TEKNOLOGI DAN APLIKASI ELEKTROMAGNETIK
DR. RAMADONI SYAHPUTRA
Penerbit LP3M UMY
i
TEKNOLOGI DAN APLIKASI ELEKTROMAGNETIK Penulis : Dr. Ramadoni Syahputra Editor : Dr. Indah Soesanti @2015 LP3M UMY Yogyakarta
Hak Cipta Dilindungi Undang-Undang Diterbitkan pertama kali oleh Penerbit LP3M UMY Yogyakarta September 2015
Anggota IKAPI UNDANG-UNDANG REPUBLIK INDONESIA NOMOR 19 TAHUN 2002 TENTANG HAK CIPTA Pasal 72: 1. Barangsiapa dengan sengaja dan tanpa hak melakukan perbuatan sebagaimana dimaksud dalam Pasal 2 ayat (1) atau Pasal 49 ayat (1) dan ayat (2) dipidana dengan pidana penjara masing-masing paling singkat 1 (satu) bulan dan/atau denda paling sedikit Rp 1.000.000,00 (satu juta rupiah), atau pidana penjara paling lama 7 (tujuh) tahun dan/atau denda paling banyak Rp 5.000.000.000,00 (lima miliar rupiah). 2. Barangsiapa dengan sengaja menyiarkan, memamerkan, mengedarkan, atau menjual kepada umum suatu Ciptaan atau barang hasil pelanggaran Hak Cipta atau Hak Terkait sebagaimana dimaksud pada ayat (1) dipidana dengan pidana penjara paling lama 5 (lima) tahun dan/atau denda paling banyak Rp 500.000.000,00 (lima ratus juta rupiah).
Dilarang keras menerjemahkan, memfotokopi, atau memperbanyak sebagian atau seluruh isi buku ini tanpa ijin tertulis dari penerbit.
Dicetak oleh Percetakan CV Kaliwangi
ii
PRAKATA
Bismillaahirrahmaanirrahiim
Syukur alhamdulillah penulis panjatkan ke hadirat ALLAH SWT atas segala rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan naskah buku ajar berjudul “Teknologi dan Aplikasi Elektromagnetik”. Dengan penulisan buku ajar ini diharapkan dapat membantu para pembaca khususnya mahasiswa Program Studi
Teknik
Elektro
untuk
lebih
mengenal
dan
memahami
konsep
elektromagnetik dan apikasinya dalam berbagai bidang. Buku ajar ini dapat digunakan sebagai acuan utama oleh mahasiswa dan dosen khususnya Program Studi Teknik Elektro dalam proses pembelajaran matakuliah Elektromagnetik. Buku ajar ini dapat juga digunakan sebagai acuan tambahan untuk mata-mata kuliah yang berhubungan dengan aplikasi elektromagnetik seperti Dasar Telekomunikasi, Mesin-mesin Listrik, Teknologi Gelombang Mikro, Antena dan Perambatan Gelombang, dan lain-lain. Penyelesaian buku ajar ini tidak lepas dari banyak pihak yang telah membantu. Oleh karena itu bersama ini penulis menyampaikan terima kasih dan penghargaan yang sebesar-besarnya kepada: 1. Prof.
Dr.
Bambang
Cipto,
MA.,
sebagai
Rektor
Universitas
Muhammadiyah Yogyakarta, 2. Hilman Latief, M.A., Ph.D, sebagai Kepala LP3M UMY, 3. Jazaul Ikhsan, ST., MT., Ph.D., sebagai Dekan Fakultas Teknik UMY, 4. Ir. Agus Jamal, M.Eng., sebagai Ketua Program Studi Teknik Elektro Fakultas Teknik UMY, 5. Budi Nugroho, S.Sos., selaku Kepala Divisi Penerbitan LP3M UMY yang telah banyak membantu sehingga ISBN buku ini dapat diperoleh, 6. Seluruh dosen, karyawan, dan mahasiswa Program Studi Teknik Elektro Fakultas Teknik UMY, yang telah banyak membantu dan memberikan masukan kepada penulis dan dalam mengemban tugas-tugas yang diamanahkan kepada penulis,
iii
7. Isteriku tercinta Dr. Indah Soesanti, S.T., M.T., yang telah banyak membantu dan memberikan masukan yang sangat berguna dalam penyelesaian buku ajar ini, 8. Ibunda yang selalu mendoakan penulis dan ayahanda (alm), dan 9. Semua pihak yang telah membantu yang tidak dapat disebutkan satu per satu. Semoga semuaya tercatat sebagai amal shalih yang mendapatkan balasan di dunia dan akhirat kelak, amin ya robbal ‘alamin. Penulis menyadari bahwa buku ajar ini masih jauh dari sempurna. Untuk itu segala kritik dan saran yang bersifat membangun akan penulis terima dengan lapang dada. Akhirnya, semoga buku ajar ini dapat bermanfaat dalam proses pembelajaran khususnya pada Program Studi Teknik Elektro.
Yogyakarta, September 2015 Penulis,
Dr. Ramadoni Syahputra
iv
DAFTAR ISI
HALAMAN JUDUL
……………………………………
i
PRAKATA
……………………………………
iii
DAFTAR ISI
……………………………………
v
DAFTAR TABEL
……………………………………
ix
DAFTAR GAMBAR
……………………………………
xi
1. ANALISIS VEKTOR
……………………………………
1
1.1. Pendahuluan
……………………………………
1
1.2. Aljabar Vektor
……………………………………
1
1.2.1. Perkalian titik
……………………………………
2
1.2.2. Perkalian silang
……………………………………
3
……………………………………
5
1.3.1. Sistem koordinat kartesian
……………………………………
5
1.3.2. Sistem koordinat tabung
……………………………………
9
1.3.3. Sistem koordinat bola
……………………………………
13
……
19
2.1. Hukum Eksperimental Coulomb
……………………………………
19
2.2. Intensitas Medan Listrik
……………………………………
21
2.3. Medan Listrik dari n Muatan Titik ……………………………………
22
……………………………………
23
2.4.1. Medan muatan volume
……………………………………
23
2.4.2. Medan muatan garis
……………………………………
25
2.4.3. Medan muatan bidang
……………………………………
27
3. KERAPATAN FLUKS LISTRIK, HUKUM GAUSS, DAN DIVERGENSI ……………………………………
31
……………………………………
31
1.3. Sistem-sistem Koordinat
2. HUKUM COULOMB DAN INTENSITAS MEDAN LISTRIK
2.4. Medan Distribusi Muatan
3.1. Kerapatan Fluks Listrik
v
3.2. Hukum Gauss
……………………………………
3.3. Pemakaian Hukum Gauss pada Distribusi Muatan Simetris………...
33 36
……
37
……………………………………
39
3.6. Persamaan Pertama Maxwell (Elektrostatika)
……………………
41
3.7. Operator Vektor dan Teorema Divergensi
……………………
41
……………………………………
45
4.1. Energi untuk Menggerakkan Muatan Titik dalam Medan Listrik ……
45
……………………………………
47
……………………………
49
4.4. Medan Potensial Sistem Muatan
……………………………………
50
4.5. Gradien Potensial
……………………………………
52
4.6. Energi dalam Medan Elektrostatik ……………………………………
53
……………………………
57
5.1. Polarisasi dan Permitivitas Relatif ……………………………………
57
……………………………………
59
……………………
61
5.4. Medan Listrik Pada Kondisi Muatan Tetap ……………………………
61
5.5. Energi Tersimpan dalam Kapasitor ……………………………………
62
……………………………………
64
……………………………
67
6.1. Pendahuluan
……………………………………
67
6.2. Persamaan Poisson dan Laplace
……………………………………
67
6.3. Teorema Keunikan
……………………………………
69
7. MEDAN MAGNETIK TUNAK
……………………………………
73
7.1. Pendahuluan
……………………………………
73
7.2. Hukum Biot-Savart
……………………………………
73
3.4. Pemakaian Hukum Gauss pada Unsur Volume Diferensial 3.5. Divergensi
4. ENERGI DAN POTENSIAL LISTRIK
4.2. Beda Potensial dan Potensial
4.3. Medan Potensial Sebuah Muatan Titik
5. KAPASITANSI DAN BAHAN DIELEKTRIK
5.2. Kapasitansi
5.3. Medan Listrik pada Kondisi Tegangan Tetap
5.6. Bumi Sebagai Kapasitor Alami
6. PERSAMAAN POISSON DAN LAPLACE
vi
7.3. Hukum Integral Ampere
……………………………………
77
7.4. Kurl
……………………………………
78
7.5. Teorema Stokes
……………………………………
83
……………………
84
……………………………
86
7.6. Fluks Magnetik dan Kerapatan Fluks Magnetik 7.7. Potensial Magnetik Skalar dan Vektor
8. GAYA MAGNETIK, BAHAN MAGNETIK, DAN INDUKTANSI ………
89
8.1. Pendahuluan
……………………………………
89
8.2. Gaya pada Muatan Bergerak
……………………………………
89
8.3. Gaya pada Unsur Arus Diferensial ……………………………………
90
8.4. Gaya antar Unsur Arus Diferensial ……………………………………
93
……………………………
94
8.6. Magnetisasi dan Permeabilitas
……………………………………
95
8.7. Rangkaian Magnetik
……………………………………
96
8.8. Energi dalam Medan Magnetik
……………………………………
98
8.9. Induktansi dan Induktansi Saling
……………………………………
99
8.5. Gaya dan Torka dalam Medan Magnetik
8.10 Aplikasi Medan Magnet: Magnetic Levitation (Maglev) ………….
101
9. GELOMBANG ELEKTROMAGNETIK ……………………………………
105
……………………………
105
9.2. Gerak Gelombang dalam Dielektrik Sempurna
……………………
111
9.3. Gelombang Datar dalam Dielektrik Merugi
……………………
114
……………………………
116
……………………………………
118
……………………………………
123
10.1. Magnetic Levitation (MAGLEV) ……………………………………
123
……………………………………
135
……………………………………
139
9.1. Gerak Gelombang dalam Ruang Hampa
9.4. Vektor Poynting dan Peninjauan Daya 9.5. Penjalaran dalam Konduktor 10. APLIKASI ELEKTROMAGNETIK
10.2. Microwave Oven
DAFTAR PUSTAKA
vii
« halaman ini sengaja dikosongkan »
viii
DAFTAR TABEL
Tabel 1.1. Perkalian Titik antara Vektor Satuan dalam Sistem Koordinat Kartesian dan Sistem Koordinat Tabung
……………………………
13
Tabel 1.2. Perkalian Titik antara Vektor Satuan dalam Sistem Koordinat Kartesian dan Sistem Koordinat Bola
……………………………
ix
15
« halaman ini sengaja dikosongkan »
x
DAFTAR GAMBAR
……………………………
1
Gambar 1.2. Arah A x B sesuai dengan arah majunya sekrup putar kanan ……
4
Gambar 1.3. Sistem koordinat kartesian, (a). Sumbu x, y, dan z dari koordinat kartesian, (b).Letak titik P (1, 2, 3) dan Q (2, -2, 1), dan (c). Elemen volume diferensial dalam koordinat kartesian ……………………
6
Gambar 1.4. Komponen vektor dan vektor satuan. (a). Vektor x, y, dan z dari vektor r, (b). Vektor satuan dari sistem koordinat katresian, dan (c). Vektor RPQ sama dengan beda vektor rQ – rP ……………………
8
Gambar 1.5. Sistem koordinat tabung. (a).Ketiga bidang saling tegak lurus, (b). Ketiga vektor satuan dalam sistem koordinat katresian, dan (c). Volume diferensial dalam koordinat tabung ……………………
10
Gambar 1.6. Hubungan antara peubah koordinat kartesian dan peubah koordinat tabung ……………………………………
11
Gambar 1.1. Penjumlahan vektor secara grafik
Gambar 1.7. Sistem koordinat bola. (a).Ketiga koordinat bola, (b). Ketiga bidang yang saling tegak lurus pada sistem koordinat bola, (c). Ketiga vektor satuan koordinat bola, dan (d) Elemen volume diferensial pada sistem koordinat bola …………………………………… 14 Gambar 2.1. Arah vektor gaya F2 pada Q2 sama dengan arah vektor R12 ……………………………………
20
Gambar 2.2. Penjumlahan vektor dari medan listrik yang ditimbulkan oleh Q1 dan Q2 ……………………………………
23
……………………
24
……………
26
Gambar 2.3. Muatan total di dalam tabung lingkaran
Gambar 2.4. Muatan garis yang memanjang sepanjang sumbu z
Gambar 2.5. Penentuan medan di titik P oleh satu lembaran muatan menggunakan persamaan dE s dy a r / 2 0 R …………………………………… 28 Gambar 3.1. Fluks listrik di antara dua bola sepusat konsentris yang bermuatan ……………………………………
31
Gambar 3.2. Awan muatan titik yang dilingkungi oleh permukaan tertutup ……
33
xi
Gambar 3.3. Pemakaian hukum Gauss untuk medan muatan titik pada permukaan bola ……………………….….... 34 Gambar 3.4. Permukaan Gauss berukuran diferensial dengan titik P dipakai untuk menyelidiki laju perubahan ruang dari D di sekitar P ……
37
……………………………
42
Gambar 4.1. Lintasan umum antara titik B dan A dalam medan muatan tiitk Q di titik asal ……………………………
49
Gambar 4.2. Medan potensial muatan garis serbasama yang berbentuk Cincin ……………………………
51
Gambar 3.5. Ilustrasi tentang teorema divergensi
Gambar 4.3. Titik A dan B yang berdekatan di dalam daerah V
……….…… 52
Gambar 5.1. Proses polarisasi bahan dielektrik dalam medan listrik
……
57
Gambar 5.2. Dua penghantar yang dipisahkan oleh bahan dielektrik
……
59
Gambar 5.3. Bumi dengan permukaan konduksi elektrosfer dan ionosfer
……
64
……………………………
74
Gambar 7.2. Filamen lurus yang panjangnya tak berhingga dialiri arus searah I ……………………………
74
Gambar 7.3. Garis-garis intensitas medan magnetik di sekitar seutas filamen yang panjangnya tak berhingga dialiri arus I yang arahnya masuk ke bidang kertas ……………………………
76
Gambar 7.1. Ilustrasi tentang hukum Biot-Savart
Gambar 7.4. Intensitas medan magnetik yang ditimbulkan oleh filamen arus yang panjangnya berhingga …………………………… 77 Gambar 7.5. Konduktor yang dialiri arus listrik I, dengan lintasan a dan b memenuhi hukum integral Ampere, sedang lintasan c tidak memenuhi ……………………………
78
Gambar 7.6. Pertambahan lintasan tertutup dalam koordinat kartesian untuk pemakaian hukum integral Ampere guna menentukan laju perubahan H ……………………………
79
Gambar 7.7. Ilustrasi dari suatu daerah S dan permukaan S
……………
84
Gambar 8.1. Dua filamen sejajar berjarak d yang dialiri arus yang sama besar tetapi berlawanan arah mengalami gaya tolak-menolak ……………………………
94
xii
Gambar 8.2. Bagian kumparan yang menunjukkan pertautan fluks parsial ……………………………
100
Gambar 8.3. Levitasi magnetik oleh magnet-magnet permanen: (a) kalang belitan-tunggal (single-turn loop), (b) kalang yang (b) ditunjukkan pada bagian persilangan, dan (c) kalang di atas lembaran konduktor ……………………………
101
Gambar 9.1(a) Gelombang medan listrik, (b) Gelombang medan magnetik …… 111 Gambar 9.2. Kerugian daya dalam konduktor
……………………………
121
Gambar 10.2. Sistem Maglev
……………………………
125
Gambar 10.3 Susunan Rel Maglev Train
……………………………
126
Gambar 10.4 Rel super konduktor
……………………………
128
Gambar 10.5 Konstruksi mesin maglev
……………………………
128
Gambar 10.6 Maglev Transrapid di Shanghai
……………………………
129
Gambar 10.7 Electromagnetic Suspension (EMS)
……………………………
131
Gambar 10.8 Electrondynamic Suspension (EDS)
……………………………
131
Gambar 10.9 Inductrack System
……………………………
132
Gambar 10.10 Magnet Levitation
……………………………
132
Gambar 10.11 Microwave oven
……………………………
135
Gambar 10.12 Magnetron
……………………………
136
Gambar 10.13 Skema Magnetron
……………………………
137
Gambar 10.14 Waveguide dalam Microwave Oven ……………………………
137
……………………………
138
Gambar 10.15. Microwave Stirrer
xiii
« halaman ini sengaja dikosongkan »
xiv
BAB I ANALISIS VEKTOR
1.1 PENDAHULUAN Skalar ialah besaran yang hanya mempunyai besar (magnitudo) [1]-[2]. Skalar dapat dinyatakan dengan sebuah bilangan nyata. Notasi x, y, dan z yang dipakai dalam aljabar dasar adalah skalar, dan besaran yang dinyatakannya juga merupakan skalar. Besaran skalar lainnya ialah massa, kerapatan, tekanan, dan volume. Vektor merupakan besaran yang mempunyai besar (magnitudo) dan arah dalam ruang. Gaya, kecepatan, percepatan, intensitas medan elektrik, dan intensitas medan magnetik merupakan contoh-contoh dari vektor. Masing-masing besaran tersebut dikarakteristikkan dengan besar dan arahnya. Dalam buku ini vektor dituliskan dengan memakai simbol huruf yang ditebalkan, misalnya A dan vektor satuan dituliskan dengan huruf kecil yang ditebalkan, misalnya ax. Jika ditulis tangan atau diketik manual, untuk menyatakan vektor dan vektor satuan biasanya dengan menambahkan garis atau anak panah di atas besarannya, misalnya A atau A dan a X atau a X . 1.2 ALJABAR VEKTOR Penjumlahan vektor mengikuti hukum jajaran genjang dan dapat diselesaikan secara grafik. Gambar 1.1 menunjukkan penjumlahan dua buah vektor A dan B. Dapat dilihat bahwa penjumlahan vektor mengikuti hukum komutatif, yaitu A + B = B + A. Penjumlahan vektor juga memenuhi hukum asosiatif, yaitu A + (B + C) = (A + B) + C.
A
A+B
B
A
A+B B
Gambar 1.1. Penjumlahan vektor secara grafik
1
Pengurangan vektor mengikuti aturan penjumlahan vektor, karena pengurangan vektor A – B dapat dinyatakan sebagai A + (– B) yaitu tanda dan arah vektor kedua dibalik, kemudian vektor ini dijumlahkan dengan vektor yang pertama. Vektor dapat dikalikan dengan sebuah skalar, besar vektor tersebut berubah tetapi arahnya tetap jika skalar tersebut positif. Vektor akan berbalik arahnya jika dikalikan dengan skalar negatif. Perkalian vektor dengan skalar mengikuti hukum asosiatif dan distributif dari aljabar sebagai berikut: (r + s) (A + B) = r(A + B) + s(A + B) = rA + rB + sA + sB Pembagian sebuah vektor dengan sebuah skalar berarti perkalian vektor tersebut dengan kebalikan dari skalar tersebut. Dua vektor disebut sama jika selisihnya adalah nol, atau: A = B jika A – B = 0 1.2.1 Perkalian Titik Tinjaulah dua vektor A dan B, hasil perkalian skalarnya atau perkalian titiknya didefinisikan sebagai perkalian dari besar A dan besar B, dikalikan dengan kosinus sudut antara kedua vektor tersebut (ambil sudut terkecil antara A dan B). A . B = |A| |B| cos AB
……..…(1.1)
Perkalian titik atau perkalian skalar juga merupakan skalar, seperti dinyatakan oleh salah satu namanya, dan mengikuti hukum komutatif, A.B =B.A
……..…(1.2)
karena tanda sudutnya tidak mempengaruhi suku kosinus. Pernyataan A . B dibaca "A titik B" atau "A dot B". Tinjau dua vektor yang komponennya dalam koordinat kartesian diketahui, misalnya A = Ax ax + Ay ay + Az az dan B = Bx ax + By ay + Bz az. Perkalian titik memenuhi hukum distributif, jadi A . B
menghasilkan jumlah dari sembilan
skalar, masing-masing mengandung perkalian titik dua vektor satuan. Karena sudut antara dua vektor satuan yang berbeda dalam sistem koordinat kartesian adalah 90, maka
2
ax . ay = ay . ax = ax . az = az . ax = ay . az = az . ay = 0 Tiga suku lainnya mengandung perkalian titik vektor satuan dengan dirinya sendiri, sehingga hasilnya ialah satuan. Jadi perkalian titik dua vektor dapat dituliskan: A . B = Ax Bx + Ay By + Az Bz
……..…(1.3)
Perkalian titik antara vektor dengan dirinya sendiri menghasilkan kuadrat dari besar vektor tersebut, atau A . B = A2 = |A|2
……..…(1.4)
dan tiap vektor satuan dikalikan dengan dirinya sendiri menghasilkan satuan, aA . aA = 1.
Contoh 1.2. Diberikan vektor A = 2 ax – 3 ay + az dan vektor B = – 4 ax – 2 ay + 5 az. Hitunglah A . B. Jawab: A . B = [(2)(–4) + (–3)( –2) + (1)(5)] = – 8 + 6 + 5 = 3 1.2.2 Perkalian Silang Perkalian silang vektor A dan B dituliskan dengan tanda silang antara kedua vektor tersebut, A x B, dan biasanya dibaca "A silang B" atau "A cross B". Perkalian silang A x B merupakan sebuah vektor. Besar A x B sama dengan besar A dikalikan dengan besar B dan kemudian dikalikan dengan sinus sudut terkecil antara A dan B. Arah A x B tegak lurus pada bidang datar tempat A dan B terletak, dan arahnya sesuai dengan arah maju sekrup putar kanan yang diputar dari A ke B, seperti terlihat pada gambar 1.2. Rumusan perkalian silang adalah: A x B = aN |A| |B| sin AB
……..…(1.5)
dengan pernyataan tambahan yang diperlukan untuk menyatakan arah vektor satuan aN. Subskrip N menyatakan normal.
3
Gambar 1.2. Arah A x B sesuai dengan arah majunya sekrup putar kanan.
Membalik urutan vektor A dan B menghasilkan vektor satuan yang berlawanan arahnya dengan semula, sehingga perkaliannya tidak komutatif karena B x A = – (A x B). Jika definisi perkalian silang dikenakan pada vektor satuan ax dan ay maka didapatkan ax x ay = az, karena masing-masing vektor besarnya satu dan arahnya saling tegak lurus dan perputaran ax ke ay menghasilkan arah sumbu z positif, sesuai dengan definisi sistem koordinat putar kanan. Dengan cara yang serupa didapatkan ay x az = ax, dan az x ax = ay. Mencari perkalian silang dapat dilakukan dengan lebih mudah menguraikan perkalian silang dari dua vektor A dan B sebagai jumlah dari sembilan perkalian silang sederhana yang mengandung dua vektor satuan. A x B = Ax Bx ax x ax + Ax By ax x ay + Ax Bz ax x az + Ay Bx ay x ax + Ay By ay x ay + Ay Bz ay x az + Az Bx az x ax + Az By az x ay + Az Bz az x az Telah diketahui bahwa ax x ay = az, ay x az = ax, dan az x ax = ay, dan diperoleh juga ay x ax = – az, az x ay = – ax, dan ax x az = – ay. Ketiga suku lainnya sama dengan nol, karena perkalian silang antaar vektor dengan dirinya ialah nol karena sudut diantaranya nol. Hasilnya dapat digabungkan untuk mendapatkan:
4
A x B = (Ay Bz – Az By) ax + (Az Bx – Ax Bz) ay + (Ax By – Ay Bx) az .…(1.6) atau dapat juga ditulis dalam bentuk determinan yang mudah diingat yaitu,
aX
aY
aZ
A x B = AX
AY
AZ
BX
BY
BZ
………..…(1.7)
Contoh 1.2. Diberikan vektor A = 2 ax – 3 ay + az dan vektor B = – 4 ax – 2 ay + 5 az. Hitunglah A x B. Jawab:
aX
aY
aZ
3
1
4 2
5
AxB = 2
= [(–3)(5) – (1)( –2)] ax – [(2)(5) – (1)( –4)] ay + [(2)( –2) – (–3)( –4)] az = – 13 ax – 14 ay – 16 az
1.3 SISTEM-SISTEM KOORDINAT 1.3.1 Sistem Koordinat Kartesian Guna menyatakan sebuah vektor dengan tepat maka harus diketahui panjangnya, arahnya, sudutnya, proyeksinya, atau komponennya. Ada tiga metode sederhana untuk menyatakan vektor tersebut dan yang paling sederhana adalah sistem koordinat kartesian. Dalam sistem koordinat kartesian digunakan tiga sumbu koordinat yang saling tegak lurus yang dinamakan sumbu x, y dan z. Dalam hal ini biasanya dipakai sistem koordinat putar kanan, artinya perputaran dari sumbu x ke sumbu y mengakibatkan sekrup putar kanan maju ke arah sumbu z. Dengan mengunakan tangan kanan yang terdiri dari ibu jari, telunjuk, dan jari tengah kita dapat
5
menyatakan sumbu x, y dan z. Gambar 1.3(a). menunjukkan sistem koordinat kartesian putar kanan. z
Bidang x = 0 Bidang y = 0 Titik asal (origin)
y Bidang z = 0
x
(a)
z
z
volume = dx dy dz
dx dy
P (1, 2, 3)
dz
dy dz
P'
dy dz
dx
dy
y
y
Q (2, –2, 1)
x
x (b)
(c)
Gambar 1.3. Sistem koordinat kartesian, (a). Sumbu x, y, dan z dari koordinat kartesian, (b). Letak titik P (1, 2, 3) dan Q (2, -2, 1), dan (c). Elemen volume diferensial dalam koordinat kartesian.
Sebuah titik ditentukan letaknya dengan memberikan koordinat x, y, dan z dari titik tersebut. Besaran itu menyatakan jarak dari titik asal (origin) ke perpotongan dari garis lurus yang ditarik dari titik tersebut tegak lurus pada sumbu x, kemudian y dan z. Metode lain untuk mengartikan harga koordinat tersebut dan metode yang harus dipakai dalam mengartikan sistem koordinat yang lain adalah
6
menganggap titik yang ditinjau sebagai perpotongan dari tiga bidang yaitu bidang x = tetapan, y = tetapan, dan z = tetapan. Tetapan itu merupakan harga koordinat untuk titik tersebut. Gambar 1.3(b). menunjukkan titik P dan Q yang koordinatnya adalah (1, 2, 3) dan (2, -2, 1). Titik P merupakan titik potong dari bidang x = 1, y = 2, dan z = 3, sedang titik A terletak pada perpotongan bidang x = 2, y = -2, dan z = 1. Bayangkan tiga bidang perpotongan di titik P yang koordinatnya x, y dan z, kemudian tambahkan masing-masing koordinat tersebut dengan besaran diferensial untuk mendapatkan bidang baru yang bergeser sedikit dari bidangs emula. Perpotongan bidang baru ini dinamakan titik P' yang koordinatnya x + dx, y + dy, dan z + dz. Keenam bidang tersebut membentuk sebuah balok yang volumenya dv = dx dy dz, permukaannya dS yang terdiri dari dx dy, dy dz, dan dz dx, dan jarak dL dari P ke P' yang merupakan garis diagonal dari balok tersebut yang panjangnya
(dx) 2 (dy) 2 (dz ) 2 . Elemen volume dalam sistem koordinat
kartesian ditunjukkan pada gambar 1.3(c). Dalam gambar tersebut diperlihatkan titik P', sedang titik P terletak pada sudut yang tidak terlihat. Guna menyatakan sebuah vektor dalam sistem koordinat kartesian, tinjau sebuah vektor r yang arahnya ke luar dari titik asal. Vektor-vektor komponen dari vektor r ialah x, y, dan z, dan penjumlahan ketiga vektor komponen tersebut r = x + y + z, seperti terlihat pada gambar 1.4(a). Suatu vektor satuan yakni vektor dengan harga absolut satu dinyatakan dengan notasi a dan arahnya dinyatakan oleh subskrip yang bersangkutan. Dalam sistem koordinat kartesian, vektor-vektor satuannya adalah ax, ay, dan az. Vektorvektor tersebut sejajar dengan sumbu x, y, dan z sesuai dengan subskripnya sepeti terlihat pada gambar 1.4(b). Jika vektor y besarnya dua satuan dan arahnya searah dengan bertambahnya harga y, maka ditulis y = 2 ay. Sebuah vektor rP yang arahnya ditentukan oleh penghubung antara titik asal dengan titik P (1, 2, 3) dapat ditulis rP = ax + 2 ay + 3 az. Vektor yang menghubungkan titik P dan Q didapatkan dengan memakai aturan penjumlahan vektor. Aturan ini menyatakan vektor dari titik asal
7
ke titik P ditambah dengan vektor dari titik P ke titik Q sama dengan vektor dari titik asal ke titik Q. Vektor dari titik P (1, 2, 3) ke titik Q (2, -2, 1) ialah: RPQ = rQ – rP
= (2 – 1) ax + (–2 – 2) ay + (1 – 3) az = ax – 4 ay – 2 az Vektor rQ, rP, dan RPQ dapat dilihat pada gambar 1.4(c). z
z
z
az r y y
ay
x ax
r=x+y+z x
x
(a)
(b)
z
P (1, 2, 3)
RPQ
rP y
rQ Q (2, –2, 1)
x (c) Gambar 1.4. Komponen vektor dan vektor satuan. (a). Vektor x, y, dan z dari vektor r, (b). Vektor satuan dari sistem koordinat katresian, dan (c). Vektor RPQ sama dengan beda vektor rQ – rP.
8
y
Suatu vektor B dapat dituliskan sebagai B = Bx ax + By ay + Bz az. Vektor komponennya ialah Bx ax, By ay, dan Bz az. Besar B dapat ditulis sebagai |B| atau B dan dapat dinyatakan sebagai: |B| =
B X BY BZ 2
2
2
……..…(1.8)
Vektor satuan dalam arah B dapat dinyatakan sebagai: aB =
B
B X BY BZ 2
2
2
B
……..…(1.9)
B
Contoh 1.3. Diberikan titik B menempati koordinat (2, -2, -1). Tentukan vektor satuan yang mengarah dari titik asal ke titik B. Jawab: Suatu vektor satuan yang mempunyai arah dari titik asal ke titik B (2, -2, 1) didapatkan dengan menyatakan vektor B dari titik asal ke titik B (2, -2, 1), yaitu B = 2 ax – 2 ay – az. Kemudian besar |B| dicari, yaitu |B| =
(2) 2 (2) 2 (1) 2 = 3.
Akhirnya didapatkan vektor satuannya sebagai berikut: aB =
2 a X 2 aY a Z 0,667 a X 0,667 a Y 0,333a Z 3
1.3.2 Sistem Koordinat Tabung Sistem koordinat tabung (silindris) merupakan versi tiga dimensi dari koordinat polar (koordinat kutub) dalam geometri analitik. Dalam koordinat polar dua dimensi, sebuah titik dalam bidang ditentukan oleh jarak dari titik asal, dan sudut antara garis yang menghubungkan titik asal dengan titik tersebut dan garis radial (sebarang) yang dipilih sebagai acuan (referensi). Dalam sistem koordinat tabung tiga dimensi ditentukan juga jarak z dari titik yang ditinjau dalam bidang z = 0 yang merupakan bidang acuan yang tegak lurus pada garis = 0. Lengkapnya nama sistem koordinat ini adalah sistem koordinat tabung lingkaran atau biasa disingkat dengan sistem koordinat tabung.
9
Dalam sistem koordinat tabung, tiap titik dipandang sebagai perpotongan dari tiga bidang yang saling tegak lurus. Ketiga bidang tersebut terdiri atas bidang tabung lingkaran ( = tetapan), bidang datar ( = tetapan), dan bidang datar lainnya (z = tetapan). Ketiga bidang koordinat tabung ini ditunjukkan dalam gambar 1.5(a). Dapat dilihat bahwa ketiga bidang seperti itu dapat melalui setiap titik kecuali jika titik tersebut terletak pada sumbu z, dalam hal ini hanya satu bidang saja yang diperlukan.
Gambar 1.5. Sistem koordinat tabung. (a).Ketiga bidang saling tegak lurus, (b). Ketiga vektor satuan dalam sistem koordinat katresian, dan (c). Volume diferensial dalam koordinat tabung.
Tiga vektor satuan dalam sistem koordinat tabung yaitu a, a, dan az. Vektor satuan a pada titik P(1, 1, z1) arahnya menjauhi titik asal, normal pada bidang tabung =1. Vektor tersebut terletak pada bidang =1 dan z=z1. Vektor
10
satuan a normal pada bidang =1 , mempunyai arah yang sama dengan arah bertambahnya , terletak pada z=z1 dan menyinggung permukaan tabung =1. Vektor satuan az sama dengan vektor satuan az dalam koordinat kartesian. Gambar 1.5(b) memperlihatkan tiga vektor satuan dalam koordinat tabung. Volume diferensial dalam koordinat tabung diperoleh dengan menambah , , dan z dengan pertambahan diferensial d, d, dan dz. Dua buah tabung berjejari dan + d, dua buah bidang radial pada sudut dan + d, dan dua buah bidang horizontal pada ketinggian z dan z + dz membatasi volume kecil seperti terlihat pada gambar 1.5(c). yang berbentuk potongan kayu. Jika volumenya sangat kecil maka bentuknya seperti kotak yang panjang sisi-sisinya d, d, dan dz. Luas permukaannya d d, d dz, dan d dz. dan volumenya menjadi d d dz. Peubah (variabel) dalam koordinat kartesian dan koordinat tabung dapat dicari hubungannya. Dengan menunjuk pada gambar 1.6 dapat dilihat bahwa: x = cos
..……..…(1.10)
y = sin
..……..…(1.11)
z=z
..……..…(1.12)
Gambar 1.6. Hubungan antara peubah koordinat kartesian dan peubah koordinat tabung.
Dari sudut pandang lain dapat dinyatakan peubah koordinat tabung dalam x, y, dan z sebagai berikut:
11
= x2 y2 = tan-1
( 0)
y x
z=z
.………..(1.13) .………..(1.14) .………..(1.15)
Dengan menggunakan persamaan (1.10) dan persamaan (1.11) fungsi skalar yang dinyatakan dalam suatu sistem koordinat dapat ditransformasikan ke sistem koordinat lainnya. Suatu fungsi vektor memerlukan dua langkah untuk mentransformasikannya ke sistem koordinat lain, karena diperlukan himpunan vektor komponen yang berbeda. Diberikan vektor dalam koordinat kartesian: A = Ax ax + Ay ay + Az az dengan masing-masing komponen merupakan fungsi dari x, y, dan z, maka diperlukan vektor dalam koordinat tabung. A = A a + A a + Az az dengan masing-masing komponen merupakan fungsi dari , , dan z. Komponen dari sebuah vektor dapat dicari dengan mengambil perkalian titik antara vektor tersebut dengan vektor satuan dalam arah yang diinginkan. Jadi, A = A . a dan A = A . a Dengan menguraikan perkalian titik tersebut kita dapatkan: A = (Ax ax + Ay ay + Az az) a = Ax ax . a + Ay ay . a
.……..…(1.16)
A = (Ax ax + Ay ay + Az az) a = Ax ax . a + Ay ay . a
.……..…(1.17)
Az = (Ax ax + Ay ay + Az az) az = Az az . az
.……..…(1.18)
karena az . a dan az . a adalah nol. Supaya dapat menyelesaikan transformasi komponen, perlu diketahui perkalian titik antar vektor satuan dalam sistem koordinat kartesian dan sistem koordinat tabung seperti terlihat pada tabel 1.1.
12
Tabel 1.1. Perkalian Titik antara Vektor Satuan dalam Sistem Koordinat Kartesian dan Sistem Koordinat Tabung
a
a
az
ax .
cos
- sin
0
ay .
sin
cos
0
az .
0
0
1
Contoh 1.4. Transformasikan vektor B = y ax – x ay + z az ke koordinat tabung. Jawab: Komponen dalam sistem koordinat tabungnya adalah:
B = B . a = y (ax . a) – x (ay . a) = y cos – x sin = sin cos – cos sin = 0
B = B . a = y (ax . a) – x (ay . a) = – y sin – x cos = – sin2 cos – cos2 = – Jadi, B = – a + z az 1.3.3 Sistem Koordinat Bola Sistem koordinat bola dapat dibangun berdasarkan ketiga sumbu kartesian seperti terlihat pada gambar 1.7(a). Pertama-tama didefinisikan r sebagai jarak dari titik asal ke titik yang ditinjau. Permukaan r = tetapan adalah sebuah bola. Koordinat kedua ialah sudut antara sumbu z dan garis yang ditarik dari titik asal ke titik yang ditinjau. Permukaan = tetapan ialah sebuah kerucut, dan kedua permukaan tersebut bola dan kerucut, di setiap titik perpotongannya selalu saling tegak lurus. Titik-titik tersebut membentuk lingkaran dengan jejari r sin . Koordinat bersesuaian dengan lintang, bedanya ialah lintang diukur dari ekuator (khatulistiwa) sedang diukur dari kutub utara. Koordinat ketiga yaitu juga merupakan sudut yang definisinya tetap sama dengan untuk koordinat tabung. Sudut tersebut ialah sudut antara sumbu x dengan garis proyeksi dari garis yang
13
menghubungkan titik asal dengan titik yang ditinjau pada bidang z = 0. Besarnya sesuai dengan sudut bujur, hal yang berbeda adalah sudut bertambah ke arah timur. Permukaan = tetapan ialah sebuah bidang datar yang melalui garis = 0 (atau sumbu z). Dalam sistem koordinat bola terdapat tiga bidang yang saling tegak lurus yaitu bola, kerucut, dan bidang datar seperti terlihat pada gambar 1.7(b). Gambar 1.7(c) menunjukkan tiga vektor satuan dalam koordinat bola. Ketiga vektor satuan tersebut saling tegak lurus dan dalam sistem koordinat putar kanan berlaku ar x a = a.
Gambar 1.7. Sistem koordinat bola. (a).Ketiga koordinat bola, (b). Ketiga bidang yang saling tegak lurus pada sistem koordinat bola, (c). Ketiga vektor satuan koordinat bola, dan (d) Elemen volume diferensial pada sistem koordinat bola.
14
Elemen volume diferensial dapat dibangun dalam koordinat bola dengan memperhatikan pertambahan r, , dan dengan dr, d, dan d seperti terlihat pada gambar 1.7(d).Jarak antara dua permukaan bola dengan jejari r dan r + dr ialah dr, jarak antara dua permukaan kerucut dengan sudut puncak yang ditentukan oleh dan + d ialah r d, dan jarak antara dua bidang datar radial pada sudut dan + d didapatkan r sin d dengan menggunakan cara trigonometri. Permukaan batasnya mempunyai luas r dr d, r sin dr d, dan r2 sin d d. Volumenya ialah r2 sin dr d d. Transformasi skalar dari sistem koordinat kartesian ke koordinat bola dapat dilakukan dengan memperhatikan gambar 1.7(a) yang menghubungkan kedua himpunan peubah: x = r sin cos
.………..(1.19)
y = r sin sin
.……..…(1.20)
z = r cos
.………..(1.21)
Transformasi sebaliknya didapat melalui hubungan: r =
x 2 y 2 z 2 (r 0)
z
= cos 1
= tan-1
.………..(1.22)
(0 180)
x2 y2 z2
.……..…(1.23)
y x
.………..(1.24)
Peubah jejari r selalu positif atau nol, bergerak antara 0 sampai dengan 180. Sudut tersebut ditentukan kuadrannya sesuai dengan hanya x, y, dan z. Tabel 1.2. Perkalian Titik antara Vektor Satuan dalam Sistem Koordinat Kartesian dan Sistem Koordinat Bola
ar
a
a
ax .
sin cos
cos cos
- sin
ay .
sin sin
cos sin
cos
az .
cos
- sin
0
15
Transformasi vektor memerlukan harga perkalian dari vektor satuan dalam koordinat kartesian dengan vektor satuan dalam koordinat bola, dengan memperhatikan gambar 1.7(c). Karena perkalian titik antara vektor satuan dalam koordinat bola dengan vektor satuan dalam koordinat kartesian menghasilkan komponen vektor satuan bola dalam arah vektor satuan kartesian, maka perkalian dengan az menghasilkan: az . ar = cos az . a = - sin az . a = 0 Perkalian titik vektor satuan dalam koordinat bola dan koordinat kartesian selengkapnya dapat dilihat pada tabel 1.2. Contoh 1.4. Transformasikan vektor G = (xy/z) ax ke dalam koordinat bola. Jawab: Kita dapatkan ketiga komponen bola dengan perkalian skalar antara G dengan vektor satuan yang bersangkutan, kemudian lakukan perubahan:
Gr = G . ar =
xz xz ax . ar = sin cos y y
= r sin cos
G = G . a = = r cos2
G = G . a =
cos 2 sin
xz xz ax . a = cos cos y y
cos 2 sin xz xz ax . a = (–sin ) y y
= – r cos cos
Dengan menggabungkannya, diperoleh: G = r cos cos (sin cot ar + cos cot a – a)
16
Latihan: 1.1. Diberikan vektor-vektor A = 2 ax – 5 ay + 3 az, B = – 5 ax – 3 ay + 5 az, dan C = ax + 3 ay + 5 az. Tentukan (A . B) x C dan (A x B) . C. 1.2. Diketahui P(6, 125, -3) dan Q(3, -1, 4). Tentukan jarak dari (a) P ke titik asal, (b) Q tegak lurus pada sumbu z, dan (c) P ke Q. 1.3. Diketahui P(6, 110, 125) dan Q(3, -1, 4). Tentukan jarak dari (a) Q ke titik asal, (b) P ke bidang y = 0, dan (c) P ke Q. 1.4. Nyatakan medan vektor W = (x – y) ay dalam koordinat: (a) tabung di (6, 60, -4), dan (b) bola di (4, 30, 120).
17
« halaman ini sengaja dikosongkan »
18
BAB X APLIKASI ELEKTROMAGNETIK
10.1 MAGNETIC LEVITATION (MAGLEV) 10.1.1 Pendahuluan Salah satu aplikasi penting elektromagnetik adalah ditemukannya kereta maglev (magnetic levitation). Beberapa negara maju telah memanfaatkan kekuatan elektromagnetik untuk mengembangkan kereta berkecepatan tinggi tersebut. Maglev (magnetic levitation) mengandung pengertian bahwa kereta ini akan mengambang di sepanjang lintasan menggunakan prinsip dasar magnet yang menggantikan roda dan rel kereta [6]. Penelitian dan pengembangan maglev, yang memanfaatkan teknologi
superkonduktor telak dilaksanakan sejak
1970.
Perkembangan maglev secara teknis dimulai pada tahun 2000. Pada Desember 2003, telah dicapai kecepatan maksimum 581 km/jam dari kereta maglev. Maglev, sebuah perpaduan teknologi magnet superkonduktor dan motor linear, mampu merealisasikan kecepatan super tinggi, keamanan, kecilnya dampak terhadap lingkungan dan perawatan yang minimum. Prinsip kereta magnet adalah melayang di atas medan magnet dan didorong oleh sebuah motor induksi linear. Kereta tersebut mengikuti lintasan pengarah dengan magnet. Kereta ini sering disebut sebagai kereta “magnetically levitation” yang disingkat maglev. Perbedaan utama antara kereta maglev dan kereta konvensional yaitu kereta maglev tidak memiliki mesin. Sebagai ganti bahan baker fosil, medan magnet ditimbulkan oleh medan listrik kumparan pada dinding lintasan dan pada relnya untuk mendorong kereta. Maglev adalah sebuah system di mana kedaraan melaju di atas lintasan dengan mengambang dengan memanfaatkan
gaya
elektromagnetik
yang
ditimbulkan
antara
magnet
superkonduktor yang terdapat pada kendaraan dengan kumparan pada tanah. Kereta maglev melayang kira-kira 10mm di atas lintasan dalam sebuah medan
123
magnet. Kereta tersebut didorong oleh lintasan itu sendiri dengan mengubah-ubah medan magnetnya. Elektromagnet bergerak di sepanjang lintasannya.
10.1.2 Efek Meissner Effek meisner (ditemukan tahun 1933) adalah efek yang dalam superkonduktor yakni material yang memiliki resistansi nol pada suhu dibawah suhu kritisnya. Medan magnet eksternal yang seharusnya melakukan penetrasi dalam bahan menjadi terblokade dan mengalir diluar bahan dan dekat permukaan bahan sampai kedalaman London (London depth).
10.1 Ilustrasi Efek Meissner Secara umum, pengembangan teknologi maglev bisa dikategorikan dalam dua prinsip itu, yakni gaya tarik dan gaya tolak magnet. Eksplorasi teknik tersebut dipelopori dua negara maju, yaitu Jerman dan Jepang. Jerman menggunakan EMS (sistem suspensi elektromagnetik) dan Jepang menggunakan EDS (sistem suspensi elektrodinamis). EMS menggunakan prinsip gaya tarik magnet, sedangkan EDS menggunakan gaya tolak magnet. Sistem ini sangat tidak efisien kereta membawa batang magnet yang berkekuatan besar yang nanti digunakan untuk mengangkat kereta tersebut. Karena itu, kita harus berterima kasih kepada fisikawan berkebangsaan Estonia, Lenz. Fisikawan yang hidup pada 1804-1865 itu berhasil menjelaskan fenomena magnetisme dan merumuskannya dalam sebuah hukum
124
yang terkenal dengan nama hukum Lenz. Hukum tersebut menyatakan, perubahan fluks magnet dalam ruang yang dikelilingi sistem kawat yang membentuk kumparan tertutup akan mengakibatkan terciptanya medan magnet yang melawan perubahan fluks magnet dalam sitem itu. Hal tersebut terjadi karena alam, dalam hal ini kumparan tertutup itu, ingin mempertahankan kondisi awal fluks magnet yang dimiliki ruang dalam lingkaran kawat tertutup tersebut. Hukum itu juga sering disebut kelembaman magnetik. Hukum tersebut kemudian digunakan menciptakan medan magnet yang cukup besar. Medan magnet itu diperhadapkan dengan medan magnet lain yang akan menciptakan gaya tarik, jika kedua kutub magnet yang berhadapan berlawanan arah atau gaya tolak jika kedua kutub magnet tersebut berlawanan, seperti terlihat pada Gambar 10.2.
Gambar 10.2. Sistem Maglev
10.1.3 Struktur Sistem Maglev Banyak tanah koil, koil aktif untuk penggerak dan koil pasif untuk levitasi (dan bimbingan), ditempatkan di sepanjang trek dalam tanah. Magnet superkonduktor yangterletak di kedua sisi kendaraan. Kendaraan Maglev yang didorong oleh kekuatan magnetdan kumparan levitasi, dan kendaraan terangkat oleh para kekuatan magnet. Sebuah magnet superkonduktor terutama terdiri dari empat gulungan superkonduktor terbuat dari tembaga dan titanium, empat kapal dalam (wadah helium cair terbuat dari stainless steelditutupi oleh aluminium untuk mengurangi kerugian eddy saat ini, empat perisai radiasi (nitrogen cair kasus
125
pendinginan terbuat dari aluminium) dan kapal lainnya (kasus vakum terbuat dari paduan aluminium). Setiap kapal batin didukung dan tetap ke luar kapal melaluiperisai radiasi dengan berbagai struktur pendukung mekanik (tipe kerucut, jenis batang, dansilinder tipe-batang). Kumparan superkonduktor memiliki bentuk seperti arena pacuan kuda di atletik lapangan.
Gambar 10.3 Susunan Rel Maglev Train
Sayang sekali transportasi yang sangat menakjubkan ini tidak terdapat di indonesia hanya negara negara tertentu yang berani mengembangkan teknologi ini. Transportasi Maglev pertama kali diusulkan lebih dari satu abad yang lalu, tetapi baru menjalani debut peluncuranya pada 2005 lalu. Jerman dan Jepang berada digaris depan teknologi kereta Maglev dan keduanya saat ini sedang menguji prototipe dari maglev yang mereka teliti. Meskipun berdasarkan teknologi serupa kereta Jerman dan Jepang memiliki perbedaan yang berbeda. Di Jerman, insinyur sedang membangun suspensi elektromagnetik (EMS) sistem, yang disebut transrapid. Dalam sistem ini, bagian bawah kereta membungkus di sekitar guideway baja. Elektromagnet melekat pada kereta undercarriage diarahkan ke arah guideway, yang melayang kereta sekitar sepertiga dari satu inci (1 cm) di atas relnya dan terus kereta levitated bahkan ketika itu tidak bergerak. Magnet pedoman lainnya tertanam dalam melatih tubuh tetap stabil selama perjalanan. Jerman telah menunjukkan bahwa Transrapid yang Kereta maglev bisa mencapai 300 mph dengan orang-orang di dalamnya.
126
Sedangkan insinyur Jepang sedang mengembangkan versi bersaing Maglev kereta api yang menggunakan elektrodinamika suspensi (EDS) sistem, yang didasarkan pada kekuatan memukul mundur magnet. Perbedaan utama antara Jepang dan Jerman Maglev kereta api adalah bahwa Kereta api Jepang menggunakan
elektromagnet
superkonduktor
super
dingin.
Jenis-jenis
elektromagnet dapat menghantarkan listrik bahkan setelah pasokan daya listrik telah dimatikan. Di sistem EMS, yang menggunakan elektromagnet standar, kumparan hanya menghantarkan listrik ketika power supply hadir. Dengan mendinginkan kumparan pada suhu dingin, japanis Sistem menghemat energi. Perbedaan lain antara sistem adalah bahwa kereta api Jepang melayang hampir 4 inci (10 cm) di atas relnya. Satu potensi kelemahan dalam menggunakan sistem EDS adalah bahwa kereta Maglev harus bergulir ban karet hingga mencapai kecepatan lepas landas dari sekitar 62 mph (100 kph). Insinyur Jepang mengatakan roda adalah keuntungan jika kegagalan daya menyebabkan shutdown sistem. Transrapid kereta Jerman dilengkapi dengan baterai cell untuk keadaan emergency.
10.1.4 Prinsip Kerja MagLev Train .
Sesuai dengan namanya, kereta ini bekerja berdasarkan prinsip gaya angkat
magnetis. Sehingga sewaktu berjalan, kereta ini tidak menyentuh rel, melainkan melayang diatasnya sekitar10mm. Hampir 98% bahan penyusun relnya terbuat dari magnet superkonduktor. Sehingga kereta sebesar ini bisa tetap lengket dengan relnya walau pada kecepatan 500km/jam. Gaya dorong kereta ini dihasilkan oleh interaksi antara motor induksi raksasa di dalam kereta dengan rel magnetisnya, yang otomatis menghasilkan gaya dorong yang luar biasa kuatnya. Bila diasumsikan berat 1 buah kereta Maglev 3 gerbong adalah 300 ton, maka hal ini setara dengan seorang manusia yang mendorong 1 buah truk kontainer dengan kecepatan 50 km/jam.
127
Gambar 10.4 Rel super konduktor
Gaya dorong superkuat itulah yang menyebabkan kereta ini dapat mencapai kecepatan 650 km/jam. Bila di Indonesia ada kereta ini, jarak antara SurabayaBogor dapat ditempuh hanya dalam kurun waktu 1 jam 15 menit.
Gambar 10.5 Konstruksi mesin maglev
Biaya pengadaan dan perawatan relnya pun sangat fantastis. Dari data yang diperoleh, biaya untuk membangun per 50 m rel maglev mencapai $600,000.
128
Jenis Teknologi Maglev terdiri dari: 1.
Magnet superkonduktivitas (suspensi elektrodinamik)
2.
Elektromagnetik terkontrol (suspensi elektromagnetik)
3.
Magnet permanen (Inductrack) Jepang dan Jerman merupakan dua negara yang aktif dalam pengembangan
teknologi maglev menghasilkan banyak pendekatan dan desain. Dalam suatu desain, kereta dapat diangkat oleh gaya tolak magnet dan dapat melaju dengan motor linear.Pengangkatan magnetik murni menggunakan elektromagnet atau magnet permanen tidak stabil karena teori Earnshaw; Diamagnetik dan magnet superkonduktivitas dapat menopang maglev dengan stabil. Berat dari elektromagnet besar juga merupakan isu utama dalam desain. Medan magnet yang sangat kuat dibutuhkan untuk mengangkat kereta yang berat.Efek dari medan magnetik yang kuat tidak diketahui banyak. Oleh karena itu untuk keamanan penumpang, pelindungan dibutuhkan, yang dapat menambah berat kereta. Konsepnya mudah namun teknik dan desainnya kompleks.
Gambar 10.6 Maglev Transrapid di Shanghai Sistem yang lebih baru dan tidak terlalu mahal disebut Inductrack. Teknik ini memiliki kemampuan membawa beban yang berhubungan dengan kecepatan kendaraan, karena ia tergantung kepada arus yang diinduksi pada sekumpulan elektromagnetik pasif oleh magnet permanen. Dalam contoh, magnet permanen
129
berada di gerbong; secara horizontal untuk menciptakan daya angkat, dan secara vertikal untuk memberikan kestabilan. Sekumpulan kabel putar berada di rel. Magnet dan gerbong tidak membutuhkan tenaga, kecuali untuk pergerakan gerbong. Inductrack pada awalnya dikembangkan sebagai motor magnetik dan penopang untuk "flywheel" untuk menyimpan tenaga. Dengan sedikit perubahan, penopang ini diluruskan menjadi jalur lurus. Inductrack dikembangkan oleh fisikawan Wiliiam Post di Lawrence Livermore National Laboratory. Inductrack menggunakan array Halbach untuk penstabilan. Array Halbach adalah pengaturan dari magnet permanen yang menstabilisasikan putaran kabel yang
bergerak
tanpa
penstabilan
elektronik.
Array
Halback
mulanya
dikembangkan untuk pembimbing sinar dari percepatan partikel. Mereka juga memiliki medan magnet di pinggir rel, dan mengurangi efek potensial bagi penumpang. Sekarang ini, NASA melakukan riset penggunaan sistem Maglev untuk meluncurkan pesawat ulang alik. Untuk dapat melakukan ini, NASA harus mendapatkan peluncuran pesawat ulang alik maglev mencapai kecepatan pembebasan, suatu tugas yang membutuhkan pewaktuan pulse magnet yang rumit (lihat coilgun) atau arus listrik yang sangat cepat, sangat bertenaga (lihat railgun). 10.1.5 Electromagnetic Suspension (EMS) Kereta Maglev menggunakan tenaga magnet listrik biasa dari rel, agar kereta dapat terangkat 10 milimeter. Namun, cara ini tidak stabil. Akibatnya, jarak mengambang harus selalu dikontrol. Ketika dayamegnet berkurang, kereta bisa turun dan menabrak rel. Cara ini pertama kali dikembangkan di jerman.
130
Gambar 10.7 Electromagnetic Suspension (EMS)
10.1.6 Electrondynamic Suspension (EDS) Metode ini menggunakan tenaga magnet superkonduktor. Tenaga ini mampu mengangkat kereta sejauh 100 hingga 150 milimeter. Cara ini jauh lebij stabil ketimbang cara yang pertama. Daya angkat yang dihasilkan tidak hanya melalui guideway saja, tetapi juga dari kereta itu sendiri. Magnet superkonduktor ini harus selalu didinginkan dengan alat pendingin pada kereta maglev agar tidak mudah rusak. Biasanya menggunakan helium cair yang sangat dingin.
Gambar 10.8 Electrondynamic Suspension (EDS)
131
10.1.5 Inductrack System Merupakan penemuan metode paling terbaru yang memanfaatkan rel sebagai magnet yang permanen sehingga lebih ekonomis secara operasional namun mahal di perancangan.
Gambar 10.9 Inductrack System
Gambar 10.10 Magnet Levitation
Kereta dengan teknologi maglev tidak saja menjawab kebutuhan manusia untuk bergerak dengan kecepatan tinggi, tetapi juga menjawab kenyamanan transportasi. Kereta maglev dilengkapi interior setingkat kelas bisnis dalam sebuah pesawat.
132
Kereta maglev didesain dengan dimensi manusia yang normal. Berarti, orang setinggi 1,8 meter bisa masuk kereta tanpa harus menunduk. Lingkungan dalam kereta dilengkapi pemanas dan pendingin suhu serta dilengkapi ruang yang bertekanan udara nyaman. Kereta maglev tersebut juga dilengkapi peralatan antigetar. Getaran yang diakibatkan motor kereta bisa diredam sedemikian rupa. Sehingga, setiap penumpang bisa menulis layaknya menulis di atas meja kerja di darat. Sambil bekerja atau santai, setiap penumpang juga bisa menikmati pemandangan di luar kereta dengan sangat nyaman. Sebab, gerbong kereta dilengkapi kaca panjang dan lebar. Tentunya, sangat tidak efisien kereta membawa batang magnet yang berkekuatan besar yang nanti digunakan untuk mengangkat kereta tersebut. Karena itu, kita harus berterima kasih kepada fisikawan berkebangsaan Estonia, Lenz. Fisikawan yang hidup pada 1804-1865 itu berhasil menjelaskan fenomena magnetisme dan merumuskannya dalam sebuah hukum yang terkenal dengan nama hukum Lenz. Hukum tersebut menyatakan, perubahan fluks magnet dalam ruang yang dikelilingi sistem kawat yang membentuk kumparan tertutup akan mengakibatkan terciptanya medan magnet yang melawan perubahan fluks magnet dalam sitem itu. Hal tersebut terjadi karena alam, dalam hal ini kumparan tertutup itu, ingin mempertahankan kondisi awal fluks magnet yang dimiliki ruang dalam lingkaran kawat tertutup tersebut. Hukum itu juga sering disebut kelembaman magnetik. Hukum tersebut kemudian digunakan menciptakan medan magnet yang cukup besar. Medan magnet itu diperhadapkan dengan medan magnet lain yang akan menciptakan gaya tarik, jika kedua kutub magnet yang berhadapan berlawanan arah atau gaya tolak jika kedua kutub magnet tersebut berlawanan. Dengan
teknologi
tingginya,
kereta
maglev
memiliki
beberapa
keunggulan dibandingkan dengan kereta konvensional, utamanya yaitu dari segi perawatan. Karena kereta berjalan dengan mengambang maka tidak ada kontak dan tidak membuhkan komponen yang digunakan di luar. Hal tersebut berarti tidak memerlukan perawatan. Selain itu kereta juga tidak menemui gaya gesek selain gaya gesek udara. Keunggulan lainnya adalah suara yang ditimbulkan tidak
133
sebising kereta konvensional karena tidak ada gesekan roda dan rel seperti pada kereta konvensional. Pada radius 100 m Magev menimbulkan noise sebesar 69 dB. Pada radius yang sama lalu lintas jalan di pusat kota menimbulkan noise 80 dB. Akan tetapi, kebisingan akibat gesekan dengan udara tetap ada. Kereta maglev melayang di udara mengurangi gesekan. Kurangnya gesekan dan desain aerodynamic kereta memungkinkan kereta sebagai transportasi darat dengan kecepatan yang tak pernak diperkirakan, yaitu berkecepatan lebih dari 500 km per jam atau dua kali kereta tercepat Amtrak. Sebagai perbandingan, BOEING 777 yang digunakan untuk penerbangan jarak jauh dapat mencapai kecepatan tertinggi sekitar 905 km per jam. Ditinjau dari segi elektromagnetnya, kereta maglev juga memiliki beberapa keunggulan, yaitu : a. Intensitas medan magnet yang ditimbulkan sangat rendah, bahkan lebih kecil dari yang biasa ditimbulkan oleh alat-alat rumah tangga seperti pengering rambut, pemanggang dan gergaji mesin. b. Menggunakan energi 30 % lebih kecil daripada kereta berkecepatan tinggi saat berjalan dengan kecepatan yang sama (sepertiga kali lebih kuat dengan konsumsi energi yang sama). Hal ini dapat ditunjukkan oleh tabel 10.1. Tabel 10.1 Perbandingan kecepatan kereta Kecepatan (km/jam)
Kereta Es (Wh/km)
Kereta Maglev (Wh/km)
200
32
32
250
44
37
300
71
47
400
-
71
c. Getaran akan lebih tidak terasa dibandingkan dengan kereta konvensional. Dari segi keamanannya, kereta maglev ini akan jauh lebih aman dan resiko kecelakaan sangat kecil karena kumparan akan aktif hanya jika dilewati dan
134
kereta akan selalu berjalan pada sinkronisasi dan dengan kecepatan yang sama. Di samping itu, dari segi bahan yang digunakan juga mengakibatkan kereta ini lebih tahan terhadap panas/ api karena menggunakan bahan nonpvc yang tidak dapat terbakar dan merupakan penghantar panas yang buruk. Maglev yang tidak memerlukan bahan bakar juga meningkatkan ketahanan terhadap resiko terbakar. Kereta ini juga lebih ramah terhadap lingkungan. Lintasan maglev membutuhkan ruang yang lebih kecil dan kereta ini dapat berjalan pada kemiringan yang lebih besar dibandingkan kereta konvensional. Hal ini dapat mengurangi penebangan yang berarti akan mengurangi kerusakan struktur kota karena pembangunan lintasan.
10.2 MICROWAVE OVEN Microwave adalah sebuah gelombang elektromagnetik dengan panjang gelombang antara 1 milimeter sampai
1 meter dan berfrekuensi antara 300
megahertz sampai 300 gigahertz [7]. Oven adalah sebuah peralatan dapur yang digunakan untuk memasak atau memanaskan makanan. Microwave oven adalah adalah sebuah peralatan dapur yang menggunakan radiasi gelombang mikro untuk memasak atau memanaskan makanan.
Gambar 10.11 Microwave oven
135
Sebuah microwave oven terdiri dari berbagai komponen, antara lain sebagai berikut : a.
Magnetron
b.
Waveguide
c.
Microwave Stirrer
10.2.1 Magnetron Magnetron merupakan bagian inti dari microwave oven. Komponen ini akan mengubah energi listrik menjadi radiasi gelombang mikro. Pada bagian dalam magnetron, elektron dipancarkan dari sebuah terminal central yang disebut katode. Kutub positif yang disebut anode mengelilingi katode menarik elektron-elektron. Selama perjalanan pada garis lurus, magnet permanen memaksa elektron untuk bergerak dalam jalur melingkar. Seiring elektron-elektron melewati resonansi di dalam ruangan oven, elektron-elektron tersebut menghasilkan gelombang medan magnet yang terus-menerus.
Gambar 10.12. Magnetron
136
Gambar 10.13. Skema Magnetron
10.2.2 Waveguide Waveguide adalah sebuah komponen yang didesain untuk mengarahkan gelombang. Untuk tiap jenis gelombang waveguide yang digunakan tidak sama. Waveguide untuk gelombang mikro dapat dibangun dari bahan konduktor. Wavegide dalam suatu microwave oven diperlihatkan pada Gambar 10.14.
Gambar 10.14 Waveguide dalam Microwave Oven
137
10.2.3 Microwave Stirrer Komponen menyebarkan
yang
gelombang
menyerupai mikro
di
baling-baling dalam
ini
microwave
digunakan oven.
untuk
Biasanya
dikombinasikan dengan sebuah komponen seperti piringan yang dapat diputar pada bagian bawah. Kombinasi ini memungkinkan kecepatan tingkat kematangan yang merata saat memasak. Microwave Stirrer dalam suatu microwave oven diperlihatkan pada Gambar 10.15.
Gambar 10.15. Microwave Stirrer
138
DAFTAR PUSTAKA [1] [2] [3] [4] [5] [6] [7] [8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17] [18]
Edminister, J.A., Murjono (penerjemah), 1993, "Teori dan Soal-soal Elektromagnetika", Seri Buku Schaum, Erlangga, Jakarta. Hayt, W.H., Liong, T.H. (penerjemah), 1986, “Elektromagnetika Teknologi”, Edisi ke-4, Jilid 1, Erlangga, Jakarta. Hayt, W.H., Liong, T.H. (penerjemah), 1986, “Elektromagnetika Teknologi”, Edisi ke-4, Jilid 2, Erlangga, Jakarta. Kraus, J.D., 1992, "Electromagnetics”, McGraw-Hill, Singapore. Schwab, A.J., "Field Theory Concepts”, Springer-Verlag, Berlin. Yaghoubi, H., 2012, “Practical Applications of Magnetic Levitation Technology” Iran Maglev Technology, September 2012. Anonim, “Microwave Oven”, Whirlpool, 2013. R. Syahputra, Robandi, I., and Ashari, M., 2014, “Optimal Distribution Network Reconfiguration with Penetration of Distributed Energy Resources”, in Proceeding of ICITACEE 2014, Semarang, Indonesia. R. Syahputra, “Fuzzy Multi-Objective Approach for the Improvement of Distribution Network Efficiency by Considering DG”, IJCSIT, Vol. 4, No. 2, pp. 57-68, 2012. R. Syahputra, Robandi I, Ashari M. Distribution Network Efficiency Improvement Based on Fuzzy Multi-objective Method. IPTEK Journal of Proceedings Series. 2014; 1(1):224-9. R. Syahputra, Robandi, I., and Ashari, M., “Optimization of Distribution Network Configuration with Integration of Distributed Energy Resources Using Extended Fuzzy Multi-objective Method”, International Review of Electrical Engineering (IREE), vol.9, no.3, pp. 629-639, 2014. R. Syahputra, Robandi I, Ashari M. Modeling and Simulation of Wind Energy Conversion System in Distributed Generation Units. International Seminar on APTECS. 2011; 290-6. R. Syahputra, Robandi, I., and Ashari, M., “Performance Analysis of Wind Turbine as a Distributed Generation Unit in Distribution System”, International Journal of IJCSIT, Vol 6, No 3, pp. 39-56, 2014. R. Syahputra, Robandi, I., and Ashari, M., 2015, “Performance Improvement of Radial Distribution Network with Distributed Generation Integration Using Extended Particle Swarm Optimization Algorithm”, International Review of Electrical Engineering (IREE), vol.10, no.2, 2015. pp.293-304. R. Syahputra, Robandi, I., and Ashari, M., 2015b, “Reconfiguration of Distribution Network with DER Integration Using PSO Algorithm”, TELKOMNIKA, vol.13, no.3, 2015. pp.759-766. R. Syahputra, Robandi, I., and Ashari, M., 2015, “PSO Based Multi-objective Optimization for Reconfiguration of Radial Distribution Network”, International Journal of Applied Engineering Research (IJAER), vol.10, no.6, pp. 14573-14586. R. Syahputra, 2012, “Distributed Generation: State of the Arts dalam Penyediaan Energi Listrik”. LP3M UMY, Yogyakarta, 2012. T.S. Hutauruk, 1996, “Transmisi Daya Listrik”, Erlangga, Jakarta.
139
[19] T. Gonen, 1986, “Electric Power Distribution System Engineering”, McGraw-Hill, New York. [20] Y. Lei, A.Mullane, G.Lightbody, and R.Yacamini, “Modeling of the Wind Turbine With a Doubly Fed Induction Generator for Grid Integration Studies,” IEEE Transactions on Energy Conversion, Vol. 21(1), pp.257-264, 2006. [21] Zuhal, 1996, “Dasar Teknik Tenaga Listrik dan Elektronika Daya”, Gramedia, Jakarta. [22] Syahputra, R., Soesanti, I. (2016). DFIG Control Scheme of Wind Power Using ANFIS Method in Electrical Power Grid System. International Journal of Applied Engineering Research (IJAER), 11(7), pp. 5256-5262. [23] Soesanti, I., Syahputra, R. (2016). Batik Production Process Optimization Using Particle Swarm Optimization Method. Journal of Theoretical and Applied Information Technology (JATIT), 86(2), pp. 272-278. [24] Syahputra, R., Soesanti, I. (2016). Design of Automatic Electric Batik Stove for Batik Industry. Journal of Theoretical and Applied Information Technology (JATIT), 87(1), pp. 167-175. [25] Syahputra, R. (2016). Application of Neuro-Fuzzy Method for Prediction of Vehicle Fuel Consumption. Journal of Theoretical and Applied Information Technology (JATIT), 86(1), pp. 138-149. [26] Jamal, A., Suripto, S., Syahputra, R. (2016). Performance Evaluation of Wind Turbine with Doubly-Fed Induction Generator. International Journal of Applied Engineering Research (IJAER), 11(7), pp. 4999-5004. [27] Syahputra, R., Robandi, I., Ashari, M. (2015). Performance Improvement of Radial Distribution Network with Distributed Generation Integration Using Extended Particle Swarm Optimization Algorithm. International Review of Electrical Engineering (IREE), 10(2). pp. 293-304. [28] Syahputra, R., Robandi, I., Ashari, M. (2015). Reconfiguration of Distribution Network with DER Integration Using PSO Algorithm. TELKOMNIKA, 13(3). pp. 759-766. [29] Syahputra, R., Robandi, I., Ashari, M. (2015). PSO Based Multi-objective Optimization for Reconfiguration of Radial Distribution Network. International Journal of Applied Engineering Research (IJAER), 10(6), pp. 14573-14586. [30] Syahputra, R. (2015). Simulasi Pengendalian Temperatur Pada Heat Exchanger Menggunakan Teknik Neuro-Fuzzy Adaptif. Jurnal Teknologi, 8(2), pp. 161-168. [31] Syahputra, R. (2015). Characteristic Test of Current Transformer Based EMTP Shoftware. Jurnal Teknik Elektro, 1(1), pp. 11-15. [32] Jamal, A., Suripto, S., Syahputra, R. (2015). Multi-Band Power System Stabilizer Model for Power Flow Optimization in Order to Improve Power System Stability. Journal of Theoretical and Applied Information Technology, 80(1), pp. 116-123. [33] Syahputra, R., (2010), “Aplikasi Deteksi Tepi Citra Termografi untuk Pendeteksian Keretakan Permukaan Material”, Forum Teknik, Vol. 33, 2010.
140
[34] Jamal, A., Syahputra, R. (2014). Power Flow Control of Power Systems Using UPFC Based on Adaptive Neuro Fuzzy. IPTEK Journal of Proceedings Series. 2014; 1(1): pp. 218-223. [35] Syahputra, R., Robandi, I., Ashari, M. (2014). Optimization of Distribution Network Configuration with Integration of Distributed Energy Resources Using Extended Fuzzy Multi-objective Method. International Review of Electrical Engineering (IREE), 9(3), pp. 629-639. [36] Syahputra, R., Robandi, I., Ashari, M. (2014). Performance Analysis of Wind Turbine as a Distributed Generation Unit in Distribution System. International Journal of Computer Science & Information Technology (IJCSIT), Vol. 6, No. 3, pp. 39-56. [37] Syahputra, R., Robandi, I., Ashari, M., (2014), “Distribution Network Efficiency Improvement Based on Fuzzy Multi-objective Method”. IPTEK Journal of Proceedings Series. 2014; 1(1): pp. 224-229. [38] Syahputra, R., (2013), “A Neuro-Fuzzy Approach For the Fault Location Estimation of Unsynchronized Two-Terminal Transmission Lines”, International Journal of Computer Science & Information Technology (IJCSIT), Vol. 5, No. 1, pp. 23-37. [39] Jamal, A., Syahputra, R. (2013). UPFC Based on Adaptive Neuro-Fuzzy for Power Flow Control of Multimachine Power Systems. International Journal of Engineering Science Invention (IJESI), 2(10), pp. 05-14. [40] Syahputra, R., (2012), “Fuzzy Multi-Objective Approach for the Improvement of Distribution Network Efficiency by Considering DG”, International Journal of Computer Science & Information Technology (IJCSIT), Vol. 4, No. 2, pp. 57-68. [41] Jamal, A., Syahputra, R. (2012), “Adaptive Neuro-Fuzzy Approach for the Power System Stabilizer Model in Multi-machine Power System”, International Journal of Electrical & Computer Sciences (IJECS), Vol. 12, No. 2, 2012. [42] Jamal, A., Syahputra, R. (2011), “Model Power System Stabilizer Berbasis Neuro-Fuzzy Adaptif”, Semesta Teknika, Vol. 14, No. 2, 2011, pp. 139-149. [43] Syahputra, R., Robandi, I., Ashari, M., (2013), “Distribution Network Efficiency Improvement Based on Fuzzy Multi-objective Method”. International Seminar on Applied Technology, Science and Arts (APTECS). 2013; pp. 224-229. [44] Syahputra, R., Soesanti, I. (2015). “Control of Synchronous Generator in Wind Power Systems Using Neuro-Fuzzy Approach”, Proceeding of International Conference on Vocational Education and Electrical Engineering (ICVEE) 2015, UNESA Surabaya, pp. 187-193. [45] Syahputra, R., Robandi, I., Ashari, M. (2014). “Optimal Distribution Network Reconfiguration with Penetration of Distributed Energy Resources”, Proceeding of 2014 1st International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) 2014, UNDIP Semarang, pp. 388 - 393. [46] Soedibyo, Ashari, M., Syahputra, R. (2014), Power loss reduction strategy of distribution network with distributed generator integration. 1st International
141
[47]
[48]
[49]
[50] [51]
[52]
[53]
[54]
[55]
142
Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) 2014, UNDIP Semarang, pp. 404 – 408. Syahputra, R., Robandi, I., Ashari, M., (2012), “Reconfiguration of Distribution Network with DG Using Fuzzy Multi-objective Method”, International Conference on Innovation, Management and Technology Research (ICIMTR), May 21-22, 2012, Melacca, Malaysia. Jamal, A., Syahputra, R., (2011), “Design of Power System Stabilizer Based on Adaptive Neuro-Fuzzy Method”. International Seminar on Applied Technology, Science and Arts (APTECS). 2011; pp. 14-21. Syahputra, R. (2010). Fault Distance Estimation of Two-Terminal Transmission Lines. Proceedings of International Seminar on Applied Technology, Science, and Arts (2nd APTECS), Surabaya, 21-22 Dec. 2010, pp. 419-423. Syahputra, R., (2015), “Teknologi dan Aplikasi Elektromagnetik”, LP3M UMY, Yogyakarta, 2016. Syahputra, R., (2014), “Estimasi Lokasi Gangguan Hubung Singkat pada Saluran Transmisi Tenaga Listrik”, Jurnal Ilmiah Semesta Teknika Vol. 17, No. 2, pp. 106-115, Nov 2014. Syahputra, R., Robandi, I., Ashari, M., (2011), “Modeling and Simulation of Wind Energy Conversion System in Distributed Generation Units”. International Seminar on Applied Technology, Science and Arts (APTECS). 2011; pp. 290-296. Jamal, A., Syahputra, R. (2016). Heat Exchanger Control Based on Artificial Intelligence Approach. International Journal of Applied Engineering Research (IJAER), 11(16), pp. 9063-9069. Syahputra, R., Robandi, I., Ashari, M., (2011), “Control of Doubly-Fed Induction Generator in Distributed Generation Units Using Adaptive NeuroFuzzy Approach”. International Seminar on Applied Technology, Science and Arts (APTECS). 2011; pp. 493-501. Syahputra, R., Soesanti, I. (2015). Power System Stabilizer model based on Fuzzy-PSO for improving power system stability. 2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA), Surabaya, 15-17 Oct. 2015 pp. 121 126.
BIODATA PENULIS
Nama Lengkap
Dr. Ramadoni Syahputra, S.T., M.T.
Jabatan Fungsional
Asisten Ahli
Tempat dan Tanggal Lahir
Galang, Deli Serdang, Sumatera Utara, 10 Oktober 1974
Agama
Islam
Pekerjaan
Staf Pengajar di Jurusan Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Yogyakarta
Pendidikan
S1: Jurusan Teknik Elektro Fakultas Teknologi Industri Institut Teknologi Medan, Medan, 1993-1998 S2: Program Studi Ilmu Teknik Elektro Program Pascasarjana Universitas Gadjah Mada Yogyakarta, 1999-2002 S3: Program Studi Ilmu Teknik Elektro Program Pascasarjana Institut Teknologi Sepuluh Nopember, Surabaya, 2011-2015
Alamat Rumah
Perum Popongan No. AA1, Jl. Magelang Km 5 Sinduadi, Mlati, Sleman, DI Yogyakarta 55284
Nomor HP
081215526565
Alamat Kantor
Jurusan Teknik Elektro Fakultas Teknik UMY Jl. Lingkar Barat, Tamantirto, Kasihan, Bantul, Yogyakarta 55183
Nomor Telepon/Faks
0274-387656/ 0274-387646
Alamat e-mail
[email protected]
143