THE EFFECT OF BIODIESEL UTILIZATION IN TRANSPORTATION SECTOR TO POLLUTANT EMISSION AND EXTERNAL COST: CASE STUDY JAKARTA
(EFEK PENGGUNAAN BIODIESEL PADA EMISI POLUTAN DAN BIAYA EKSTERNAL DI SEKTOR TRANSPORTASI: STUDI KASUS JAKARTA)
SONI SOLISTIA WIRAWAN
A Dissertation Submitted in partial fulfillment of the requirements for the Degree of Doctor in Agricultural Engineering Sciences
THE GRADUATE SCHOOL BOGOR AGRICULTURAL UNIVERSITY (IPB) BOGOR 2009
STATEMENT OF RESEARCH ORIGINALITY Hereby, I state that the dissertation entitled “The Effect of Biodiesel Utilization in Transportation Sector to Pollutant Emission and External Cost: Case Study Jakarta.” is my own work, which has never previously been published in any university. All of incorporated originated from other published as well as unpublished papers are stated clearly in the text as well as in the references.
Bogor, June 2009
Soni Solistia Wirawan
i.
ABSTRACT SONI SOLISTIA WIRAWAN. The Effect of Biodiesel Utilization in Transportation Sector to Pollutant Emission and External Cost: Case Study Jakarta. Under direction of ARMANSYAH H. TAMBUNAN, MARTIN DJAMIN, HIROSHI NABETANI, and ARIEF SABDO YUWONO. World wide numerous studies have proved that biodiesel is an environmentally friendly alternative diesel fuel. Biodiesel is essentially sulphur free and engines fueled by biodiesel emit significantly fewer particulates, hydrocarbons and less carbon monoxide than that of operating conventional diesel fuel. The maximum utilization of biodiesel in Indonesia could improve the air quality level in major cities especially in Jakarta. The most significant hurdle for broader commercialization of biodiesel in Indonesia is its cost. Thus acceptance of biodiesel in Indonesia is more influenced by pricing factor. The advantages of biodiesel such as a renewable energy, lower exhaust gas emission and effect to the longer engine life time are often ignored. The objective of this research was to assess the effect of biodiesel utilization in transportation sector to the air pollution level, health and economic impact which could be transferred into monetary values in the term of external-cost. Jakarta was selected as a targeted research location due to the fact that Jakarta is the capital city with the most densed population, highest mineral diesel fuel consummer, and most polluted city compared to other big cities in Indonesia The targeted emission in the study were carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC), sulphur dioxide (SO2) and particulate matter (PM) from vehicle sources. The external cost of B10 and B20 utilization in 2010, 2015, 2020 and 2025 scenarios compared to the base (non biodiesel) case (B0) in 2005 was calculated by using the analysis of emission dispersion effect method which is most known as Impact Pathway Analysis (IPA). The method consisted of four steps, that are : to quantify the emission, to define the dispersion and transformation of emission for calculating the ambient concentration, to estimate the physical effects by using the dose response function, and to determine the monetary value of the damage for calculating the external costs. The result showed that utilization of biodiesel could potentially improve air quality level in Jakarta. The utilizations of B10 and B20 in 2010 compared to the base (non-biodiesel) case may reduce external cost by 13.4 and 59.0 billion Rupiah and they increase by 25.2 and 105.7 billion Rupiah in 2025. Since those values may rise as biodiesel blend composition is increased, it necessitates performing simulation on B50 and B100 scenarios. External cost reduction may achieve its maximum value of 447.7 billion Rupiah when B100 is introduced in 2025. Taking into account the diesel fuel consumption for the transportation sector in 2010 and 2025, the reduction translates into external cost of Rp. 4 to 18 per liter for B10 and B20 respectively. Moreover, provided such a diesel engine fueled by B100 is available, the external cost reduction could reach up to Rp. 90 per liter. The implication of this finding suggests that the polluter (motorist) should be willing to pay additional 4 to 90 Rupiah per liter depending on the biodiesel content in the diesel fuel blend. Keywords: External-cost, biodiesel, transportation, emission, dispersion
ii
SUMMARY SONI SOLISTIA WIRAWAN. The Effect of Biodiesel Utilization in Transportation Sector to Pollutant Emission and External Cost: Case Study Jakarta. Under direction of ARMANSYAH H. TAMBUNAN, MARTIN DJAMIN, HIROSHI NABETANI, and ARIEF SABDO YUWONO. Biodiesel development in Indonesia has been started since more than ten years ago but gained significant milestones in 2006 when the Indonesian government issued formally blending permit regulation of 10% biodiesel with mineral diesel fuel and PERTAMINA (Mineral oil State owned company) launched biodiesel blend B5 formally at public gasoline station with the trade name of BIOSOLAR. To continue reducing Indonesia’s dependency on fossil resources for its energy source and to improve the air quality level in its major cities, PERTAMINA has been expanding BIOSOLAR market at almost all fuel outlets in Java and will continuously open outlets in all parts of Indonesia. Moreover, the state owned company will increase the blending content at least up to B20 in 2025 as stated on President Decree No. 5/2006 regarding the National Energy Policy. Despite efforts by the government and Pertamina, broader commercialization of biodiesel in Indonesia could not achieve its target. The most significant hurdle found is its cost. In addition, the consumers mostly still consider the fuel price in selecting the fuel for their cars. Fluctuation of biodiesel price which is usually higher than that of mineral diesel and lack of subsidy given to biodiesel cause the price of biodiesel blend fuel is often higher than the standard mineral diesel fuel. On the other hand, the advantages of biodiesel such as a renewable energy, lower exhaust gas emission and effect to the longer engine life time is often ignored. Overcoming these drawbacks is by imposing the “polluter pay principle” which would internalize as many of the externalities. Having derived monetary values to reflect the external costs of differing technologies, the next step is to devise a mechanism for “internalizing” them into market prices. The objective of this research was to assess the effect of biodiesel utilization in transportation sector to the air pollution level, health and economic impact which could be transferred into monetary values in the term of external-cost. Jakarta was selected as a targeted research location due to the fact that Jakarta is the capital city with the most densed population, highest mineral diesel fuel consummer, and most polluted city compared to other big cities in Indonesia. The targeted emission in the study are carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC), sulphur dioxide (SO2) and particulate matter (PM) from vehicle sources. The study will determine the external costs of transportation energy use using model simulations. Each simulation was based on the scenario in line with the development pattern of government policy. By comparing the base case (B0) with biodiesel blends cases (B10, B20, B50, B100) for the projection year until 2025, the strategy for reducing the external costs could be compiled. The study was performed using the analysis of emission dispersion effect method that is mostly known as an Impact Pathway Analysis (IPA). The impact iii
pathways methodology has been used in a large number of research projects and policy application related studies. The method consists of four steps, that are : to quantify the emission, to define the dispersion and transformation of emission for calculating the ambient concentration, to estimate the physical effects by using the dose response function, and to determine the monetary value of the damage for calculating the external costs. The application of IPA starts from identifying emission sources, defining the emission source characteristics, and determining the type of emission which will be analyzed. Each type of vehicle has a specific emission coefficient depending on its technology and the type of fuel used. Specific study on the performance and emission evaluation on automotive diesel engine as affected by palm biodiesel fuel utilization has been conducted. The result shows that the emission of CO, HC, SO2 and PM decreased considerably with the increase in biodiesel blend. The reduction in particle emission was very sharp at 10% blend (B10), while the sharp reduction in HC emission started at 20% blend (B20). In contrast to those generally found in the previous non palm biodiesel studies, the results in this study shows lower NOx emission as well as higher torque and power for biodiesel blend compare to that of pure petro-diesel fuel. This result could be as a consequence of the properties of the tested palm biodiesel, which has higher cetane number and lower viscosity value compared to the petro-diesel fuel sample. This study result was used for determining the emission coefficient for the model input. Two cases (low and high) of emission coefficient was determined for the model input. Second step of the Impact Pathways Analysis is calculation of pollutant concentration changes (dispersion). These predictions are carried out by simulating air pollutant concentration or dispersion model. An ideal air pollutant concentration model should be able to predict the amount of specific pollutant emission, for any specified meteorological condition, at any location, for any time of period, with sufficiently reliable confident level. Several aspects should be considered when selecting a good model and they have to be: (i) suitable with the study objective, (ii) Simple and easy to operate and (iii) calibrated and model precission have been proven and used by other similar projects. This study employs the MLuS model because it is simple model, suitable for movable emission source, capable in estimating the pollutant concentration near roadside. In addition many projects in Europe as well as in Indonesia have used this model for their simulation. For this study, vehicle emission is categorised as a line source emission. Results evaluation of the performed two cases of studies (low and high emission cases) and validation against previous Jakarta’s air quality studies have concluded that the result of external cost of high emission coefficient case is more acceptable. The reason is that low emission coefficient data was determined from almost latest diesel engine tecnology (produced between years 2004 – 2008) and has utilised direct injection method. Thus, the emission coefficient was too small. Comparing to the base case (B0) in year 2005, the result showed that reduction of external cost because of biodiesel utilization in 2010 gradually rose iv
from only 13.4 billion rupiah for B10 case to become 59 billion rupiah for B20, 133.7 billion rupiah for B50 case and reached up to 245 billion rupiah for B100. The cost increases as a function of time due to the continuously growing of fuel consumption and population density. Introducing B20 in 2025 will increase the external cost reduction of 105.7 billion rupiah and reach the maximum value of 447.7 billion Rupiah when B100 used in 2025. The simplest way to internalize the externality of the utilization of biodiesel is adding the estimated external value to the product price paid directly by the polluter. For this case of study, the value of external cost should be paid by the polluter can be estimated by dividing the external cost with the fuel consumption. Comparison to the base (non-biodiesel) case has resulted in a gradual increase in the reduction of external cost from 4 rupiah per liter of B10 in 2010 to the maximum of 90 rupiah per liter of B100 in 2025. The result seems too small to attract local government of DKI Jakarta to implement the utilization of biodiesel as an environmentally friendly alternative fuel. One should remember however, that this is only one among other external cost parameters that could be internalized. The other advantages of biodiesel including being a renewable energy, supporting the national energy diversification (country energy sustainability) program, biodegradable fuel, and may prolong lifetime can be potentially valued and estimated as the total external cost.
v
RINGKASAN SONI SOLISTIA WIRAWAN. The Effect of Biodiesel Utilization in Transportation Sector to Pollutant Emission and External Cost: Case Study Jakarta. Under direction of ARMANSYAH H. TAMBUNAN, MARTIN DJAMIN, HIROSHI NABETANI, and ARIEF SABDO YUWONO. Pengembangan biodiesel di Indonesia telah dimulai sejak lebih dari sepuluh tahun yang lalu. Akan tetapi kemajuan yang signifikan baru dicapai pada tahun 2006, sejak pemerintah Indonesia secara resmi mengeluarkan ijin pencampuran biodiesel dengan minyak solar maksimum 10% (B10) dan PERTAMINA mulai resmi menjual bahan bakar campuran biodiesel-solar B5 di stasiun pompa pengisian bahan bakar umum (SPBU) dengan merek dagang BIOSOLAR. Untuk mengurangi ketergantungan kepada Bahan Bakar Minyak (BBM) dan memperbaiki tingkat kualitas udara (terutama di kota-kota besar), maka PERTAMINA memperluas penjualan BIOSOLAR dengan membuka outlet di seluruh SPBU di Pulau Jawa dan akan terus membuka di semua wilayah yang tersebar di seluruh Indonesia. Kandungan biodiesel pada campuran juga akan ditingkatkan terus hingga mencapai komposisi B20 pada tahun 2025, sesuai dengan yang target yang telah ditetapkan pada Surat Keputusan Presiden No. 5/2006 tentang Kebijakan Energi Nasional. Ada beberapa kendala yang menghambat pencapaian target komersialisasi biodiesel oleh PERTAMINA. Hambatan terbesar adalah masalah harga. Faktor harga masih menjadi pertimbangan yang dominan bagi masyarakat di Indonesia dalam menentukan pilihan bahan bakar untuk digunakan pada kendaraannya. Harga biodiesel masih cenderung lebih mahal daripada minyak solar, karena hingga saat ini biodiesel masih dikategorikan dalam klasifikasi “bahan bakar lain” yang harus dijual pada harga keekonomian dan tidak mendapatkan subsidi. Di sisi lain, kelebihan biodiesel sebagai bahan terbarukan yang lebih ramah lingkungan dan memiliki kelebihan terhadap unjuk kerja dan umur mesin masih kurang dipertimbangkan. Salah satu cara untuk mengatasi permasalahan harga ini adalah dengan menerapkan prinsip “polluters pay principle”. Produsen produk yang menghasilkan polutan wajib membayar sejumlah tertentu kepada masyarakat yang terkena polutan (polluters pay principle) atau melakukan upaya agar polutan yang dihasilkan tidak melebihi ambang batas yang ditentukan. Karena produsen dikenai biaya tambahan maka produsen akan membebankan biaya tambahan ini ke dalam harga produk yang dihasilkan. Konsep yang demikian ini disebut internalisasi eksternalitas. Besaran nilai biaya eksternal dapat dibedakan dari jenis teknologi pembuatan produknya. Setelah nilai biaya eksternal ditentukan, maka langkah selanjutnya adalah menentukan mekanisme dan cara untuk menginternalisasi eksternalitas tersebut ke dalam harga pasar. Tujuan dari penelitian ini adalah untuk mengetahui efek dari penggunaan biodiesel di sektor transportasi pada tingkat polusi udara dan dampaknya pada kesehatan serta ekonomi, yang kemudian dapat dihitung ke dalam suatu nilai ekonomi dengan istilah biaya eksternal. Kota Jakarta dipilih sebagai lokasi target penelitian, karena Jakarta adalah merupakan ibu kota negara yang memiliki vi
jumlah penduduk yang terpadat, pengguna minyak solar untuk sektor transportasi paling banyak dan sebagai kota dengan tingkat polusi paling tinggi dibandingkan dengan kota-kota besar lainnya yang ada di Indonesia. Jenis emisi yang dihitung pada penelitian ini adalah karbon monoksida (CO), nitrogen oksida (NOx), hidrokarbon (HC), sulphur dioksida (SO2) and partikel (PM) yang dilepaskan dari kendaraan bermotor. Penentuan biaya eksternal dari penggunaan energi di sektor transportasi pada penelitian ini dilaksanakan melalui suatu perhitungan simulasi dengan mempertimbangkan skenario pengembangan BBN seperti yang telah ditetapkan oleh pemerintah. Strategi untuk mengurangi biaya eksternal dapat ditentukan dengan cara membandingkan kasus dasar (B0) dengan kasus penggunaan berbagai komposisi campuran biodiesel-solar (B10, B20, B50, B100) untuk proyeksi tahun 2005 hingga tahun 2025. Biaya eksternal dihitung menggunakan analisis penyebaran dampak dari emisi atau lebih dikenal dengan sebutan Impact Pathway Analysis (IPA). Metode yang telah banyak digunakan pada berbagai proyek penelitian di dunia ini, terdiri atas empat tahapan yaitu: melakukan kuantifikasi emisi, menentukan penyebaran dan transformasi emisi untuk menghitung konsentrasi ambien, mengestimasi dampak fisik dengan menggunakan fungsi dose respons, dan menentukan nilai moneter dari kerusakan untuk menghitung biaya eksternal. Penerapan IPA dimulai dari identifikasi sumber emisi, menentukan karakteristik sumber emisi, serta menentukan jenis emisi yang akan dianalisis. Setiap jenis kendaraan mempunyai koefisien emisi tertentu tergantung dari teknologi dan jenis bahan bakar yang digunakan. Hasil evaluasi dari studi dampak penggunaan biodiesel terhadap unjuk kerja mesin dan emisi yang telah dilakukan menunjukan bahwa emisi CO, HC, SO2 dan PM berkurang dengan bertambah besarnya komposisi biodiesel dalam campuran minyak solar. Pengurangan emisi partikel sangat tajam pada komposisi campuran biodiesel 10% (B10), sedangkan pengurangan emisi HC yang tajam dimulai pada campuran B20. Berbeda dengan hasil yang dikemukakan pada hasil studi biodiesel non sawit pada umumnya, hasil evaluasi biodiesel sawit pada studi ini menunjukkan penurunan emisi NOx dan lebih besarnya torsi dan daya dari campuran biodiesel dibandingkan dengan mesin berbahan bakar minyak solar murni. Hasil yang berbeda ini mungkin sebagai akibat dari sampel biodiesel sawit yang diuji memiliki angka setana yang lebih besar dan viskositas yang lebih kecil dibandingkan dengan sampel minyak solar murni yang diuji. Koefisien emisi yang dihasilkan dari studi ini digunakan sebagai salah satu dari beberapa literatur yang digunakan dalam menentukan koefisien emisi untuk input model. Simulasi perhitungan dilakukan dengan menggunakan dua kasus harga koefisien emisi, yaitu kasus harga koefisien emisi yang rendah dan tinggi sebagai data input. Langkah kedua dari empat langkah metoda IPA adalah perhitungan perubahan kosentrasi polutan (dispersi). Prediksi dilakukan melalui perhitungan model konsentrasi polutan udara atau dengan model dispersi. Suatu model perhitungan konsentrasi polutan udara yang ideal dapat menghasilkan besarnya emisi polutan yang spesifik, pada berbagai kondisi meteorologi yang spesifik, lokasi dimana saja, pada periode waktu berapa saja, dengan tingkat kepercayaan yang dapat diandalkan. Ada beberapa pertimbangan yang perlu diperhatikan dalam memilih model yang baik: (i) sesuai dengan kasus yang diteliti, (ii) vii
sederhana dan mudah dioperasikan dan (iii) sudah terkalibrasi dan ketelitian model sudah dibuktikan penggunaannya pada proyek yang sejenis. Emisi dari kendaraan bermotor diklasifikasikan sebagai sumber emisi yang bergerak (line source). Model MluS dipilih untuk digunakan pada penelitian ini dengan alasan bahwa MluS merupakan model yang sederhana, sesuai untuk sumber emisi bergerak, model cocok untuk memperkirakan besarnya konsentrasi dekat pinggir jalan dan model ini juga telah banyak digunakan dalam banyak proyek baik di negara-negara Eropa maupun di Indonesia. Evaluasi hasil simulasi dari dua kasus yang diteliti (kasus koefisien emisi rendah dan tinggi) dan setelah di validasi dengan data hasil penelitian kualitas udara di Jakarta sebelumnya, dapat disimpulkan bahwa besarnya biaya eksternal dari hasil perhitungan kasus koefisien emisi tinggi lebih dapat diterima. Hal ini mungkin disebabkan karena kasus harga koefisien emisi rendah ditentukan dari data mesin diesel dengan teknologi tinggi (kendaraan bermesin diesel yang diproduksi antara tahun 2004 sd 2008 dan telah menggunakan teknologi injeksi langsung (direct injection technologi)), sehingga harga koefisien emisi yang didapatkan terlalu rendah. Hasil perhitungan menunjukkan bahwa dibandingkan dengan kasus dasar (tidak menggunakan biodiesel) pada tahun 2005, pengurangan biaya eksternal sebagai dampak dari penggunaan biodiesel pada tahun 2010 meningkat secara bertahap dari mulai 13,4 milyar rupiah untuk kasus B10, menjadi 59 milyar rupiah untuk B20, 133,7 milyar rupiah untuk B50 dan mencapai harga 105,7 milyar rupiah untuk B100. Nilai tersebut meningkat terus dengan fungsi waktu, meningkatnya kepadatan penduduk dan bertambahnya konsumsi bahan bakar. Pengurangan biaya eksternal maksimum sebesar 447,7 milyar rupiah dicapai ketika B100 digunakan pada tahun 2025. Cara yang paling sederhana untuk menginternalisasi eksternalitas dari penggunaan biodiesel adalah dengan menambahkan harga estimasi biaya eksternal ke dalam harga produk yang nantinya akan dibayar langsung oleh pengguna bahan bakar (polluter). Pada penelitian ini harga biaya eksternal dapat diestimasi dengan membagi besarnya biaya eksternal dengan konsumsi minyak solar. Hasil menunjukkan bahwa dibandingkan dengan kasus dasar (tidak menggunakan biodiesel) , pengurangan biaya eksternal akan meningkat mulai dari 4 rupiah per liter pada skenario penggunaan B10 di tahun 2010 sampai dengan maksimum 90 rupiah per liter pada skenario B100 di tahun 2025. Hasil ini mungkin terkesan terlalu kecil untuk menarik pemeritah daerah DKI Jakarta untuk merealisasikan program pemanfaatan biodiesel sebagai bahan bakar yang ramah lingkungan. Akan tetapi mesti diingat bahwa biaya eksternal dari penurunan emisi ini hanyalah salah satu biaya eksternal yang dapat dihitung dan diinternalisasikan ke harga produk. Kelebihan lain dari biodiesel yang merupakan bahan bakar terbarukan, mendukung program pemenuhan energi yang berkelanjutan, merupakan bahan bakar yang mudah terurai (biodegradable), dapat memperpanjang umur mesin, dan lain-lain juga berpotensi untuk dinilai dan diestimasi sebagai total biaya eksternal.
viii
@ Copyright 2009 by IPB All rights reserved 1. No part or all of this dissertation may be excerpted without inclusion or mentioning the sources a. excerption only for research and education use, writing for scientific papers, reporting, critical writing or reviewing of a problem. b. excerption doesn’t inflict a financial loss in the proper interest of IPB 2. No part or all of this dissertation may be transmitted and reproduced in any forms without a written permission from IPB.
ix
THE EFFECT OF BIODIESEL UTILIZATION IN TRANSPORTATION SECTOR TO POLLUTANT EMISSION AND EXTERNAL COST: CASE STUDY JAKARTA (EFEK PENGGUNAAN BIODIESEL PADA EMISI POLUTAN DAN BIAYA EKSTERNAL DI SEKTOR TRANSPORTASI: STUDI KASUS JAKARTA)
by SONI SOLISTIA WIRAWAN
A Dissertation Submitted in partial fulfillment of the requirements for the Degree of Doctor in Agricultural Engineering Sciences
THE GRADUATE SCHOOL BOGOR AGRICULTURAL UNIVERSITY BOGOR 2009 x
The external assessor for closed examination are: 1.
Dr. Ir. Abdul Kohar I., M.Sc.
2.
Dr. Dadan Kusdiana
The external assessor for opened examination are: 1.
Dr. Ir. Y. Aris Purwanto
2.
Dr. Ir. Andi Novianto
Title of Dissertation
: The Effect of Biodiesel Utilization in Transportation Sector to Pollutant Emission and External Cost: Case Study Jakarta
Name
: Soni Solistia Wirawan
NIM
: F161060032
Approved by, Advisory Committee
Prof. Dr. Armansyah H. Tambunan
Prof. (R). Dr. Martin Djamin, M.Sc.
Chairman
Member
Prof.Dr. Hiroshi Nabetani
Dr. Arief Sabdo Yuwono
Member
Member
Acknowledged by,
Head of Study Program in
Dean of the Graduate School
Agricultural Engineering Science
(Prof. Dr. Armansyah H. Tambunan)
(Prof. Dr. Ir. Khairil A. Notodiputro )
Date of Examination:
Date of Graduation: xi
ACKNOWLEDGMENT For the completion of this dissertation I would like to express my most profound gratitude to Prof. Dr. Armansyah H. Tambunan as the chairman of the advisory committee and
all members of advisory committee; Prof. (R). Dr.
Martin Djamin, Msc., Prof. Dr. Hiroshi Nabetani and Dr. Arief Sabdo Yuwono for all valuable assistance, supports and their tireless and patient counsel. I wish to express my sincere appreciation to Dr. Kusmayanto Kadiman, the Minister of Ministry of Research and Technology for introducing me to the “Program Rintisan Pendidikan Gelar Pascasarjana - KNRT” and motivate me to pursue this study program. To Dr. Marzan A. Iskandar, the Chairman of BPPT for his permission and support. I would like also to express my appreciation to Prof. (R). Dr. Wahono Sumaryono for his assistance and constant motivation. To Prof. Dr. Ir. Prawoto, MSAE and Dr. Dadan Kusdiana who have reviewed our article for international journal publication. Particular thanks are also due to Ir. Agus Sugiyono, M.Eng. who introduced me to the MLuS dispersion model, to Ir. Rizqon Fajar, M.Eng. for valuable discussion on vehicle emission coefficient related topic. To all members of BRDST-BPPT and Agricultural Engineering Science Study Program of IPB, who have contributed in various ways to the completion of this dissertation. I would like also to express my appreciation for the support of the following institutions: BRDST-BPPT, BTMP-BPPT, PT. Toyota Astra Motor, PT. Pertamina, BMG, Balai Teknologi Kesehatan dan Lingkungan (BTKL) and Dinas Lalu Lintas Jalan Raya DKI Jakarta. To the Government of Indonesia through the “Program Rintisan Pendidikan Gelar Pascasarjana - KNRT” scholarship program. Thanks to Prof. Dr. Ir. Carunia M. Firdausy, MA., APU and team members who organize this scholarship program. Finally, I would like to dedicate this research work to my family, my wife (Ika Sandra), my daughters (Nike Nadia and Daniya Fathiya) and my sons (Noval Hudiya and Dafa Fadiya), for their love, continuous encouragement and constant support in my life. Bogor,
June 2009
Soni Solistia Wirawan xii
BIOGRAPHY Soni Solistia Wirawan (author) was born in Bandung on October 10th, 1961 as the youngest of the four children of father Sujud Andjar Sumyana and mother Kustinah Djajadiredja. In 1980, he was graduated from SMAN III Bandung and continued his under graduate study in Mechanical Engineering Faculty of Brawijaya University in Malang and graduated in 1986. He continued his study in Master Degree Program in Mechanical System Engineering Department of Nagaoka University of Technology, Japan in 1996 with scholarship from the government of Japan (Mombusho) and was graduated in 1998. In 2006 he got scholarship for PhD by research program in Agricultural Engineering Science, the Graduate School, Bogor Agricultural University (IPB) from The Ministry for Research and Technology of Indonesia. Author has been working as a researcher at The Agency for the Assessment and Application of Technology (BPPT) since 1987 and since 2002 up to now he is responsible as the head of Engineering Center - BPPT. During his study in PhD program, one of his paper “The Current Status and Prospects of Biodiesel Development in Indonesia: a review” has been presented at the third Asia Biomass Workshop in Tsukuba, Japan, on November 17, 2006. Four papers have been published in accredited national and international scientific journal; a paper titled “The Effect of Palm Biodiesel Fuel on the Performance and Emission of the Automotive Diesel Engine” has been published in the CIGR Ejournal. Manuscript EE 07 005. Vol. X, April. 2008. A paper titled “Validation of Measured Blend Biodiesel–Mineral Diesel Specification by Using a Simple Calculation Method” has been published in Jurnal Keteknikan IPB, Vol. 21 No. 3, September 2008. A paper titled “Study of Effect of Biodiesel Utilization to the Transportation Sector Emission in Jakarta” has been published in Jurnal Teknologi Lingkungan BPPT, Vol. 9 No. 2, Mei 2008. And a paper titled “Study of Determinantion of Optimum Composition of Biodiesel-Petrodiesel blend Fuel”, has been published in Majalah Teknologi Lingkungan BPPT, Vol. 4 No. 2, May 2008. All of above mentioned papers were written as a part of the author’s PhD program. xiii
LIST OF CONTENTS Page LIST OF TABLES ………………………………………………………...
xvi
LIST OF FIGURES ……………………………………………………….
xx
LIST OF APPENDICES ………………………………………………….
xxii
LIST OF NOMENCLATURE …………………………………………….
xxiii
LIST OF ABBREVIATIONS ……………………………………………..
xxv
1. INTRODUCTION Background of the Research …………………………………………
1
Objective of the Research ….…………………………………………
3
Benefit of the Research ………………………………...... …….……
4
Boundaries and Methodology ………………………………………..
4
Outline of Dissertation ……………………………………………….
9
2. THE EFFECT OF PALM BIODIESEL FUEL ON THE PERFORMANCE AND EMISSION OF THE AUTOMOTIVE DIESEL ENGINE Introduction …………………………………………………………...
10
Materials and Methods ..........................................................................
19
Result and Discussion ...........................................................................
24
Conclusion ............................................................................................
29
3. THE EFFECT OF BIODIESEL UTILIZATION ON TRANSPORTATION SECTOR EMISSION IN JAKARTA Introduction …………………………………………………………...
30
Materials and Methods ..........................................................................
32
Result and Discussion ...........................................................................
33
Conclusion ............................................................................................
44
4. BIODIESEL BLENDING SCENARIO Introduction …………………………………………………………...
45
Materials and Methods .........................................................................
47
Result and Discussion ...........................................................................
48
Conclusion ............................................................................................
56
xiv
5. EMISSION DISPERSION MODEL Introduction …………………………………………………………...
58
Materials and Methods ..........................................................................
60
Result and Discussion ...........................................................................
65
Conclusion .............................................................................................
100
6. EXTERNAL COST ANALYSIS Introduction …………………………………………………………...
102
Materials and Methods ..........................................................................
106
Result and Discussion ............................................................................
109
Conclusion .............................................................................................
117
7. GENERAL DISCUSSION ………………………………………………
119
8. CONCLUSIONS ………………………………………………………...
129
REFERENCES ……………………………………………………………..
131
APPENDICES ...............................................................................................
138
xv
LIST OF TABLES Page 1 Comparison of fossil diesel fuel with vegetable oil characteristic ........
11
2 Vegetable Oil Methyl Esters (VOME) characteristic ............................
13
3 Current worldwide production of nine major vegetable oils.................
16
4 Potential vegetable oil plants in Indonesia …………...........................
18
5 Characteristics of pure petro-diesel and biodiesel used in the research
22
6 Emission of biodiesel blend as compared to euro II regulation ............
29
7 Reduction in Health Costs caused by the Abatement Policies ..............
31
8 The list of the growth of vehicle number projection input data ………
38
9 Parameters for vehicle number projection …………………………….
39
10 Specific fuel consumption, mileage and yearly effective operation ......
40
11 Emission factor for each type of vehicles …………………………….
42
12 Comparison of emission value of BAU and biodiesel scenario ............
43
13 Comparisons of Fossil Diesel Fuel (FDF) and Biodiesel Fuel (BDF) characteristics ………………………………………………………...
46
14 Comparison of SNI 04-7182-2006, and B20 (EMA) ............................
49
15 Diesel oil 48 specification …………………………………………….
51
16 Price of biodiesel-petrodiesel blend .....................................................
52
17 Relatif toxicity of air pollutant ..............................................................
53
18 The value of emission parameter ...........................................................
54
19 The value of emission and engine performance parameter (short term engine effect) .........................................................................................
54
20 The score of long term engine effect ....................................................
55
21 The score of price parameter .................................................................
56
22 The ranking of optimum biodiesel-petrodiesel composition .................
56
23 Energy source type reated to sector ......................................................
59
24 Comparison between gaussian and MLuS model .................................
59
25 Standard qualification and air qualities by measure location in the year of 2006 …………………………………………………….
67 xvi
26 Data convention for grids establishment ……………………………...
68
27 Deviation of calculated grids compare to and BPS existing data …….
69
28 Population per area of DKI Jakarta …………………………………...
70
29 Population projection at district in DKI Jakarta ………………………
70
30 Road length based on district area (in meter), 2006 ..............................
71
31 Vehicle number at selected case, 2005 road (base) …………………..
73
32 Traffic density classification …………………………………………
73
33 Volume of vehicle passing the toll road according to BPS …………..
74
34 Projection of vehicle number and AADT …………………………….
75
35 Share of each type of vehicle …………………………………………
75
36 Emission coefficient (g/km) according to BPPT – KFA study ………
78
37 Emission coefficient (g/km) according to Lestari’s study …………...
79
38 Emission coefficient (g/km) according to MoE ………………………
79
39 Formula for the correlation between the masured engine capacity and emision coefficient (regression result) ..................................................
80
40 The value of coefficient a according to EPA ........................................
80
41 Emission coefficient (g/km) according to Fajar’s study .......................
81
42 Specific fuel consumption for each type of vehicle .............................
81
43 Emission coefficient (g/l) according to Fajar’s study ..........................
82
44 High emission coefficient case (g/km) .................................................
83
45 Average wind velocity by observation station in Jakarta, 2006 ………
84
46 Meteorological data ..............................................................................
88
47 German reference concentration Ki*(source: MLuS) ............................
88
48 German average emission coefficient e* (source: MLuS) ....................
89
49 Emission concentration of CO at several location ................................
89
50 AADT and CO emission concentration in year 2002 ...........................
90
51 Reference emission coefficient e* for model input ..............................
90
52 Reference concentration K* for model input ........................................
90
53 Total emission (in thousand ton), low emission coefficient case ……..
91
54 Emission reduction (thousand ton), low emission coefficient case …...
92
55 Emission concentration (mg/m3), low emission coefficient case ……..
93 xvii
56 Reduction of emission concentration compare to base scenario, low emission coefficient case ………………………………………..
94
57 Total emission (thousand ton), high emission coefficient case ……….
95
58 Emission reduction (thousand ton), high emission coefficient case ….
96
59 Emission concentration (mg/m3), high emission coefficient case …….
97
60 Reduction of emission concentration compare to base scenario, high emission coefficient case ………………………………………...
98
61 Comparison between emission load and concentration for low and high emission coefficient for year 2010 case ........................................
100
62 Reported health impacts of major diesel engine exhaust component ...
102
63 Regulated exhaust emission reduction of B30 .....................................
105
64 Non-regulated emission of aromatic compounds from fossil diesel fuel (FDF) and B30 …………………………………………………..
105
65 Dose response ........................................................................................
106
66 Health cost …………………………………………………………….
107
67 GDPPPP and GDPPPP/capita for Indonesia and German case ................
108
68 Indonesian GDP Deflator 1990 – 2005 ................................................
108
69 Low emission coefficient external cost summary …………………….
110
70 External cost reduction compare to base scenario ……………………
110
71 High emission coefficient external cost summary ……………………
110
72 External cost reduction compare to base scenario ……………………
110
73 Comparison between low and high emission coefficient value ………
113
74 Comparison of external cost estimation result with others existing studies (in Trillion Rupiah) …………………………………………...
117
75 The ranking of optimum biodiesel-petrodiesel composition .................
121
76 Environmental Impact Classification ....................................................
122
77 External value should be paid by the polluter (Rp. Per liter) …………
127
78 Emission coefficient data sources (g/km) ……………………………..
138
79 External cost (rupiah), low emission coefficient case ………………...
169
80 External cost (rupiah), high emission coefficient case ………………..
171
xviii
LIST OF FIGURES 1
The logical frame of the research ...........................................................
6
2
External Costs Calculation by Impact Pathway Analysis ......................
7
3
External cost simulation flow chart........................................................
8
4
Base catalyzed transesterification reaction ............................................
14
5
Typical biodiesel process flow diagram ..............................................
15
6
The arrangement of emission test on chassis dynamometer ..................
19
7
Biodiesel test sample Process Flow Diagram .......................................
21
8
Biodiesel plant 1.5 ton/day capacity at PUSPIPTEK, Serpong.............
22
9
Emission test cycle based on ECE 83-04 ..............................................
23
10 Power Vs. engine speed ......................................................................
24
11 Torque Vs engine speed .......................................................................
25
12 Emission profile ....................................................................................
26
13 Fuel consumption VS biodiesel blending composition .......................
27
14 The effect of biodiesel on exhaust gas emission ..................................
27
15 Flowchart of study to estimate the effect of biodiesel utilization on transportation sector emission in Jakarta …………………………….
33
16 RGDP and population in Jakarta ……………………………………..
34
17 Projection of population and RGDP in Jakarta ………………………..
34
18 Fuel sold by UPMS III in the year of 2005 …………………………...
35
19 Number of vehicles in Jakarta 2001 – 2005 …………………………
35
20 Estimated fuel consumption for transportation sector in Jakarta ……..
36
21 Projection of vehicle number in Jakarta ………………………………
39
22 Projection of fuel demand for transportation sector in Jakarta (BAU/non biodiesel Scenario) ...............................................................
41
23 Projection of emission (BAU scenario) ………………………………
42
24 Optimum blending determination flow chart ………………………….
48
25 Basic calculation of concentration (MluS model) ..................................
61
26 Fading function g(s) ..............................................................................
63
27 Average relative pollutant concentration ...............................................
63 xix
28 Model calculation flow chart ………………………………………….
64
29 Main program flow chart ………………………………………………
66
30 Data grids matrices of Jakarta’s area …………………………………..
68
31 Jakarta’s map digitalization ....................................................................
69
32 Jakarta’s road grid data ………………………………………………..
72
33 Hourly vehicle volume ..........................................................................
73
34 The view of WRPLOT Software ..........................................................
85
35 WRPLOT format ..................................................................................
85
36 Yearly windrose for 2001 – 2005 ……………………………………..
86
37 Monthly wind rose for 2005 ...................................................................
87
38 The dispersion map of SO2 emission concentration for base case …….
100
39 External cost, low emission coefficient case ………………………….
111
40 External cost reduction, low emission coefficient case ……………….
111
41 External cost, high emission coefficient case ……………………….
112
42 External cost reduction, high emission coefficient case …………….
112
43 Sensitivity of emission coefficient to each pollutant concentration ......
114
44 The sensitivity of emission coefficient value to the external cost .........
114
45 Sensitivity of wind speed to each pollutant concentration ....................
115
46 The sensitivity of wind speed to the external cost ................................
115
47 Sensitivity of fading function to each pollutant concentration .............
116
48 The sensitivity of fading function to the external cost ………………..
116
49 Price structure comparison ....................................................................
124
50 The cartesian co-ordinate system used to specify dispersion geometry for Gaussian Dispersion Model .............................................................
140
xx
LIST OF APPENDICES
Page 1
The emission coefficient estimation determination method
138
2
Gaussian plume mathematical diffussion model ................................
140
3
Map region, population and AADT ....................................................
144
4
Emission concentration dispersion map ..............................................
147
5
External cost calculation result ...........................................................
168
xxi
LIST OF NOMENCLATURE
AADT
Annual Average Daily Traffic
[vehicle/day]
AADTG
AADT for German reference case
[vehicle/day]
C(x,y,z)
air concentration at receptor point (x,y,z)
Ds
stack diameter
ei*
Average specific reference emission factor of the pollutant i
ei
[kg/m3] [m]
[g/km, g/l]
Average emission factor of the pollutant i coming from an independent emission model i
[g/km, g/l]
f
Briggs plume rise stability factor
[-]
fvi
Function to consider the traffic data
[-]
fu
Function to consider the meteorological data
[-]
g
gravitational acceleration
g(s)
Fading function of the relative pollutant
[m/s2]
concentrations
[-]
H
Effective height
[m]
Hf
Effective height as a function of f factor
[m]
Δh
Plume rise
[m]
H
Stack height
[m]
∆Hc
Combustion Heat
IGAV
The average relative concentration
Ki*
Reference concentration at ground level near roadside of the pollutant i
Q
Emission strength
s
Stability parameter
s0
A distance from the roadside that relative
[MJ/kg, MJ/liter] [mg/m3] [mg/m3, ug/ m3] [kg/s] [-]
concentration of the considered pollutants reach zero
[m]
s
Distance from the roadside
[m]
Ts
Stack gas temperature
[K] xxii
T
Ambient temperature
u
Wind speed in effective height
u
Annual average wind speed in a height of 10 m
[K] [m/s]
above ground
[m/s]
Vs
Stack gas velocity
[m/s]
x
Downwind distance
[m]
xf
Downwind distance as a function of f
[m]
Greek Symbols γ
Elasticity factors
σy(x)
Horizontal dispersion parameter
[m]
σz(z)
Vertical dispersion parameter
[m]
[-]
xxiii
LIST OF ABBREVIATIONS AADT
Annual Average Daily Traffic
ADO
Automotive Diesel Oil
ADB
Asean Development Bank
APROBI
Assosiasi Produsen Biofuel Indonesia (Indonesian Biofuel Producer Association)
ASTM
American Society of Testing and Materials
BAU
Business As Usual
BDF
Biodiesel Fuel
BMG
Badan Meteorologi dan Geofisika (Indonesian Bureau of Meteorology and Geophysics)
BPLHD
Badan Pengelola Lingkungan Hidup Daerah (Local Environmental Management Agency)
BPPT
Badan Pengkajian dan Penerapan Teknologi (Agency for the Assessment and Application of Technology)
BRDST
Balai Rekayasa Desain dan Sistem Teknologi (Institute for Engineering and Technology System Design)
BTMP
Balai Termodinamika, Motor dan Propulsi (The Thermodynamics and Propulsion Engine Research Center)
BPS
Badan Pusat Statistik (Statistics DKI Jakarta Provincial Office)
BSN
Badan Standarisasi Nasional (National Standardization Agency)
B10
Mixture of 90% vol. fossil diesel fuel with 10% vol. biodiesel
C
Carbon residue
CD
Chassis Dynamometer
CO
Carbon Monoxide
CO2
Carbon dioxide
CNG
Compressed Natural Gas
CPO
Crude Palm Oil
CVS
Constant Volume Sampling
xxiv
DESDM
Departemen Energi dan Sumber Daya Mineral (Department of Energy and Mineral Resources)
DKI Jakarta
Daerah Khusus Ibu Kota Jakarta (The Capital City of Jakarta)
EC - BPPT
Engineering Center - BPPT
EPA
Environmental Protection Agency
EMA
Engine Manufacturers Association
ERF
Exposure-Response Functions
FAME
Fatty Acid Methyl Ester
FFA
Free Fatty Acid Distillate
FDF
Fossil Diesel Fuel
GDP
Gross Domestic Product
GNP
Gross National Product
HC
Hydrocarbon
H2O
Water vapor
IDO
Industrial Diesel Oil
IPA
Impact Pathway Analysis
IPB
Institut Pertanian Bogor (Bogor Agricultural University)
ITB
Institut Teknologi Bandung (Bandung Institute of Technology)
LEMIGAS
Pusat Penelitian dan Pengembangan Teknologi Minyak dan Gas Bumi (Research and Development Centre for Oil and Gas Technology)
LPG
Liquid Petroleum Gas
LNG
Liquid Natural Gas
MFO
Marine Fuel Oil
MoE
Ministry of Environment
NO2
Nitrogen Dioxide
NOX
Oxides of Nitrogen
PAH
Polyaromatic Hydrocarbons
PERTAMINA State Own Oil Company PM
Particulate Matter
PM10
Particulate Matter < 10 Micron xxv
POME
Palm Oil Methyl Ester
PUSPIPTEK
Pusat Pengembangan Ilmu Pengetahuan dan Teknologi (Science and Technology Research Center)
RGDP
Regional Gross Domestic Product
PPPGDP
Purchasing Power Parity Gross Domestic Product
SFS
Specific Fuel Consumption
SNI
Standar Nasional Indonesia (Indonesian National Standard)
SOF
Soluble Organic Fraction
SOx
Sulphur Oxides
SO2
Sulphur Dioxide
SPBU
Stasiun Pengisian Bahan Bakar Umum (Public Fuel Pump Station)
SPM
Suspended Particulate Matter
SUTP
Sustainable Urban Transport Project
THC
Total Hydrocarbon
TSP
Total Suspended Particle
UPMS III
PERTAMINA’s Marketing Unit III
USA
United State of America
VHA
Volatile Hydrocarbon
VOF
Volatile Organic Fraction
VOME
Vegetable Oil Methyl Ester
YOLL
Years of Life Loss Life
xxvi