UNIVERSITY OF INDONESIA
METHANOL
UNIVERSITY OF INDONESIA
Methanol
Introduction Production Uses The Market Capital Investment and Production Cost Technology Advantages
UNIVERSITY OF INDONESIA
Introduction
The first member of the homologous series of aliphatic alcohols, with the formula CH3OH. It is produced commercially from a mixture of carbon monoxide (CO) and hydrogen (H2).
UNIVERSITY OF INDONESIA
Introduction
Methanol is a
highly flammable liquid, boiling point 64.7°C (149°F), is miscible with water and most organic liquids, highly poisonous substance, and sublethal amounts can cause permanent blindness.
UNIVERSITY OF INDONESIA
Introduction
BASF pada tahun 1923 mengenalkan proses sintesis methanol dari CO dan H2 yang merupakan aplikasi kedua terbesar mengenai katalis dan teknologi tekanan tinggi dalam industri kimia.
UNIVERSITY OF INDONESIA
Introduction
Proses tersebut merupakan penelitian lanjut dari hidrogenasi CO,
CO dan H dapat bereaksi pada tekanan 100 – 300 bar untuk menghasilkan produk yang beragam dari methanol sampai alkohol yang lebih tinggi, tergantung pada katalis yang digunakan dan kondisi operasi juga komponen-komponen yang terhidrogenasi dan hidrokarbon.
Penelitian ini dilakukan oleh Fischer-Tropsch pada sekitar awal 1930 an.
UNIVERSITY OF INDONESIA
Introduction
Seperti proses amonia, sintesis methanol juga tergantung pada pengembangan katalis yang digunakan.
Katalis methanol harus selektif dan aktif. Salah satunya, yang mengandung zinc oxide dan chromia, tahan sampai sekitar 40 tahun.
UNIVERSITY OF INDONESIA
Introduction Tahun 1996 ICI memperkenalkan katalis cooper/zinc oxide/alumina dengan aktivitas yang lebih besar. Dengan katalis ini methanol dapat bereaksi pada temperatur yang lebih rendah (kurang dari 300oC) dan tekanan yang lebih rendah (50-100 bar).
UNIVERSITY OF INDONESIA
Introduction Hasilnya, jika dibandingkan dengan proses sebelumnya yang memerlukan tekanan tinggi.
proses menjadi lebih efisien, lebih murah dan lebih rendah biaya modal yang akan diinvestasikan.
UNIVERSITY OF INDONESIA
Introduction
Methanol is one of the major industrial organic chemicals. Its major derivatives are
methyl tertiary butyl ether (MTBE), formaldehyde, and acetic acid.
UNIVERSITY OF INDONESIA
Introduction
Other derivatives and uses include
chloromethanes, methyl methacrylate, methylamines, dimethyl terephthalate, solvents (such as glycol methyl ethers), antifreeze, and fuels.
UNIVERSITY OF INDONESIA
Introduction
Methanol is produced naturally in the anaerobic metabolism of many varieties of bacteria.
As a result, there is a small fraction of methanol vapor in the atmosphere. Over the course of several days, atmospheric methanol is oxidized by oxygen with the help of sunlight to carbon dioxide and water.
UNIVERSITY OF INDONESIA
Introduction
Methanol burns in air forming carbon dioxide and water:
2 CH3OH + 3 O2 → 2 CO2 + 4 H2O
A methanol flame is almost colorless.
Care should be exercised around burning methanol to avoid burning oneself on the almost invisible fire.
UNIVERSITY OF INDONESIA
Introduction
Methanol is often called wood alcohol because it was once produced chiefly as a byproduct of the destructive distillation of wood. It is now produced synthetically by a multi-step process.
UNIVERSITY OF INDONESIA
Introduction
In short,
natural gas and steam are reformed in a furnace to produce hydrogen and carbon monoxide; then, hydrogen and carbon monoxide gases react under pressure in the presence of a catalyst. The reforming step is endothermic and the synthesis step is exothermic.
UNIVERSITY OF INDONESIA
Production
Today, synthesis gas is most commonly produced from the methane component in natural gas rather than from coal. Three processes are commercially practiced.
UNIVERSITY OF INDONESIA
Production
At moderate pressures of 1 to 2 MPa (10–20 atm) and high temperatures (around 850 °C), methane reacts with steam on a nickel catalyst to produce syngas according to the chemical equation: CH4 + H2O → CO + 3 H2
UNIVERSITY OF INDONESIA
Production
This reaction, commonly called steammethane reforming or SMR, is endothermic and the heat transfer limitations place limits on the size of the catalytic reactors used.
UNIVERSITY OF INDONESIA
Production
Methane can also undergo partial oxidation with molecular oxygen to produce syngas, as the following equation shows: 2 CH4 + O2 → 2 CO + 4 H2
this reaction is exothermic and the heat given off can be used in-situ to drive the steam-methane reforming reaction. When the two processes are combined, it is referred to as autothermal reforming.
UNIVERSITY OF INDONESIA
Production
The ratio of CO and H2 can be adjusted by using the water-gas shift reaction, CO + H2O → CO2 + H2,
to provide the appropriate stoichiometry for methanol synthesis.
The carbon monoxide and hydrogen then react on a second catalyst to produce methanol.
UNIVERSITY OF INDONESIA
Production
Today, the most widely used catalyst is a mixture of copper, zinc oxide, and alumina first used by ICI in 1966. At 5–10 MPa (50–100 atm) and 250 °C, it can catalyze the production of methanol from carbon monoxide and hydrogen with high selectivity CO + 2 H2 → CH3OH
UNIVERSITY OF INDONESIA
Production
It is worth noting that
the production of synthesis gas from methane produces 3 moles of hydrogen for every mole of carbon monoxide, while the methanol synthesis consumes only 2 moles of hydrogen for every mole of carbon monoxide.
UNIVERSITY OF INDONESIA
Production
One way of dealing with the excess hydrogen is to inject carbon dioxide into the methanol synthesis reactor, where it, too, reacts to form methanol according to the chemical equation CO2 + 3 H2 → CH3OH + H2O
UNIVERSITY OF INDONESIA
Production
Although natural gas is the most economical and widely used feedstock for methanol production, other feedstocks can be used. Where natural gas is unavailable, light petroleum products can be used in its place. The South African firm Sasol produces methanol using synthesis gas from coal.
UNIVERSITY OF INDONESIA
Production
Methanol dapat dihasilkan dalam skala industri secara besar besaran, melalui konversi katalitik dari gas sintesis. proses tersebut digolongkan menurut tekanan yang digunakan :
1. Proses tekanan tinggi 300 atm) 2. Proses tekanan sedang 250 atm) 3. Proses tekanan rendah 100 atm)
: 25-30 Mpa (250 –
: 10-25 Mpa (100 – : 5-10 Mpa
(50 –
UNIVERSITY OF INDONESIA
Production
Pada sat ini proses pembuatan methanol pada tekanan sedang dan tekanan rendah saja yang digunakan. Tetapi sejalan dengan adanya konservasi energi maka proses pada tekanan rendah memberikan alternatif yang paling baik dibandingkan dengan tekanan sedang.
UNIVERSITY OF INDONESIA
Production
Keuntungan paling utama dari proses tekanan rendah adalah :
Biaya produksi dan investasi rendah Peningkatan operasional dapat diandalkan Fleksibilitas lebih besar dalam pemilihan ukuran pabrik
UNIVERSITY OF INDONESIA
Production
Proses pruduksi methanol industri terdiri atas :
Produksi gas sintesis Sintesis Methanol
dalam
UNIVERSITY OF INDONESIA
Production
Produksi methanol dimulai dengan produksi gas sintesis yang terdiri dari hidrogen dan karbonmonoksida. Teknologi yang sering digunakan dalam proses gas sintesi antara lain :
Steam Reforming Oksidasi Parsial Gasifikasi Batubara
UNIVERSITY OF INDONESIA
Production
Selanjutnya hasil dari syn-gas menjadi feedstock pada methanol plant, dimana reaksi sintesis methanol dalah
CO + 2H2 Æ CH3OH kkal/mol
∆H298 = -21.684
UNIVERSITY OF INDONESIA
Production
Reaksi pembentukan methanol ini memiliki konversi yang rendah. Hal ini diakibatkan karena reaksi mudah untuk mencapai kesetimbangan.
UNIVERSITY OF INDONESIA
Production
Untuk mendapatkan konversi yang lebih tinggi biasanya reaksi dilakukan pada tekanan yang cukup tinggi dan temperatur yang rendah. Perkembangan teknologi reaksi sintesis methanol pada tekanan tinggi mulai ditinggalkan dengan ditemukannya katalis yang lebih reaktif dan jenis reaktor yang sesuai.
UNIVERSITY OF INDONESIA
Production
Recycle
P-5
Flash colom Heat Exchanger Gas Sintesis
Reactor Sintesi Methanol
Crude Methanol
UNIVERSITY OF INDONESIA
Production
Jenis katalis yang digunakan:
Katalis pada tekanan tinggi Katalis pada tekanan rendah
UNIVERSITY OF INDONESIA
Production
Katalis pada tekanan tinggi
Digunakan alkali/ZnO-CuO/Cr2O3 dapat beroperasi pada tekanan 120-300 bar dan temperatur 300-425oC. Katalis ini tahan terhadap sulfur dan klorin yang terdapat dalam syn-gas.
UNIVERSITY OF INDONESIA
Production
Katalis pada tekanan tinggi
Produksi metanol dengan zinc-oksida-krom oksida pada proses bertekanan tinggi tidak lagi bersifat ekonomis. Generasi baru katalis mengandung copper dengan keaktifan dan selektifitas yang lebih tinggi.
UNIVERSITY OF INDONESIA
Production
Katalis pada tekanan rendah
Digunakan alkali/CuO-ZnO/Al2O3 dapat beroperasi pada tekanan 50-100 bar dan temperatur 275-310oC (120-300 bar dan suhu 300-425oC, utk tek.tinggi). Penggunaan katalis ini membutuhkan kondisi syn-gas yang murni dari sulfur dan klorin (H2S < 0.1 ppm).
UNIVERSITY OF INDONESIA
Production
Katalis pada tekanan rendah
Karena keaktifan katalis, sintesis metanol dapat berlangsung pada suhu 220-230oC dan 5 Mpa. Selektifitas yang tinggi memberikan kemurnian metanol lebih besar dari 99.5%. Pembentukan produk sampingan seperti DME, alkohol tinggi, senyawa karbonil dan metana dapat dihilangkan.
UNIVERSITY OF INDONESIA
Production
Produksi methanol secara komersial dapat dilakukan melalui berbagai macam proses. Proses yang paling banyak digunakan di industri methanol adalah ICI.
UNIVERSITY OF INDONESIA
Production
Proses proses yang lain diantaranya adalah :
Proses Proses Proses proses
Lurgi, Kellog, Nissui Topsoe dan Mitsubishi Gas Company (MGC).
UNIVERSITY OF INDONESIA
Production
Jalur sintesis methanol dari proses proses tersebut sama, yang membedakan hanya
jenis katalis, reaktor yang dipergunakan dan kondisi operasi reaksi.
UNIVERSITY OF INDONESIA
Production Perbandingan penggunaan proses sintesis methanol didunia Kellogs 3% MGC 8%
ICI 61%
Lurgi 27% Other 1%
UNIVERSITY OF INDONESIA
Production
Dari diagram
sebagian besar (61%) proses menggunakan teknologi ICI pada tekanan rendah, diikuti dengan proses tekanan rendah
yaitu teknologi Lurgi (27%) dan Kellog (3%).
UNIVERSITY OF INDONESIA
Production
Proses tekanan sedang sudah jarang digunakan hanya sebagian kecil sebesar 8% menggunakan teknologi MGC.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah ICI
Campuran gas sintesis umpan segar ditekan dari 50100 atm melalui sebuah kompresssor dan diumpan kedalam reaktor berpendingin (quench type converter) yang beroperasi pada 270oC.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah ICI
Quench converter berupa single bed yang
mengandung katalis pendukung yang bersifat inert.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah ICI
Aliran produk kemudian didinginkan dan methanol akan terkondensasi.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah ICI
Aliran gas purge direcycle ke reformer untuk mengubah methanol yang terakumulasi dalam gas sintesis.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah ICI
Crude methanol akan dipurifikasi dengan cara distilasi.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah ICI
Karena dianggap kurang menguntungkan ICI mengganti jenis reaktor yang digunakan dari quench reactor menjadi tube berpendingin yang pada prinsipnya sama dengan yang digunakan oleh Lurgi.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah ICI
Proses ICI bertekanan rendah ada yang menggunakan reaktor packed bed adiabatic tersusun seri. Suhu masukan ke bed ditentukan oleh suhu dingin dari syn-gas yang diinjeksikan.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah ICI
Tidak ada penukar panas diantara bed dan hal ini membuat reaktor menjadi lebih sederhana daripada desain proses lainnya.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah ICI
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah Lurgi
Dalam proses yang ditawarkan oleh Lurgi untuk sintesis methanol,
reaktor sintesis dioperasikan pada rentang suhu dari 230 – 270oC dan dengan tekanan operasi 50-100 bar.
Perancangan reactor berbeda dengan ICI.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah Lurgi
Dalam teknologi pertama ICI, katalis ditumpuk menjadi sebuah unggun serta dimasukan pada berbagai lokasi sepanjang unggun dengan tujuan agar diperoleh distribusi suhu yang merata. Sedangkan Lurgi menggunakan reaktor shell and tube , tube diisi dengan katalis dan panas reaksi diserap oleh air yang bersirkulasi secara alami pada bagian shell.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah Lurgi
Pada dasarnya reaktor juga memainkan peranan kedua yaitu sebagai pembangkit uap (steam regenarator) bertekanan 40-50 bar.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah Lurgi
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah Lurgi
Lurgi menggunakan reaktor quasi-isothermal dengan katalis di dalam tube yang didinginkan dengan sirkulasi
boiling water.
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah Lurgi
Proses Lurgi akan menghasilkan methanol yang murni dengan proses sintesis methanol dan proses pemurniannya
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah Kellog
M.W. Kellog Co. memperkenalkan reaksi sintesis yang sangat berbeda, tetapi pada dasarnya merupakan reaktor tipe adiabatik. Reaktor berbentuk bulat dan didalamnya berisi unggun katalis tunggal. Sintesis gas mengalir melalui beberapa bed reaktor yang tersusun aksial berseri. Kebalikan dari proses ICI, panas reaksi yang dihasilkan dikontrol dengan pendingin intermediat (intermediate coolers).
UNIVERSITY OF INDONESIA
Proses Tekanan Rendah Kellog
Proses ini menggunakan katalis tembaga dan beroperasi pada rentang suhu 200-280oC serta tekanan 100-150 atm. Suhu didalam unggun katalis dikendalikan melalui penggunaan sebuah reaktor berpendingin (quench type converter) dengan menyerap panas reaksi dalam intermediate stage boiler.
UNIVERSITY OF INDONESIA
Proses Tekanan Sedang Nissui-Topsoe
Skema reaktor dari proses Halder Topsoe dari Denmark didesain oleh Nihin Suiso Kogyo of Japan. Reaktor bertipe adiabatis dengan aliran radial berjumlah tiga masing-masing memiliki satu unggun radial dan penukar panas internal. Tiap reaktor mengandung satu satu unggun katalis. Tekanan operasi dari proses ini diatas 150 bar dan suhu 200-310oC.
UNIVERSITY OF INDONESIA
Proses Tekanan Sedang Nissui-Topsoe
Produk pertama perlu didinginkan sebelum reaktor kedua, hasil pendinginan berupa uap (steam) bertekanan rendah. Katalis yang digunakan berupa Cu-Zn-Cr yang aktif pada 230-280oC dan 100-200 atm. Sintesis gas mengalir secara radial melalui katalis bed.
UNIVERSITY OF INDONESIA
Proses Tekanan Sedang Mitsubishi Gas Company
Perusahaan Jepang MGC pada awalnya menggunakan proses dengan tekanan sedang yang beroperasi pada 150 atm kemudian dikembangkan untuk tekanan kurang dari 100 atm. Saat ini MGC menggunakan rentang tekanan 50-200 atm dan suhu 235-270oC. Hingga saat ini telah dioperasikan tiga buah, dua diantaranya berlokasi di Jepang dan sisanya di Arab.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi
Dalam proses sintesis metanol, pemilihan teknologi pertama dilakukan pada proses produksi gas sintesis menghasilkam hidrogen dan karbon-monoksida. Untuk menghasilkan gas sintesis, bahan baku berasal dari gas alam. Steam reforming akan menghasilkan hidrogen lebih banyak daripada oksidasi parsial yang menghasilkan lebih banyak karbonmonoksida.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi
Hidrogen dalam jumlah banyak dibutuhkan dalam sintesis metanol sebab diperlukan rasio H2 : CO2 sebesar 3:1 dan rasio H2 : CO sebesar 2:1. Oleh karena itu, proses steam reforming dipergunakan untuk memproduksi gas sintesis.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi
Dalam pemilihan teknologi sintesis metanol, parameter yang digunakan adalah:
keaktifan katalis, jenis reaktor, dan tekanan operasi yang dipergunakan.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi
Untuk sintesis metanol,
keaktifan dan selektifitas katalis memegang peranan penting dalam efisiensi proses, sehingga proses tidak berlangsung pada tekanan tinggi atau sedang.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi
Katalis yang digunakan pada tekanan rendah
CuO-ZnO/Al2O3 memiliki keaktifan dan selektivitas yang lebih tinggi dibandingkan dengan katalis pada tekanan tinggi ZnO-CuO/Cr2O3.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi
Selektifitas yang tinggi akan menghasilkan metanol dengan kemurnian yang tinggi dan produk samping yang terjadi dapat dikurangi.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi
Katalis CuO-ZnO yang digunakan pada tekanan rendah mempunyai kelebihan dibadingkan katalis lain, yaitu:
Mempunyai struktur yang sangat baik (well-definedstructural) yaitu susunan elektron yang menunjang keaktifan katalis dan selektifitas yang tinggi pada metanol. Mempunyai bentuk (morfologis) yang baik.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi
Dari parameter katalis, pemilihan teknologi sintesis metanol dilakukan pada tekanan rendah, yaitu antara
teknologi ICI, Lurgi dan Kellog.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi
Pemilihan jenis reaktor akan mempengaruhi biaya investasi untuk mendesain reaktor tersebut. Pertimbangan jenis reaktor:
Desain reaktor yang sederhana sehingga tidak membutuhkan kontrol suhu yang rumit. Jenis pendingin yang digunakan akan menentukan sistem pengontrolan suhu dalam sistem ketika terjadi kenaikan suhu yang besar.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi •
Pada reaktor quench converter (reaktor berpendingin) pada ICI, •
•
•
umpan yang masuk langsung bertemu dengan unggun katalis sehingga menyebabkan kerusakan pada katalis dan menyebabkan reaksi terhenti.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi •
Pada reaktor shell and tube pada Lurgi, •
•
•
pendingin menggunakan boiling water yang mengalir di dalam shell dapat menyerap panas yang dihasilkan reaksi di dalam tube yang berisi katalis sehingga reakor dapat mempertahankan suhunya.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi •
Pada teknologi Kellog digunakan pendingin intermediate coolers yang akan memperbesar investasi desain reaktor.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi •
Dari pertimbangan diatas, dapat ditarik kesimpulan bahwa •
•
teknologi Lurgi tidak membutuhkan desain reaktor yang rumit dimana kontrol suhu dapat dilakukan dengan mengalirkan boiling water pada shell.
UNIVERSITY OF INDONESIA
Pemlihan Teknologi •
Keunggulan teknologi Lurgi lainnya yaitu •
•
•
dihasilkannya steam bertekanan sedang yang memberikan solusi bagi penghematan energi. Steam yang dihasilkan digunakan untuk pemanasan umpan reaktor dan sebagai reboiler dalam proses distilasi metanol. Perolehan steam ini memperkecil beban pendidih (boiler) untuk memproduksi steam.
UNIVERSITY OF INDONESIA
Uses
Methanol is used on a limited basis to fuel internal combustion engines, mainly by virtue of the fact that it is not nearly as flammable as gasoline. Methanol blends are the fuel of choice in open wheel racing circuits like Champcars, as well as in radio controlled model airplanes (required in the "glow-plug" engines that primarily power them), cars and trucks.
UNIVERSITY OF INDONESIA
Uses
Dirt circle track racecars such as Sprint cars, Late Models, and Modifieds use methanol to fuel their engines. Drag racers and mud racers also use methanol as their primary fuel source.
UNIVERSITY OF INDONESIA
Uses
Methanol is required with a supercharged engine in a Top Alcohol Dragster and, until the end of the 2005 season, all vehicles in the Indianapolis 500 had to run methanol. Mud racers have mixed methanol with gasoline and nitrous oxide to produce more power than gasoline and nitrous oxide alone.
UNIVERSITY OF INDONESIA
Uses
Methanol is a traditional ingredient in methylated spirit or denatured alcohol. During World War II, methanol was used as a fuel in several Nazi Germany military rocket designs, under name MStoff, and in a mixture as C-Stoff.
UNIVERSITY OF INDONESIA
Uses
One of the drawbacks of methanol as a fuel is its corrosivity to some metals, including aluminium. Methanol, although a weak acid, attacks the oxide coating that normally protects the aluminium from corrosion: 6 CH3OH + Al2O3 → 2 Al(OCH3)3 + 3 H2O
UNIVERSITY OF INDONESIA
Uses
The resulting methoxide salts are soluble in methanol, resulting in clean aluminium surface, which is readily oxidised by some dissolved oxygen. Also the methanol can act as a oxidiser: 6 CH3OH + 4 Al → 2 Al2(OCH3)3 + 3 H2 So the corrosion continues until the metal is eaten away.
UNIVERSITY OF INDONESIA
Uses
When produced from wood or other organic materials, the resulting organic methanol (bioalcohol) has been suggested as renewable alternative to petroleum-based hydrocarbons. However, one cannot use BA100 (100% bioalcohol) in modern petroleum cars without modification.
UNIVERSITY OF INDONESIA
Uses
Methanol is also used as a solvent and as an antifreeze in pipelines. The largest use of methanol by far, however, is in making other chemicals. About 40% of methanol is converted to formaldehyde, and from there into products as diverse as plastics, plywood, paints, explosives, and permanent press textiles.
UNIVERSITY OF INDONESIA
Uses
In some wastewater treatment plants,
a small amount of methanol is added to wastewater to provide a food source of carbon for the denitrification bacteria, which convert nitrates to nitrogen.
UNIVERSITY OF INDONESIA
Uses
In the 1990s, large amounts of methanol were used in the United States to produce the gasoline additive methyl tert-butyl ether (MTBE). The 1990 Clean Air Act required certain major cities to use MTBE in their gasoline to reduce photochemical smog.
UNIVERSITY OF INDONESIA
Uses
However, by the late 1990s, it was found that MTBE had leaked out of gasoline storage tanks and into the groundwater in sufficient amounts to affect the taste of municipal drinking water in many areas.
UNIVERSITY OF INDONESIA
Uses
Moreover, MTBE was found to be a carcinogen in animal studies. In the resulting backlash, several states banned the use of MTBE, and its future production remains uncertain.
UNIVERSITY OF INDONESIA
Uses
Direct-methanol fuel cells are unique in their low temperature, atmospheric pressure operation, allowing them to be miniaturized to an unprecedented degree. This, combined with the relatively easy and safe storage and handling of methanol may open the possibility of fuel cell-powered consumer electronics.
UNIVERSITY OF INDONESIA
Uses
Other chemical derivatives of methanol include dimethyl ether, which has replaced chlorofluorocarbons as an aerosol spray propellant, and acetic acid. There are now plans to use the chemical in eco-friendly fuel cells for laptop computers, the cells will break down methanol via an electrochemical process.
UNIVERSITY OF INDONESIA
The Market
Methanol is
an important multipurpose base chemical, a simple molecule which can be recovered from many resources, predominantly natural gas.
UNIVERSITY OF INDONESIA
The Market
By tradition, methanol is principally used to produce
formaldehyde, methyl tertiary butyl ether (MTBE) and acetic acid
UNIVERSITY OF INDONESIA
UNIVERSITY OF INDONESIA
The Market
To a lesser extend, methanol is used as a general solvent and as fuel and for producing other chemicals. Global demand for methanol amounts to about 32 million tons per year, with growth rates at or near GDP. The demand corresponds to the capacity of about 35 million tons which is available worldwide.
UNIVERSITY OF INDONESIA
The Market
Asia is becoming the main growth driver for the demand for methanol and its derivatives. Average growth rates are expected to be for:
Methanol: 3.8 %/a based on about 10 million tons in 2003, Acetic acid: 4.8 %/a, Formaldehyde: 4.4 %/a.
UNIVERSITY OF INDONESIA
The Market
Reducing the cost of production by installing “Mega” production facilities fed with lowcost natural gas is opening up new promising methanol outlets. such as for the production of:
Ethylene and/or propylene, methanol to propylene, e. g. by applying Lurgi MTP® technology. Dimethyl ether as a substitute for diesel fuel Liquid fuels
UNIVERSITY OF INDONESIA
The Market
Reducing the cost of production by installing “Mega” production facilities fed with lowcost natural gas is opening up new promising methanol outlets. such as for the production of:
Hydrogen or Feed material for power generating systems or Use in integrated schemes combined with an ammonia/urea complex, for example.
UNIVERSITY OF INDONESIA
The Market
Methanol consumption for fuel cells to be used in automobiles, for power generation and portable equipment is bound to increase in the near future. Proved reserves of natural gas in the Middle East exceed 71 trillion cubic meters equivalent to a 41 % share of the total world gas reserves with Iran and Qatar having the largest potential reserves i. e. about 30 %.
UNIVERSITY OF INDONESIA
The Market
Middle East and some regions of South America and Africa will raise their methanol production significantly because of:
low feedstock cost and low capital cost thanks to the economies of scale provided by “Mega” plants.
According to CMAI some 15 million tons of capacity, nearly 50 % of world demand, will be added within a period of five years.
UNIVERSITY OF INDONESIA
The Market
Considering the plentiful natural gas reserves and the evermore stringent environmental regulations to curb the wide-spread flaring-off, for example,
methanol production is a real alternative for converting natural gas or associated gas to a commodity with high value added.
UNIVERSITY OF INDONESIA
The Market
Monetizing the abundant natural gas in stranded gas regions, where the main end-user markets are geographically remote from the source, is highly attractive.
Methanol is a versatile natural gas product with value added. Methanol has excellent characteristics being easily transportable in comparison with gas, for example. Methanol production cost in the range of US$ 50 per ton opens up a completely new field for further down-stream derivatives like propylene or other new applications.
UNIVERSITY OF INDONESIA
Starting from the same feedstock price for natural gas,
Capital Investment and Production Cost
the production cost of methanol based on Lurgi MegaMethanol® technology is by far lower, typically in the range of 25 %, compared to the cost based on combined reforming and conventional steam reforming, respectively, at half the capacity of the MegaMethanol® plant.
The differences clearly show the economy of scale effect for the single train plant.
UNIVERSITY OF INDONESIA
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
The double capacity of the MegaMethanol® plant only requires additional capital expenditure of about 50 % of the plant investment cost based on the reforming technologies mentioned above. These figures demonstrate the superiority of Lurgi MegaMethanol® technology.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
Since 1995
the capacities of methanol plants have been increased from 2,000 t/d to 5,000 t/d in 2003 and will rise further to 10,000 t/d in the near future.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
The companies operating “Mega” plants are experiencing a tremendous reduction in production cost ex gate from about US$ 110/t to 50/t and ultimately less than 40/t, as shown in the diagram.
UNIVERSITY OF INDONESIA
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
The conversion of natural gas to methanol and downstream petrochemicals is highly economic on a natural gas price level below US$ 1/million BTU. Some regions such as the Middle East, locations in South America or Africa allow for natural gas prices of between US$ 0.2 and 0.7/million BTU, compared to an oil price of between US$ 12 and 14/barrel.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
This price scenario of gas-based methanol production cost and equivalent oil cost will certainly have an impact on the downstream products and process routes based on oil.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
Lurgi offers all technologies for methanol production including synthesis gas production based on:
conventional steam reforming, combined reforming, autothermal reforming.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
Accordingly, Lurgi accepts single line responsibility for small plants or for MegaMethanol® facilities on a LSTK basis if specified. In view of this know how and the experience gained with the design, supply and commissioning of numerous plants, Lurgi is able to offer the optimum concept combined with project development and financing for any feedstock, capacity and other conditions specified by the client.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
Aiming at reducing the synthesis gas and methanol production cost further, even below an oil equivalent of US$ 10/barrel, a high pressure demonstration plant is being operated. The test results supplement the design basis for extremely large synthesis gas capacities.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
The development of a two-stage reactor system for methanol synthesis is another example and proof that Lurgi research and development activities continuously focus on lowering capital and operating cost for large scale production facilities.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
Lurgi is in the unique position to license the MegaSyn® and MegaMethanol® technologies in order to increase the benefit for the client.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
Lurgi also offers complete routes or integrated schemes of proprietary technologies such as
the conversion of natural gas to propylene via methanol or integrated schemes combining various products like ammonia and methanol, for example.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
The advantages are quite obvious:
All process streams and compounds are useful, i. e. no generation of by-products and therefore no environmental impact. Feed and utility consumption can be optimized due to plant and heat integration. “Mega” systems will reduce the production cost additionally.
UNIVERSITY OF INDONESIA
Capital Investment and Production Cost
Contracts for 16 methanol plants including 3 Mega-Methanol® facilities have been awarded to Lurgi since 1994. Lurgi is the only company which boasts 3 MegaMethanol® reference plants. Lurgi has a 60 to 70 % market share of the methanol capacities globally installed and leads the market as number 1.
UNIVERSITY OF INDONESIA
The compressed, desulfurized - optionally prereformed -feedstock, predominantly natural gas, is reformed to synthesis gas using oxygen as the reforming agent.
UNIVERSITY OF INDONESIA
The optimum synthesis gas composition is achieved by recycling hydrogen that can be separated from the purge gas stream of the methanol synthesis loop.
UNIVERSITY OF INDONESIA
The synthesis gas is compressed and enters the methanol synthesis loop.
UNIVERSITY OF INDONESIA
The innovative Lurgi MegaMethanol® technology is mainly based on the two-stage reactor system consisting of a gas-cooled and a water-cooled reactor.
UNIVERSITY OF INDONESIA
This system results in outstanding technical and economic features due to the extremely favorable temperature profiles over the catalyst beds.
UNIVERSITY OF INDONESIA
Methanol distillation provides the specified product quality which may range from fuel grade methanol to highly pure methanol.
UNIVERSITY OF INDONESIA
Advantages
UNIVERSITY OF INDONESIA
Tugas
Jelaskan mengapa pada reaksi pembuatan metanol yang eksotermis lebih disukai pada tekanan tinggi dan suhu rendah
CO + 2H2 Æ CH3OH kkal/mol
∆H298 = -21.684
Berapa harga pasar metanol/ton