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Tidal component MU2 Station
Amplitude [m]
Phase [°]
Measurement simG34
Measurement
simG34
Value
Error
Value
Error
Value
Error
Value
Error
Westhinder
0,08
0,00
0,12
0,00
125
2
145
1
Nieuwpoort
0,10
0,00
0,13
0,00
130
2
149
1
Oostende
0,10
0,00
0,13
0,00
137
2
153
1
Wandelaar
0,09
0,00
0,12
0,00
146
2
159
1
Zeebrugge
0,10
0,00
0,13
0,00
151
2
161
1
Bol Knokke
0,10
0,00
0,13
0,00
157
2
167
1
Vlakte van de Raan
0,09
0,00
0,12
0,00
157
2
165
1
Appelzak
0,11
0,00
0,14
0,00
154
2
165
1
Westkapelle
0,10
0,00
0,13
0,00
163
2
172
1
Cadzand
0,11
0,00
0,14
0,00
157
2
167
1
Vlissingen
0,13
0,00
0,16
0,00
164
2
176
1
Borssele
0,14
0,00
0,17
0,00
167
2
180
1
Terneuzen
0,15
0,00
0,18
0,00
169
1
182
1
Hansweert
0,18
0,00
0,21
0,00
176
1
190
1
Walsoorden
0,19
0,00
0,22
0,00
177
1
191
1
Baalhoek
0,20
0,00
0,23
0,00
180
1
194
1
Schaar van de Noord
0,20
0,00
0,24
0,00
180
1
196
1
Bath
0,21
0,00
0,24
0,00
184
1
198
1
Zandvliet
0,21
0,00
0,25
0,00
187
1
202
1
Liefkenshoek (HIC)
0,22
0,00
0,26
0,00
189
1
205
1
Liefkenshoek (HMCZ)
0,22
0,00
0,26
0,00
189
1
205
1
Boudewijnsluis
0,23
0,00
0,26
0,00
191
1
206
1
Kallosluis (HIC)
0,23
0,00
0,27
0,00
191
1
207
1
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A25
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Kallosluis (HMCZ)
0,23
0,00
0,27
0,00
191
1
207
1
Antwerpen Loodsgebouw (HIC)
0,24
0,00
0,28
0,00
198
1
213
1
Antwerpen Loodsgebouw (HMCZ)
0,24
0,00
0,28
0,00
198
1
213
1
Hemiksem
0,26
0,00
0,30
0,00
208
1
221
1
Schelle
0,26
0,01
0,30
0,00
208
1
223
1
Temse
0,27
0,00
0,31
0,00
217
1
229
1
Tielrode
0,27
0,00
0,30
0,00
220
1
233
1
Sint-Amands
0,26
0,00
0,29
0,00
227
1
243
1
Dendermonde
0,23
0,00
0,26
0,00
248
1
262
1
Schoonaarde
0,18
0,00
0,20
0,00
274
1
286
1
Wetteren
0,16
0,01
0,19
0,00
301
2
311
1
Boom
0,27
0,00
0,30
0,00
217
1
233
1
Walem
0,27
0,00
0,29
0,00
224
1
242
1
Hombeek
0,18
0,00
0,17
0,00
236
1
264
1
Zemst
0,08
0,01
0,09
0,00
234
4
265
3
Rijmenam
0,02
0,00
0,02
0,00
165
11
227
14
Duffel-sluis
0,24
0,00
0,24
0,00
243
1
263
1
Lier Maasfort
0,10
0,00
0,13
0,00
272
2
296
2
Lier Molbrug
0,15
0,00
0,16
0,00
257
1
281
1
Emblem
0,07
0,00
0,09
0,00
280
3
307
2
Kessel
0,07
0,00
0,07
0,00
293
3
322
3
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A26
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.7
Tidal component M4
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A27
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Tidal component M4 Station
Amplitude [m]
Phase [°]
Measurement simG34
Measurement
simG34
Value
Error
Value
Error
Value
Error
Value
Error
Westhinder
0,10
0,00
0,08
0,00
354
2
28
2
Nieuwpoort
0,14
0,00
0,12
0,00
8
2
25
1
Oostende
0,12
0,00
0,11
0,00
30
2
48
1
Wandelaar
0,10
0,00
0,11
0,00
65
2
78
1
Zeebrugge
0,10
0,00
0,12
0,00
81
2
87
1
Bol Knokke
0,12
0,00
0,13
0,00
98
2
97
1
Vlakte van de Raan
0,14
0,00
0,14
0,00
87
1
99
1
Appelzak
0,12
0,00
0,13
0,00
89
2
92
1
Westkapelle
0,14
0,00
0,16
0,00
95
1
106
1
Cadzand
0,12
0,00
0,13
0,00
89
1
97
1
Vlissingen
0,14
0,00
0,13
0,00
117
2
126
1
Borssele
0,13
0,00
0,13
0,00
128
2
139
1
Terneuzen
0,13
0,00
0,13
0,00
131
2
142
1
Hansweert
0,11
0,00
0,13
0,00
161
2
174
1
Walsoorden
0,13
0,00
0,13
0,00
170
2
182
1
Baalhoek
0,14
0,00
0,14
0,00
178
2
190
1
Schaar van de Noord
0,14
0,00
0,13
0,00
180
2
192
1
Bath
0,13
0,00
0,13
0,00
177
2
190
1
Zandvliet
0,12
0,00
0,13
0,00
180
2
194
2
Liefkenshoek (HIC)
0,13
0,00
0,13
0,00
183
2
197
2
Liefkenshoek (HMCZ)
0,13
0,00
0,13
0,00
182
2
197
1
Boudewijnsluis
0,13
0,00
0,13
0,00
181
2
196
2
Kallosluis (HIC)
0,13
0,00
0,13
0,00
185
2
198
2
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A28
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Kallosluis (HMCZ)
0,13
0,00
0,13
0,00
185
2
198
2
Antwerpen Loodsgebouw (HIC)
0,13
0,00
0,13
0,00
193
2
206
2
Antwerpen Loodsgebouw (HMCZ)
0,13
0,00
0,13
0,00
192
2
206
2
Hemiksem
0,13
0,00
0,14
0,00
205
2
222
2
Schelle
0,13
0,01
0,14
0,00
208
2
225
2
Temse
0,17
0,00
0,16
0,00
215
1
229
1
Tielrode
0,20
0,00
0,18
0,00
212
1
237
2
Sint-Amands
0,24
0,00
0,24
0,00
223
1
247
1
Dendermonde
0,25
0,00
0,24
0,00
251
1
272
1
Schoonaarde
0,24
0,00
0,25
0,00
286
1
315
1
Wetteren
0,20
0,01
0,22
0,00
335
2
356
1
Boom
0,17
0,00
0,18
0,00
209
1
231
1
Walem
0,22
0,00
0,22
0,00
219
1
245
1
Hombeek
0,39
0,00
0,35
0,00
273
1
301
1
Zemst
0,43
0,01
0,37
0,00
289
1
316
1
Rijmenam
0,13
0,00
0,14
0,01
324
2
3
2
Duffel-sluis
0,31
0,00
0,30
0,00
247
1
278
1
Lier Maasfort
0,27
0,00
0,24
0,00
305
1
331
1
Lier Molbrug
0,34
0,00
0,29
0,00
284
1
309
1
Emblem
0,23
0,00
0,21
0,00
331
1
357
1
Kessel
0,19
0,00
0,17
0,00
354
1
22
1
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A29
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.8
Tidal component M6
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A30
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Tidal component M6 Station
Amplitude [m]
Phase [°]
Measurement simG34
Measurement
simG34
Value
Error
Value
Error
Value
Error
Value
Error
Westhinder
0,04
0,00
0,03
0,00
349
5
24
5
Nieuwpoort
0,06
0,00
0,05
0,00
360
4
23
3
Oostende
0,07
0,00
0,06
0,00
20
3
39
2
Wandelaar
0,08
0,00
0,07
0,00
43
2
57
2
Zeebrugge
0,09
0,00
0,07
0,00
52
2
66
2
Bol Knokke
0,10
0,00
0,08
0,00
64
2
84
2
Vlakte van de Raan
0,09
0,00
0,07
0,00
60
2
74
2
Appelzak
0,11
0,00
0,08
0,00
61
3
80
2
Westkapelle
0,10
0,00
0,08
0,00
77
2
91
2
Cadzand
0,10
0,00
0,08
0,00
69
2
89
2
Vlissingen
0,09
0,00
0,07
0,00
104
2
125
2
Borssele
0,09
0,00
0,07
0,00
124
2
146
2
Terneuzen
0,10
0,00
0,08
0,00
147
2
166
2
Hansweert
0,10
0,00
0,08
0,00
199
2
220
2
Walsoorden
0,11
0,00
0,08
0,00
220
2
238
2
Baalhoek
0,12
0,00
0,09
0,00
236
2
255
2
Schaar van de Noord
0,12
0,00
0,10
0,00
246
2
267
2
Bath
0,13
0,00
0,11
0,00
251
2
273
2
Zandvliet
0,14
0,00
0,12
0,00
266
2
287
2
Liefkenshoek (HIC)
0,15
0,00
0,12
0,00
277
2
299
2
Liefkenshoek (HMCZ)
0,15
0,00
0,12
0,00
277
2
299
2
Boudewijnsluis
0,15
0,00
0,12
0,00
282
2
303
2
Kallosluis (HIC)
0,15
0,00
0,12
0,00
288
2
309
2
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A31
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Kallosluis (HMCZ)
0,15
0,00
0,12
0,00
287
2
309
2
Antwerpen Loodsgebouw (HIC)
0,14
0,00
0,12
0,00
314
2
335
2
Antwerpen Loodsgebouw (HMCZ)
0,14
0,00
0,12
0,00
314
2
335
2
Hemiksem
0,15
0,00
0,13
0,00
357
2
16
2
Schelle
0,15
0,01
0,13
0,00
6
2
23
2
Temse
0,15
0,00
0,13
0,00
17
2
44
2
Tielrode
0,17
0,00
0,13
0,00
35
1
57
2
Sint-Amands
0,15
0,00
0,11
0,00
50
2
73
2
Dendermonde
0,11
0,00
0,09
0,00
93
3
115
3
Schoonaarde
0,07
0,00
0,06
0,00
123
4
136
4
Wetteren
0,04
0,01
0,04
0,00
172
7
186
7
Boom
0,15
0,01
0,11
0,00
25
2
50
2
Walem
0,13
0,00
0,10
0,00
44
2
71
3
Hombeek
0,10
0,00
0,09
0,00
31
3
78
3
Zemst
0,13
0,00
0,12
0,00
52
2
93
2
Rijmenam
0,06
0,01
0,05
0,01
101
4
152
5
Duffel-sluis
0,08
0,00
0,07
0,00
69
4
83
3
Lier Maasfort
0,08
0,00
0,06
0,00
76
3
115
4
Lier Molbrug
0,08
0,00
0,06
0,00
52
3
89
4
Emblem
0,08
0,00
0,06
0,00
109
3
146
4
Kessel
0,06
0,00
0,05
0,00
140
4
178
5
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A32
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.9
Tidal component O1
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A33
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Tidal component O1 Station
Amplitude [m]
Phase [°]
Measurement simG34
Measurement
simG34
Value
Error
Value
Error
Value
Error
Value
Error
Westhinder
0,10
0,00
0,12
0,00
181
1
183
1
Nieuwpoort
0,09
0,00
0,12
0,00
178
2
180
1
Oostende
0,10
0,00
0,12
0,00
179
2
182
1
Wandelaar
0,10
0,00
0,13
0,00
183
1
184
1
Zeebrugge
0,10
0,00
0,13
0,00
184
1
185
1
Bol Knokke
0,11
0,00
0,13
0,00
186
1
188
1
Vlakte van de Raan
0,11
0,00
0,13
0,00
184
1
186
1
Appelzak
0,11
0,00
0,13
0,00
184
2
187
1
Westkapelle
0,11
0,00
0,13
0,00
186
1
189
1
Cadzand
0,11
0,00
0,13
0,00
187
1
189
1
Vlissingen
0,11
0,00
0,13
0,00
192
2
194
1
Borssele
0,11
0,00
0,13
0,00
195
2
197
1
Terneuzen
0,11
0,00
0,13
0,00
198
2
199
1
Hansweert
0,11
0,00
0,14
0,00
205
2
205
1
Walsoorden
0,11
0,00
0,14
0,00
207
2
207
1
Baalhoek
0,11
0,00
0,14
0,00
210
2
210
1
Schaar van de Noord
0,11
0,00
0,14
0,00
210
1
211
1
Bath
0,11
0,00
0,14
0,00
212
2
213
1
Zandvliet
0,11
0,00
0,14
0,00
214
2
216
1
Liefkenshoek (HIC)
0,11
0,00
0,14
0,00
217
2
218
1
Liefkenshoek (HMCZ)
0,11
0,00
0,14
0,00
217
2
218
1
Boudewijnsluis
0,11
0,00
0,14
0,00
217
2
218
1
Kallosluis (HIC)
0,11
0,00
0,14
0,00
218
2
219
1
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A34
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Kallosluis (HMCZ)
0,11
0,00
0,14
0,00
217
2
219
1
Antwerpen Loodsgebouw (HIC)
0,11
0,00
0,14
0,00
222
2
223
1
Antwerpen Loodsgebouw (HMCZ)
0,11
0,00
0,14
0,00
222
2
223
1
Hemiksem
0,11
0,00
0,14
0,00
229
2
229
1
Schelle
0,11
0,00
0,14
0,00
231
2
230
1
Temse
0,10
0,00
0,13
0,00
234
2
234
1
Tielrode
0,10
0,00
0,13
0,00
238
2
238
2
Sint-Amands
0,10
0,00
0,12
0,00
242
2
243
1
Dendermonde
0,08
0,00
0,11
0,00
258
3
256
2
Schoonaarde
0,07
0,00
0,09
0,00
275
3
272
2
Wetteren
0,07
0,00
0,08
0,00
292
4
287
2
Boom
0,10
0,00
0,13
0,00
236
2
237
1
Walem
0,10
0,00
0,12
0,00
239
2
241
1
Hombeek
0,05
0,00
0,07
0,00
235
4
246
2
Zemst
0,04
0,00
0,05
0,00
225
6
238
4
Rijmenam
0,02
0,00
0,03
0,00
233
9
238
10
Duffel-sluis
0,08
0,00
0,10
0,00
252
3
254
2
Lier Maasfort
0,04
0,00
0,06
0,00
260
4
272
3
Lier Molbrug
0,06
0,00
0,07
0,00
255
3
264
2
Emblem
0,03
0,00
0,05
0,00
262
5
275
3
Kessel
0,03
0,00
0,05
0,00
273
6
284
4
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A35
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.10 Tidal component K1
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A36
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Tidal component K1 Station
Amplitude [m]
Phase [°]
Measurement simG34
Measurement
simG34
Value
Error
Value
Error
Value
Error
Value
Error
Westhinder
0,06
0,00
0,07
0,00
5
3
5
2
Nieuwpoort
0,05
0,00
0,06
0,00
1
4
3
2
Oostende
0,05
0,00
0,07
0,00
359
4
3
2
Wandelaar
0,06
0,00
0,07
0,00
2
3
3
1
Zeebrugge
0,06
0,00
0,07
0,00
3
3
5
2
Bol Knokke
0,06
0,00
0,07
0,00
5
3
8
2
Vlakte van de Raan
0,06
0,00
0,07
0,00
0
2
3
1
Appelzak
0,06
0,00
0,07
0,00
1
3
6
2
Westkapelle
0,06
0,00
0,07
0,00
2
3
7
2
Cadzand
0,06
0,00
0,07
0,00
4
3
8
2
Vlissingen
0,06
0,00
0,07
0,00
11
3
16
2
Borssele
0,06
0,00
0,07
0,00
14
3
19
2
Terneuzen
0,06
0,00
0,07
0,00
17
3
21
2
Hansweert
0,06
0,00
0,08
0,00
26
3
29
2
Walsoorden
0,07
0,00
0,08
0,00
28
3
32
2
Baalhoek
0,07
0,00
0,08
0,00
33
3
35
2
Schaar van de Noord
0,06
0,00
0,08
0,00
31
3
37
2
Bath
0,07
0,00
0,08
0,00
33
3
38
2
Zandvliet
0,07
0,00
0,08
0,00
38
3
42
2
Liefkenshoek (HIC)
0,07
0,00
0,08
0,00
40
3
45
2
Liefkenshoek (HMCZ)
0,07
0,00
0,08
0,00
40
3
45
2
Boudewijnsluis
0,07
0,00
0,08
0,00
40
3
45
2
Kallosluis (HIC)
0,07
0,00
0,08
0,00
42
3
46
2
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A37
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Kallosluis (HMCZ)
0,07
0,00
0,08
0,00
41
3
46
2
Antwerpen Loodsgebouw (HIC)
0,07
0,00
0,08
0,00
47
3
51
2
Antwerpen Loodsgebouw (HMCZ)
0,07
0,00
0,08
0,00
46
3
51
2
Hemiksem
0,07
0,00
0,08
0,00
54
3
57
2
Schelle
0,07
0,01
0,08
0,00
57
4
58
3
Temse
0,06
0,00
0,07
0,00
59
3
62
3
Tielrode
0,07
0,00
0,07
0,00
65
3
66
2
Sint-Amands
0,06
0,00
0,06
0,00
70
4
70
3
Dendermonde
0,05
0,00
0,05
0,00
73
4
82
4
Schoonaarde
0,04
0,00
0,04
0,00
94
6
100
5
Wetteren
0,04
0,00
0,03
0,00
109
6
121
6
Boom
0,07
0,00
0,07
0,00
62
3
65
3
Walem
0,06
0,00
0,07
0,00
67
3
69
3
Hombeek
0,02
0,00
0,02
0,00
22
9
61
9
Zemst
0,03
0,00
0,01
0,00
324
10
355
16
Rijmenam
0,02
0,00
0,02
0,00
353
10
349
15
Duffel-sluis
0,05
0,00
0,05
0,00
76
4
80
4
Lier Maasfort
0,02
0,00
0,02
0,00
47
11
81
8
Lier Molbrug
0,03
0,00
0,03
0,00
49
8
79
7
Emblem
0,01
0,00
0,01
0,00
36
16
77
14
Kessel
0,02
0,00
0,01
0,00
24
13
78
18
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A38
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
C.11 Assymetry vertical tide
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A39
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Measurement Station
simG34
Amplitude ratio Phase Amplitude ratio Phase M4/M2 [%] difference 2M2- M4/M2 [%] difference 2M2M4 [°] M4 [°]
Westhinder
6%
54
5%
32
Nieuwpoort
7%
49
6%
46
Oostende
6%
36
6%
30
Wandelaar
6%
12
7%
10
Zeebrugge
6%
3
7%
8
Bol Knokke
7%
-3
8%
11
Vlakte van de Raan
9%
3
9%
2
Appelzak
7%
1
8%
11
Westkapelle
9%
10
10%
9
Cadzand
7%
8
8%
13
Vlissingen
8%
1
8%
5
Borssele
7%
1
7%
4
Terneuzen
7%
7
7%
7
Hansweert
6%
-3
6%
-3
Walsoorden
6%
-6
7%
-6
Baalhoek
7%
-7
7%
-6
Schaar van de Noord
6%
-5
6%
-4
Bath
6%
3
6%
4
Zandvliet
6%
7
6%
8
Liefkenshoek (HIC)
6%
8
6%
12
Liefkenshoek (HMCZ)
6%
9
6%
12
Boudewijnsluis
6%
13
6%
15
Kallosluis (HIC)
6%
10
6%
16
Kallosluis (HMCZ)
6%
10
6%
16
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A40
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Antwerpen Loodsgebouw (HIC) Antwerpen Loodsgebouw (HMCZ)
6%
16
6%
20
6%
16
6%
20
Hemiksem
6%
24
6%
22
Schelle
6%
26
6%
23
Temse
8%
29
7%
31
Tielrode
9%
40
8%
33
Sint-Amands
11%
42
12%
40
Dendermonde
15%
55
14%
52
Schoonaarde
18%
70
18%
57
Wetteren
18%
73
18%
65
Boom
7%
39
8%
38
Walem
10%
44
11%
41
Hombeek
26%
19
26%
29
Zemst
45%
7
40%
18
Rijmenam
48%
31
42%
25
Duffel-sluis
18%
51
19%
48
Lier Maasfort
32%
55
27%
63
Lier Molbrug
29%
45
26%
53
Emblem
35%
54
29%
62
Kessel
34%
56
29%
67
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A41
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Appendix D
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
Discharges
WL2013R00_018_5rev2_0
A42
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A43
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A44
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A45
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A46
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Appendix E
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
Time series of stationary velocities
WL2013R00_018_5rev2_0
A47
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A48
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A49
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A50
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A51
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A52
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A53
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Appendix F
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
Time series of salinities
WL2013R00_018_5rev2_0
A54
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A55
Verbetering randvoorwaardenmodel: Deelrapport 5 – Actualisatie van het 3D Scheldemodel
Final version F-WL-PP10-2 Version 03 VALID AS FROM: 25/04/2012
WL2013R00_018_5rev2_0
A56
Waterbouwkundig Laboratorium Flanders Hydraulics Research
B-2140 Antwerp Tel. +32 (0)3 224 60 35 Fax +32 (0)3 224 60 36 E-mail:
[email protected] www.watlab.be