Utilization of Electric Vehicles in Supporting Grid Electricity and Development of Their Quick Chargers for Simultaneous Charging
Seminar Nasional Ketenagalistrikan & Aplikasinya (SENKA 2015) Bandung, 19-20 Agustus 2015
Muhammad Aziz
Sejarah Singkat EV 1828 Penemuan EV (Ányos Jedlik, Hungarian) 1900 Share penjualan dalam jumlah besar Produksi mobil di Amerika tahun 1900 gasoline
electric
steam 0
500
1000 Jumlah
1500
2000
“La Jamais Contente” dengan kecepatan 105 km/h di tahun 1899
1899 Mobil hybrid pertama (F. Porsche)
1920s Mobil dengan bensin menjadi lebih murah dan cepat 1980s Trend baru setelah krisis minyak SENKA 2015, Bandung
2
Motivasi Untuk Mengembangkan EV • Kebijakan politik domestic – Pengurangan ketergantungan minyak ke asing – Penciptaan lapangan kerja – Akselerasi pertumbuhan ekonomi
• Pengaruh global – Penyeimbangan populasi dan polusi – Clean technology
• Ketergantungan energi – Pemanfaatan sumber energi lokal secara optimal – Pengurangan impor minyak
• Perubahan iklim – Kesadaran pada lingkungan
SENKA 2015, Bandung
3
Tipe Mobil Listrik
Petrol (ICE)
Hybrid (HEV)
Plugin Hybrid (PHEV)
100% Battery (EV, GEV, BEV)
Range
700 km
700 km
700 km
160 km
Refuel Time
5 min
5 min
<1 h Level 2 Charge
4– 8 h Level 2 Charge
Usage
1st car Familiy car
1st car Family car
1st car Family car
2nd car City car
Efficient
More Efficient
Most Efficient
+ Electric motor
+ Charging
+ 100% Battery
Energy Not Efficient Efficiency Customer Mind
Benchmark
SENKA 2015, Bandung
4
Pergerakan Jumlah Mobil Listrik
Tahap adopsi/perkembangan jumlah mobil listrik secara umum
Prediksi jumlah EV dan PHEV yang terjual secara global (sumber: IDTechEx)
SENKA 2015, Bandung
5
Tahap Adopsi Mobil Listrik
SENKA 2015, Bandung
6
Jenis Mobil Listrik di Pasaran 2009
Sport/Luxur y
2010
Compact
Porsche 918 PHEV
Mini EV Zenn EV
Wheego LiFe Mitsubishi i-MiEV
Audi A1 PHEV
Cadillac XTS PHEV Fisker Karma
Smith Electric Edison
Nissan Leaf
Navistar eStar
Volvo V70 PHEV
Toyota Prius Smart for two
Honda insight PHEV
Think City
Ford Focus EV
Toyota Rav4 EV GM Volt
2013
2012
Tesla Model S
Tesla Roadster
Light Trucks Sedan/SUV
2011
Coda EV
BYD e6 EV
Ford Transit Connect Mercedes Vito E-cell
SENKA 2015, Bandung
Renault Kangoo
Outlander PHEV
Bright Auto Idea
7
Pemanfaatan dan Integrasi EV dengan Energy Management System
Pendahuluan Karakteristik EV •
Nilai keekonomian yang rendah
•
Beban listrik yang besar (QC 50KW)
•
Beban yang fluktuatif dan tidak terprediksi
•
Degradasi baterai, waktu charging, jarak tempuh
•
Baterai diganti setelah kapasita turun menjadi 70-80%
•
Biaya operasional yang relatif murah
•
Charging dan discharging yang terkontrol
Utilisasi EV dan baterai bekasnya untuk mensupport dan ikut di pasar listrik SENKA 2015, Bandung
9
Community Energy Management
Possible structure of CEMS including both electricity and control lines
The initiatives of CEMS comes from the needs of harmonization between optimal energy services, potential economy and environmental benefits. CEMS manages the overall energy supply and demand across the community. It communicates the information with other systems both inside and outside of the community. SENKA 2015, Bandung
10
Skema Utilisasi EV Direct
Type of utilization contract
• • •
Direct owner – electricity entities Suitable for small scale Maximize the profit
Aggregation-based • •
EVs are distributed and aggregated Large scale
Possible utilization schemes of EV to support grid electricity: (a) direct utilization scheme, (b) aggregator-based utilization scheme. SENKA 2015, Bandung
11
Integrasi EV ke EMS Utilization of EVs and their used batteries to support Energy management System (EMS)
Grid Weather info. Building load
Meteorological agency
Building Energy Management System (BEMS)
Renewable energy
SOC, position, arrival time
Battery station
Vehicle Information System (VIS)
EVs in motion
Charging station
Plugged EVs
Basic schematic diagram of EVs and their used batteries integration to BEMS EMS
• Requests, manages and integrates information • Predict the building load, generated electricity from RE • Full control over batteries and plugged EVs SENKA 2015, Bandung
12
Pola Beban Listrik
Characteristics of electricity in office building • Established demand pattern • High electricity demand • High EV availability during peak time (commuting EVs) • BEMS can handle directly the payment/ incentives to the participants
Uncertainties • Air conditioning demand • PV generation • EV availability (less uncertain)
Seasonal average load for office building Building electricity demand • 2 peaks: AM (9 to 12) and PM (1 to 5) • Highest seasonal demand on summer, followed by winter then spring and autumn
SENKA 2015, Bandung
13
Pola SOC EV dalam 1 Hari
The assumed SOC state of EV for 24 hours during weekday
SENKA 2015, Bandung
14
Penggolongan EV dari SOC
Penggolongan EV dari persentase kapasitas baterai C. Sandles, et al., 2010 Int. Conf. Power System Technol., IEEE SENKA 2015, Bandung
15
Load Leveling Management of demand and supply through shifting the demand in peak hours to off-peak hours
Concept of the developed load leveling in BEMS • • • •
Prediction by BEMS is conducted 24 hours prior to the event Electricity amount is defined for 30 min duration Real time data updating Battery is fully controlled by BEMS including both charging and discharging SENKA 2015, Bandung
16
Demonstrasi Component
Properties
Value
PV
Type Capacity PCS capacity
Mono crystalline 20 kW AC 200 V, 100 A
EVs
Type Participating number Battery capacity Max. charging capacity PCS capacity
i-Miev G 5 16 kWh DC 370 V, 15A AC 200 V, 15 A
Used EV batteries
Original EV Installed number Battery capacity Max charging capacity PCS capacity
i-Miev G 5 16 kWh DC 370 V, 15A AC 200 V, 15 A
Schematic diagram of the developed demonstration test bed • • • •
Located in MMC factory plant in Okazaki, Aichi, Japan (management office building) Used battery coming from same EV after 1 year usage Charging and discharging threshold for both EV and Battery are 90% and 40%, respectively Target load leveling time 1PM to 4PM (due to available capacity limitation)
SENKA 2015, Bandung
17
Driving EVs (Mitsubishi Motors)
EV Integration System [EIS] (Mitsubishi Electric/ Mitsubishi Motors)
Photovoltaic system (Mitsubishi Electric) Factory EMS (Mitsubishi Electric)
20kW AC
3kW×10 AC
Dischargeable PCS (Power Conditioner)
Dischargeable PCS (Mitsubishi Electric/ Mitsubishi Corporation)
DC
+
+
+
+
Used rechargeable batteries (Mitsubishi Corporation)
+
Parking EVs (Mitsubishi Motors)
SENKA 2015, Bandung
18
3.4 Vehicle ID Session start information
4.1 Vehicle ID Standby command
FEMS
3.5 Vehicle ID Charge/discharge command
4.2 Vehicle ID Standby command
3.3 Vehicle ID Session start information 3.6 Vehicle ID Charge/discharge result
1.4 Vehicle ID Departure time Arrival time SOC request Expected arrival SOC
4.5 Vehicle ID Session end command
PCS
ECU 3.2 Vehicle ID Session start command 4.4 Vehicle ID Session end command
4.6 Vehicle ID Session end command
EIS
2.4 Vehicle ID Departure time Arrival time SOC request Expected arrival SOC
Probe
3.7 Vehicle ID Status SOC
2.3 Expected arrival SOC Arrival time
2.2 Vehicle ID SOC Location information Status
1.2 Vehicle ID User ID Departure time Arrival time Route SOC request
3.8 Vehicle ID Status SOC
2.1 Vehicle ID SOC Location information Status
4.8 Vehicle ID Status SOC
4.7 Vehicle ID Status SOC
User
3.1 Vehicle ID Session start command
1.3 Expected arrival SOC
4.3 Vehicle ID Session end command
1.1 User ID Departure time Arrival time Route SOC request
User Portal
Diagram komunikasi SENKA 2015, Bandung
19
Test Bed (1)
Whole view
Secondary used batteries
PCS (Power conditioning system) SENKA 2015, Bandung
EV (Mitsubishi iMiev) 20
Test Bed (2) Unconnected or stop Charging to EV Discharging from EV
User interface Charging pole SENKA 2015, Bandung
21
Peak Cut Threshold Theoretically, calculated based on electricity price, capacity, etc. In this study, it is defined based on averaged daily load duration curve subtracted with predicted PV generation
S Ln = Evav + Batav + S (Ln – Pt) Load (kWh/30min)
Total available EV and Batt
If Ln > Pt
(Building load – generated PV)
Peak cut threshold
L1
0
L5 ………….. Ln
2
4
6
8
…………..
L24
10 12 14 16 18 20 22 24 Time duration (hr)
Load duration curve SENKA 2015, Bandung
22
Contoh Hasil Demonstrasi (1)
Load leveling test in a representative weekday
• Leveling effect during target leveling time • EV is almost available in peak leveling time due to its usage for employee commuting • EVs are charged at the morning, lunch break time and after load leveling at the evening (depending on the owner)
SENKA 2015, Bandung
23
Contoh Hasil Demonstrasi (2)
The amount of peak-cut and peak-shift in a day by each PV, EVs, and used batteries
Average total load leveling by each PV, EVs, and used EV batteries in different months
The average total peak cut amount is about 80 kWh per day. Peak shift by used battery almost constant Main fluctuation is caused by PV generation and followed by EV.
SENKA 2015, Bandung
24
Degradasi Baterai
Average discharging electricity of used EV batteries for 1 year usage
• Discharging from 90% to 40% SOC • Discharging capacity was measured at AC output of PCS • Discharging capacity decreases about 4.4% per year (considering that PCS efficiency is 5%)
SENKA 2015, Bandung
25
Battery-Assisted Charging System (BACS)
Pendahuluan Alasan integrasi baterai untuk mensupport chager EV (QC): • Fastest charging may overload any direct connection to the AC grid in that location • Even for slower charging the local grid connection may not cope • People may want to be sure they are using renewable energy and such a module can be visibly connected to renewable power sources such as solar and wind power • Charging may be provided in disaster zones and at events • It can be an uninterruptible power supply SENKA 2015, Bandung
27
Pengisian listrik untuk EV Level pengisian listrik untuk EV (sumber: SAE)
Cross section dari kabel untuk fast charging (Kikusu) Kabel untuk slow charging (versi portable)
Pengisian untuk slow charging (residensial)
Pengisian listrik untuk fast charging
SENKA 2015, Bandung
28
Standard Pengisian Listrik • Society of Automotive Engineers (SAE) – SAE J1772 – AC level 1 (single, AC120V, 12A/16A) dan level 2 (single, AC208240V, max. 80A – Belum ada untuk DC fast charging
• International Electrochemical Commission (IEC) – IEC 61851 – Hingga AC690V dan DC1,000V
• CHAdeMO – Japan EV Standard G 105-1993 – Hingga DC500V, 125A – CHAdeMO association: Toyota, Nissan, Mitsubishi, Fuji Heavy, TEPCO, etc.
SENKA 2015, Bandung
29
Konektor pengisian
SAE J1772
CHAdeMO SENKA 2015, Bandung
30
Nilai Pasar Pengisian Listrik
Nilai pasar secara global dari penjualan charger untuk EV (million USD, sumber: IDTechEx)
SENKA 2015, Bandung
31
Musim panas
Musim dingin
Karakteristik Pengisian Listrik EV
SENKA 2015, Bandung
32
Yokohama Smart City Project
Gambaran proyek Yokohama Smart City Project (YSCP) SENKA 2015, Bandung
33
Battery-Assisted Charging System
Konfigurasi konseptual dari BACS
SENKA 2015, Bandung
34
SENKA 2015, Bandung
35
Diagram skematik dari BACS
SENKA 2015, Bandung
36
Spesifikasi BACS Component AC/DC inverter
DC/DC converter
Battery
Quick charger
Property Receiving voltage Converter output voltage Converter output power Power at DC line side Max. current at battery side Voltage at battery side Type Capacity (kWh) Nominal voltage Max. charging voltage Discharge cut-off voltage Max. current in continuous discharge SOC threshold in charging SOC threshold in discharging Number Standard Output voltage Output current Rated output power
SENKA 2015, Bandung
Value 200 V DC 450 V 50 kW 50 kW 150 A 0-400 V Lithium-ion 64.2 kWh 364.8 V 393.6 V 336.0 V 176 A 90% 10% 2 units CHAdeMO DC 50–500 V 0–125 A 50 kW
37
Pengisian Listrik Simultan (50 kW) Musim panas
BACS
QC Konvensional
Musim dingin
SENKA 2015, Bandung
38
Pengisian Listrik Simultan (8 EV)
SENKA 2015, Bandung
39
Harapan dan Pertumbuhan EV di Indonesia
Pendorong Pertumbuhan EV Kebijakan, dana dan Insentif dari pemerintah – Kebijakan yang berkesinambungan dan terintegrasi – Dana riset yang terarah dan terukur jelas – Insentif biaya produksi, pajak pembelian, pajak kepemilikan, pajak efisiensi bahan bakar, dll. – Demonstrasi, pengarahan, dll.
Manufaktur EV – Kerjasama mutual – Riset yang mengintegrasi
Pemilik dan pengguna – Kesadaran lingkungan – Ketertarikan pada teknologi dan mobil – Perhitungan keekonomian
SENKA 2015, Bandung
41
Global Initiatives Americas
Europe
Asia
United States
United Kingdom
China
Offers up to $7,500 for qualified vehicles (Chevrolet Volt, Nissan Leaf, Coda sedan, Tesla Roadster). $2.8 billion overall budget allocated.
Offers £ 5,000 max or 25% of retail. Plans to have more than 1,000 electric vehicles for its fleet and 25,000 charging points by 2015 to support running of a target 100,000 electric vehicles.
Offers up to USD $8,800 in subsidies. Plans to invest USD $15 billion to help domestic automakers put 20 million fuel-efficient vehicles on China’s roads by 2020.
France
India
Offers €5000 or 20% of retail, valid up to 2012. Offers up to 1,000 charging stations. €400 million budget allocated for incentives, technology, and infrastructure.
Offers $2,200 or 20% of retail for electric vehicles, plus other smaller subsidies for electric 2wheelers which is majority of the market.
Canada Plans to have 1 in 20 vehicles driven in Ontario to be electrically powered by 2020. Quebec offers up to $8,000.
Mexico Mexico City signed an agreement with Nissan to deliver recharging infrastructure for EVs in 2011.
Brazil Plans to develop electric vehicles and build solar-powered charging stations in near future.
Japan
Germany €3,000 to 5,000 for the first 100,000 vehicles. €500 million budget allocated for EV incentives, technology, and infrastructure.
Enforces periodic vehicle inspection, testing, and taxation based on engine size to drive adoption. By 2020, 1 in 5 will be an EV vehicle. ¥106 billion budget allocated.
Sources: Frost & Sullivan, J.D. Power Associates
SENKA 2015, Bandung
42
Kendala dan Tantangan • Kebijakan, roadmap • Infrastruktur • Penguasaan teknologi (R&D) • Integrasi teknologi dan kontinuitas • Pola listrik, transmisi dan distribusi, reserve • Keekonomian (pangsa pasar)
• Ketergantungan kepada BBM dan kesadaran lingkungan • Industri mobil konvensional sebagai saingan • Tata kota, residensial, jarak komuter SENKA 2015, Bandung
43
Dinamika Pengisian Listrik Charging Infrastructure
Innovators´ Market
Niche Market (e.g. commuters, business clients)
Market Penetration
Mass Market Time
Grid Integration Norms and
Infrastructure
Control
System Services
standards Mainly private infrastructure
Selective public infrastructure to support early adoption
Time-of-use rates
Smart Metering Expansion of semi- public charging infrastructure
Demand Side Management (Dynamic rates)
Load shift (negative supply of balancing power)
SENKA 2015, Bandung
Smart Grids
Bi-directional connection
Load shift and active load leveling
44
Penutup
SENKA 2015, Bandung
45