Daftar isi Seminar Tahllnan Pengawasan Pemanfaatan
Tenaga NlIklir - Jakarta, 11 Oesember 2003
ISSN 1693 - 7902
MODEL POHON KEGAGALAN UNTUK PELEP ASAN RADIOAKTIF KE LINGKUNGAN REAKTOR TRIGA 2000 BANDUNG
Sudjatmi K.A., M. Hendayun, V IS Wardhani Pusat Penelitian dan Pengembangan Teknik Nuklir (P3TkN) - BAT AN
ABSTRAK MODEL POHON KEGAGALAN UNTUK PELAP ASAN RADIOAKTIF KE LINGKUNGAN REAKTOR TRIGA 2000 BANDUNG. Segi-segi keselamatan dalam disain pembangunan suatu reaktor perlu diperhatikan, agar kemungkinan terjadinya kecelakaan pada reaktor terse but dapat diantisipasi sedini mungkin. Tujuan dari penelitian ini adalah mengidentifikasi dan menganalisis rangkaian kecelakaan yang mungkin terjadi pada reaktor TRIG A 2000 Bandung. Untuk tujuan ini, dibuat model pohon kegagalan dengan mengacu pada karakteristik sistem reaktor TRIG A 2000 Bandung. Pohon kegagalan ini didisain untuk berbagai hubungan fasilitas, ketergantungan sistem primer, seperti pendingin utama dan sistem ventilasi. Pelepasan hasil fisi dari elemen bakar dan kehilangan pendingin primer dapat mengakibatkan pembebasan radiasi ke lingkungan. Dengan model pohon kegagalan ini akan mempermudah menelusuri sebab-sebab kecelakaan reaktor yang mungkin terjadi, baik di dalam gedung reaktor maupun di sekitar gedung reaktor. Kata kunci : Pohon kegagalan, TRIGA 2000 Bandung, studi keselamatan probabilistik.
ABSTRACT FAULT TREE MODEL FOR THE 2000 KW BANDUNG TRIGA MARK REACTOR. Safety on the reactor design should be considered, so that the possibility of an accident ,could be anticipated. The purpose of this research is to identify and to analyse the series of accident that might be happened on the 2000 kW Bandung Triga Mark Reactor. For this purpose a fault tree model based on the characteristic of the reactor system is created. This model is designed for the facilities relations, primary system dependency, e.g. a primary coolant and ventilation system. Fission gas release from fuel element and loss of coolant can afected radioactive release to the environment. By creating this fault tree, it could make easier on predicting the reason of an accident that might be happened, in the reactor building and its surround. Keywords: Fault tree, Bandung TRIGA 2000, Probabilistic Safety Assessment
319
ISSN 1693 - 7902
Seminar Tahunan Pengawasan Pemanfaatan Tenaga Nuklir - Jakarta, II Desember 2003
PENDAHULUAN Identifikasi resiko ataupun potensi bahaya merupakan bagian dari utama dari studi keselamatan suatu sistem. Analisis sistem dapat dilakukan baik secara deterministik ataupun
stokastik.
perhitungan
Pada
umumnya
secara deterministik
suatu
analisis
keselamatan
berisi
hasil-hasil
berbagai aspek yang relevan dengan keselamatan.
Analisis sistem dengan menggunakan pohon kegagalan merupakan bagian pokok dari studi keselamatan probabilistik (PSAlProbabilistic
Safety Assessment), karena dengan
menggunakan pohon kegagalan terse but dapat ditelusuri penyebab suatu kejadian yang tidak diinginkan berbasis
beserta besamya peluang kejadiannya.
perhitungan
pelengkap
deterministik,
analisis
pohon
Dalam studi keselamatan
kegagalan
dan juga dijadikan bagian dari prosedur penentuan
dapat
merupakan
konsekuensi
suatu
kejadian berdasarkan narasi kejadiannya. Untuk menunjang peningkatan keselamatan reaktor
TRiGA
2000 Bandung,
telah dilakukan
analisis
terhadap
kemungkinan
terjadinya kecelakaan pada reaktor TRiGA 2000 Bandung(2). Dalam reaktor nuklir, kecelakaan yang mungkin terjadi bisa beraneka ragam, yaitu mulai dari yang paling ringan sampai dengan yang berbahaya. Ada beberapa kecelakaan yang mempunyai potensi untuk melepaskan bahan-bahan radioaktif. Hal yang paling berbahaya dalam sebuah reaktor nuklir adalah terdapatnya kebocoran atau pecahnya elemen bakar yang menyebabkan lepasnya hasil-hasil fisi yang radioaktif dari teras reaktor. Sampai saat ini analisis untuk berbagai bentuk kecelakaan dari yang berbentuk penyimpangan-penyimpangan
pada
keadaan
operasi
normal
sampai
ke
bentuk
kecelakaan terparah masih terus dikembangkan. Dari analisis bentuk-bentuk kecelakaan terse but dapat dirumuskan
cara-cara
untuk memperkecil
kemungkinan
terjadinya
kecelakaan. Mengingat pentingnya segi keselamatan sebuah reaktor, maka dilakukan penyusunan
pohon
kegagalan
untuk
mengidentifikasi
kemungkinan
terjadinya
kecelakaan sistem reaktor TRiGA 2000 Bandung.
TEOR! Reaktor TRiGA merupakan salah satu reaktor penelitian yang dilengkapi dengan fasilitas produksi isotop. Dalam pengoperasian reaktor hams dipertimbangkan kemungkinan
terjadinya kecelakaan dan segi keselamatan.
Pada umumnya, reaktor
mempunyai dua macam sistem, yaitu sistem proses dan sistem keselamatan.
320
segal a
Sistem
Seminar Tahunan Pengawasan
proses
yaitu
sistem
ISSN 1693 - 7902
Pemanfaatan Tenaga Nuklir - Jakarta, II Desember 2003
yang digunakan
selama
operasi
normal,
sedangkan
sistem
keselamatan digunakan selama kondisi abnormal. Secara
umum,
tujuan
keselamatan
reaktor
nuklir
ialah
untuk
melindungi
sistem/fasilitas, para pekeja dan lingkungan dari bahaya radiasi, dengan cara menyusun dan memelihara sebuah pertahanan yang efektif. Kecelakaan nuklir didefinisikan sebagai segala kejadian yang tidak direncanakan, dan mengakibatkan tidak terkendalinya radiasi dan penyebaran zat radioaktif, sehingga dapat menimbulkan bahaya radiasi, baik terhadap pekerja maupuan terhadap lingkungan sekitarnya. Langkah pencegahan terjadinya penyebaran zat radioaktif ke lingkungan adalah dengan konsep hambatan ganda (multiple barriers)(l). Konsep ini mengusahakan agar bahan-bahan radioaktif tetap terkungkung dalam sistem reaktor nuklir dan tidak menyebar ke luar, sehingga bahaya radiasi bagi penduduk yang 'tinggal di daerah sekitarnya tidak terjadi. Pada Gambar 1. dapat dilihat bahwa setiap komponen dimulai dari bahan bakar, kelongsong, sistem pendingin primer, sampai pada kubah bangunan reaktor semua berfungsi sebagai penghambat penyebaran radiasi ke lingkungan.
Gambar 1. Reaktor TRIGA 2000 Bandung dan fasilitasnya(2)
321
Seminar Tahunan Pengawasan
ISSN 1693 - 7902
Pcmanfaatan Tenaga Nuklir - Jakarta, II Desember 2003
MODEL POHON KEGAGALAN REAKTOR TRIGA 2000 BANDUNG Model pohon kegagalan
reaktor TRIGA 2000 Bandung
dibuat berdasarkan
karakteristik dari reaktor tersebut. Pada tulisan ini, karakteristik yang ditinjau adalah sistem reaktor TRIGA 2000. Dalam pembuatannya, pertama-tama
perlu dirumuskan
beberapa peristiwa yang dapat menyebabkan terjadinya kecelakaan reaktor, kemudian dari peristiwa-peristiwa
ini dikembangkan menjadi peristiwa lain yang lebih spesifik.
Pada reaktor TRIGA 2000 Bandung, beberapa peristiwa yang dapat dijadikan landasan bagi pengembangan
pohon kegagalan
adalah pembebasan
radiasi ke lingkungan,
pelepasan hasil fisi dari elemen bakar dan kehilangan pendingin primer. Dari masingmasing peristiwa tersebut, kemudian dapat diperluas lagi sehingga terbentuk suatu model pohon kegagalan. Pembebasan radiasi ke lingkungan dipilih sebagai peristiwa utama yang menjadi puncak pohon kegagalan ini. Dengan terlepasnya radiasi ke lingkungan berarti bahwa sistem pertahanan berlapis yang dimiliki oleh reaktor terse but sudah tidak berfungsi lagi, jadi perlu ditinjau ulang, karena telah mengakibatkan terbebasnya radiasi keluar dari gedung reaktor. Dari peristiwa ini dapat dikembangkan peristiwa-peristiwa
lain,
yang dapat menyebabkan terjadinya pembebasan radiasi ke lingkungan. Peristiwa berikut yang dapat dijadikan sebagai titik awal pengembangan
pohon
kegagalan ini ialah lepasnya hasil fisi dari elemen bakar. Hal ini dapat terjadi bila elemen bakar kehilangan integritasnya. Rusaknya elemen bakar dapat disebabkan oleh bermacam-macam" hal, baik karena hal-hal yang bersifat mekanik maupun kimiawi. Selain itu kehilangan air pendingin primer merupakan peristiwa berikutnya yang dapat ditinjau sebagai salah satu peristiwa yang dapat dikembangkan.
Jika pada reaktor
TRIGA 2000 Bandung terjadi kehilangan air pendingin, maka elemen bakar terse but akan mengalami kenaikan temperatur dan terjadi scram. Dengan mengacu pada ketiga peristiwa utama tadi (peristiwa terlepasnya radiasi ke lingkungan, lepasnya hasil fisi dari elemen bakar dan kehilangan air pendingin primer), maka dapat disusun sebuah pohon kegagalan bagi sistem reaktor TRIGA 2000 Bandung,
yaitu
dengan
mengembangkan
peristiwa-peristiwa
utama,
dan
menggabungkannya menjadi suatu rangkaian yang saling berkaitan satu dengan lainnya~ Pohon kegagalan
Reaktor TRIGA 2000 Bandung dibuat berdasarkan
tiga pokok
peristiwa yang telah ditetapkan sebelumnya. Hal ini dimaksudkan untuk mempermudah
322
Seminar Tahunan Pengawasan Pemanfaatan
Tenaga Nuklir - Jakarta, II Desember 2003
ISSN 1693 - 7902
dalam pembacaan dan analisis pohon kegagalan terse but. Ketiga skema terse but dapat dilihat pada Gambar 2,3 dan 4.
KETERANGANSKEMAPOHONKEGAGALAN: AI
: Pembebasan radiasi ke lingkungan
A2
:
A3
: Kegagalan sistem ventilasi dari gedung reaktor
~
: Radiasi dalam gedung reaktor karena pelepasan hasil aktivasi
As
: Radiasi dalam gedung reaktor berasal bukan dari teras reaktor
A6
:
Pelepasan hasil fisi dari elemen bakar ke gedung reaktor
A7
:
Pelepasan hasil fisi dari sumber lain
As
: Kegagalan tabung pemindahan pada elemen bakar
A9
:
Pembebasan gamma langsung dari kolam reaktor
AIO
:
Pembebasan gamma langsung dari sumber lain
All
: Pelepasan aktivitas dari eksperimen
AI2
:
Pelepasan ion penukar resin
AI3
:
Kehilangan pendingin primer
AI4
:
Kehilangan.pendingin
Als
:
Kehilangan pendingin primer akibat kegagalan komponen rangkaian primer
Radiasi dalam gedung reaktor
(LOCA)
primer dari tangki reaktor termasuk fasilitas ksperimen
selain tangki AI6
:
Kehilangan pendingin primer karena kegagalan dari tangki reaktor
AI7
:
Kegagalan sistem pending in teras darurat
AI8
: Kehilangan pendingin primer karena kegagalan beam tube dan kolom termal
AI9
:
Pelepasan hasil fisi ke tangki reaktor
A20
:
Kecelakaan akibat obyek beratjatuh ke dalam tangki
A21
:
Pelepasanhasil
A22
:
Pelepasan hasil fisi dari tempat penyimpanan elemen bakar
A23
:
Pelepasan hasil fisi dari teras
A24
:
Pelepasan hasil fisi dari rak penyimpan elemen bakar dalam tangki
A2S
:
Kerusakan pada penyimpan elemen bakar akibat mekanik
fisi selama pemuatan
323
Seminar Tahunan Pengawasan Pcmanfaatan
ISSN 1693 - 7902
Tenaga Nuklir - Jakarta, 11 Desember 2003
A26
:
Kerusakan pada penyimpan elemen bakar akibat kimiawi
A27
:
Kerusakan mekanik pada elemen bakar
A28
:
Kerusakan kimiawi pada elemen bakar
A29
:
Kerusakan termal dari elemen bakar dengan naiknya suhu elemen bakar dan kemudian pelepasan hasil fisi
A30
:
Kecelakaan akibat eksperimen atau selama pemuatan elemen bakar
A31
:
Runtuhan gedung reaktor jatuh ke dalam tangki
A32
:
Reaksi kimia karena eksperimen
A33
:
Hasil korosi dalam pendingin primer
A34
:
Naiknya temperatur di atas batas yang diizinkan
A35
:
Kegagalan elemen bakar karena eksperimen
A36
:
Kegagalan elemen bakar karena perubahan konfigurasi pada teras reaktor
A37
:
Kegagalan elemen bakar saat pengukuran panjang dan sudut elemen bakar
A38
:
Ledakan
A39
:
Bencana alam
A40
:
Gempa
A41
:
Korosi dari komponen reaktor
A42
:
Bagian dari gedung reaktor jatuh ke dalam tangki dan merusak tangki
~3
:
Kimiawi yang bersifat korosif dalam pendingin primer karena eksperimen
A44
:
Instrumen untuk pengawasan air kimia tidak dikalibrasi
~s
: Instrumen 'untuk pengawasan air kimia sudah dijelaskan dengan tepat, tapi operator tidak diperhatikan atau tidak mengerti
~6
:
Kerusakan mekanik elemen bakar selama pemindahan dari teras ke rak penyimpanan dalam tangki
~7
:
Kecelakaan
selama eksperimen yang mempengaruhi
penyimpanan
elemen
bakar ~8
:
Korosi dari elemen bakar yang habis kemudian disimpan dalam tempat penYlmpanan
A49
:
Tidak cukupnya pengawasan kualitas air
Aso
:
Kimiawi yang bersifat korosif dalam air pada temp at penyimpanan elemen bakar
324
Seminar Tahunan Pengawasan
Pemanfaatan
Tenaga Nuklir·
Jakarta, II Oesember 2003
ISSN 1693 - 7902
ASI
:
Korosi normal pada penyimpanan elemen bakar dalam tempat penyimpanan
AS2
:
SCRAM manual rusak
AS3
:
SCRAM otomatis tidak berfungsi
AS4
:
Kerusakan beam tubes karena peristiwa eksternal
Ass
: Bagian dari gedung reaktor bertubrukan dalam tangki dan kerusakan teras
325
ISSN 1693 - 7902
Seminar Tahunan Pengawasan I'cmanfaatan Tcnaga Nuklir - Jakarta, II Dcsembcr 2003
TOP EVENT A1
A3
A2
A5
A4
A7
A11
A8
A9
A10
A12
Gambar 2. : Skemal pohon kegagalan reaktor TRIGA 2000 Bandung
326
ISSN 1693 -7902
Seminar Tahunan Pengawasan Pemanfaatan Tenaga Nuklir - Jakarta, 11 Desember 2003
(EXT)
Gambar 3. Skema 2 pohon kegagalan reaktor TRIGA 2000 Bandung
327
Seminar Tahunan Pengawasan Pemanfaatan
ISSN 1693 - 7902
Tenaga Nuklir - Jakarta, II Desember 2003
A14
A17
A16
A20
A18
A42
A54
(EXT)
( EXT)
Gambar 4. : Skema 3 pohon kegagalan reaktor TRIGA 2000 Bandung
328
Seminar Tahunan Pengawasan
ISSN 1693 - 7902
Pemanfaatan Tenaga Nuklir - Jakarta, 11 Desembcr 2003
Keterangan simbol(3) : Peristiwa Kegagalan : biasanya merupakan hasil dari kombinasi pada peristiwa- peristiwa lainnya Peristiwa Penting : menggambarkan peristiwa utama dari sebuah pohon kegagalan tunggal yang sempurna
o o
o D
Peristiwa
Kegagalan
Gerbang kondisional dipenuhi
Primer:
yang berdiri sendiri
: keluaran benar, bila persyaratan
Titik potong masing-masing blok: dimana keluarannya benar jika semua masukannya bernilai benar
Kumpulan operasi-operasi : dimana keluarannya akan bernilai jika salah satu atau lebih masukannya bernilai benar
Pembahasan Pada Gambar 2 peristiwa utama Al diasumsikan sebagai pembebasan radiasi ke lingkungan. Peristiwa ini digambarkan sebagai blok berbayang, yang menggambarkan peristiwa utama dari sebuah perincian tunggal pohon kegagalan. Begitu pula pada Gambar 3 "dan Gambar 4, peristiwa utama A6 dan AI4 menggambarkan
peristiwa-
peristiwa utama. Ketiga skema pohon kegagalan tersebut saling berkaitan satu dengan yang lain. Peristiwa awal yang menjadi penyebab terjadinya kecelakaan digambarkan
dengan
lingkaran. Untuk lebih memudahkan analisis pohon kegagalan ini dimulai dari skema pohon kegagalan ketiga, kecelakaan.
dimana
terdapat
peristiwa-peristiwa
awal penyebab
terjadinya
Gambar 4 menerangkan kehilangan pendingin primer dari tangki reaktor term asuk fasilitas eksperimen (A14). Peristiwa-peristiwa
eksternal dianalisis atas dasar suatu
perusakan lengkap pada gedung reaktor dan elemen bakar. Ini berarti hasil fisi dapat segera dibebaskan ke lingkungan tanpa penundaan oleh air dingin atau sistem ventilasi. Tingkat radiasi yang terjadi lebih besar pada temp at kerusakan.
329
Scminar Tahllnan I'cngawasanl'cmanl~lalan
Peristiwa-peristiwa
ISSN
Tcnaga NlIklir - Jakarta, II [)cscmbcr 2003
16<)3 - 7<)()2
eksternal pada skema ketiga ini, menjadi penyebab utama
terjadinya keeelakaan reaktor. Peristiwa yang dimaksud yaitu ledakan (A3S), beneana alam (A39), atau gempa (A40). Salah satu dari ketiga peristiwa eksternal ini seperti terlihat pada skema, dapat menyebabkan kehilangan pendingin primer dari tangki reaktor (A16). Selain itu peristiwa-peristiwa
eksternal tadi juga dapat menimbulkan kerusakan
beam tube karena peristiwa eksternal (AS4) atau bagian gedung yang jatuh ke dalam tangki dan merusak tangki (A42). Dan jika terjadi kerusakan beam lubes atau ada bagian gedung yang jatuh ke dalam tangki dan terjadi kerusakan tangki akan menyebabkan terjadinya kehilangan pendingin primer yang disebabkan oleh kegagalan beam tube dan kolom termal (AIs) Reaktor TRIGA 2000 Bandung, seperti telah dijelaskan dalam bab sebelumnya, mempunyai sistem pendingin teras darurat atau dikenal juga dengan istilah SPTD. Dengan sistem ini kejadian kehilangan primer dapat ditanggulangi dengan eepat. Seperti terlihat pada Gambar 4., kehilangan pendingin primer dari tangki reaktor termasuk fasilitas eksperimen (AI4) dapat disebabkan oleh gagalnya sistem pendingin teras darurat (AI7) serta oleh kehilangan pendingin primer dari tangki reaktor (A16) atau oleh kehilangan pendingin primer karena kegagalan beam tube dan kolom termal (A1S). AI4 ini merupakan salah satu penyebab terjadinya kehilangan pendingin primer (Al3). Selain A14, seperti terlihat pada disebabkan
3., kehilangan pendingin primer dapat juga
oleh kehilangan pendingin primer karena kegagalan komponen reaktor
(AIs).
Kehilangan
pendingin" akibat
kegagalan
komponen
ini akan menyebabkan
kenaikan temperatur pada elemen bakar, dan hal ini dapat ditanggulangi oleh SCRAM otomatis dan SCRAM manual. Tetapi jika SCRAM otomatis (AS3)dan SCRAM manual (AS2) ini tidak berfungsi, maka yang akan terjadi ialah adanya kerusakan termal dari elemen bakar (A29)yang dapat menyebabkan elemen vakar boeor. Peristiwa-peristiwa
eksternal, ledakan, beneana alam, atau gempa juga dapat
menyebabkan runtuhan gedung reaktor jatuh ke dalam "tangki (A31)' Dengan adanya runtuhan gedung yang jatuh ke dalam tangki reaktor ini, maka akan menimbulkan kerusakan mekanik pada elemen bakar (A27).
330
Seminar Tahunan Pengawasan
Pemanfaatan
Tenaga Nuklir • Jakarta,
II Desembcr 2003
ISSN
1693- 7902
Kecelakaan akibat eksperimen atau selama pemuatan elemen bakar (A30) juga akan menjadi penyebab timbulnya kerusakan mekanik pada elemen bakar. Kecelakaan akibat eksperimen ini ditimbulkan saat manipulasi elemen bakar karena eksperimen (A3S), manipulasi elemen bakar karena perubahan konfigurasi
pada teras reaktor (A36),
atau saat manipulasi elemen bakar untuk mengukur panjang dan sudut dari elemen bakar (A37). Selain kerusakan mekanik pada elemen bakar, terdapat juga kerusakan kimiawi pada elemen bakar (A2S) yang disebabkan karena reaksi kimia pada saat eksperimen (A32) atau karena hasil korosi dalam pendingin primer (A33). Korosi dalam pendingin primer terse but dapat timbul karena korosi komponen reaktor (A41) karena bahan kimia yang bersifat korosif dalam pendingin primer (A43), instrumen untuk pengawasan air kimia tidak dikalibrasi terlebih dahulu sehingga pembacaan parameter-parameter
air
tidak benar, sehingga dapat menimbulkan korosi (A44), dan karena kesalahan operator (A4S),
Jika terjadi kehilangan pendingin primer (An), atau kerusakan mekanik pada elemen
bakar
(A27), atau
kerusakan
kimiawi
pada
elemen
J:>akar (A2S)dapat
menyebabkan pelepasan hasil fisi dari teras (A23). Pelepasan
hasil fisi dari rak penyimpan
elemen bakar dalam tangki (A24)
ditimbulkan oleh peristiwa-peristiwa awal yaitu runtuhan gedung reaktor jatuh ke dalam tangki (A31), atau karena kerusakan mekanik elemen bakar selama pemindahan dari teras ke rak penyimpanan dalam tangki (A46), atau karena kerusakan kimiawi pada elemen bakar (A28). Peristiwa-peristiwa
pelepasan hasil fisi dari teras (A23) atau dari rak penyimpan
elemen bakar dalam tangki (A24) akan menyebabkan terjadinya pelepasan hasil fisi dari tangki reaktor (AI9).Kerusakan pada penyimpan elemen bakar akibat mekanik dan kimiawi menjadi penyebab utama dari pelepasan hasil fisi selama pemuatan (A22). Kerusakan pada penyimpan elemen bakar akibat mekanik (A2S) disebabkan karena peristiwa ledakan, gempa, atau karena kecelakaan yang terjadi pada saat eksperimen yang dapat mempengaruhi penyimpanan elemen bakar (A47). Sedangkan
kerusakan
pada penyimpan
elemen bakar akibat kimiawi
(A26)
disebabkan karena korosi dari elemen bakar yang telah habis yang kemudian disimpan dalam temp at penyimpanan (A4s) dan karena tidak cukupnya pengawasan dari air kimia
331
ISSN 1693 - 7902
Seminar Tahunan Pcngawasan I'cmallfaatan Tcnaga Nuklir - Jakarta, II Desembcr 2003
(A49).
Korosi pada elemen bakar tadi disebabkan karena kimiawi yang bersifat korosif
dalam air pada tempat penyimpanan elemen bakar atau karena korosi normal. Pada 3., peristiwa A6 merupakan peristiwa lepasnya hasil fisi dari elemen bakar, dimana peristiwa ini dapat langsung menyebabkan radiasi baik ke lingkungan maupun kepada pekerja. Pada ini, A6 menjadi peristiwa utama yang juga digambarkan sebagai blok berbayang. A6
ini disebabkan oleh tiga hal yang telah dianalisis sebelumnya, yaitu pelepasan
hasil fisi ke tangki reaktor (AI9), atau disebabkan oleh pelepasan hasil fisi selama pemuatan (A2I), atau oleh pelepasan hasil fisi dari tempat penyimpanan elemen bakar (A22).
Sedangkan A21 sendiri disebabkan oleh adanya kegagalan tabung pemindahan
pada elemen bakar. Pada 2, skema pohon kegagalan untuk peristiwa Al terbagi menjadi dua bagian, yaitu cabang pertama terdiri dari A2 dan A3, yaitu pekerja terkena radiasi dan gagalnya sistem ventilasi; dan cabang kedua yaitu hanya terdiri dari A2 saja. Pada cabang pertama, pekerja yang terkena radiasi· disertai dengan gagalnya sistem ventilasi disebabkan karena gedung reaktor terkena radiasi hasil fisi
(A4),
dimana
radiasi ini timbu1.saat hasil fisi lepas dari elemen bakar (A6). Pada cabang kedua, pekerja yang terkena radiasi disebabkan oleh dua hal, yaitu radiasi dalam gedung reaktor karena pelepasan hasil aktivasi (A4) atau radiasi di dalam gedung reaktor (As). A4
ini discbabkan olch hasil fisi yang lcpas dari clemen bakar (A6) at au dari
sumber lain
(A7),
yaitu dari pelepasan aktivitas dari eksperimen
(All) atau dari
pelepasan ion penukar resin (AI2). Pada Gambar 2., All dan AI2 digambarkan juga sebagai blok berbayang.
Sedangkan
As dapat disebabkan
oleh kegagalan
tabung
pemindahan pada elemen bakar (As) atau oleh pembebasan gamma langsung dari kolam reaktor (A9) atau juga dapat dikarenakan
oleh pembebasan
gamma langsung dari
sumber lain (AID). Ketiga penyebab ini juga merupakan peristiwa-peristiwa sebuah perincian tunggal pohon kegagalan.
332
utama dari
Seminar Tahunan Pengawasan
Pemanfaatan Tcnaga Nuklir - Jakarta, II Dcscmbcr 2003
ISSN 1693 - 7902
KESIMPULAN Model pohon kegagalan reaktor TRIGA 2000 Bandung telah dirancang dengan berbagai cara penyelidikan pembebasan radioaktif kelingkungan. Pohon kegagalan ini didisain untuk berbagai hubungan
fasilitas, ketergantungan
sistem primer, seperti
pendingin utama dan sistem ventilasi. Radiasi dilingkungan
pada dasarnya disebabkan oleh lepasnya hasil fisi dari
elemen bakar yang berasal dari teras reaktor, fasilitas penyimpanan elemen bakar dan tabung pemindah elemen bakar, dan juga disebabkan oleh lepasnya hasil fisi dari sumber lain. Tetapi hal ini hanya terjadi bila sistem ventilasi gedung reaktor tidak berfungsi. Lepasnya hasil fisi dari elemen bakar yang ada di teras reaktor disebabkan oleh kerusakan
elemen bakar karena, kerusakan mekanik, kimiawi dan hilangnya
pendingin. Kerusakan elemen bakar karena hilangnya pendingin primer akibat kegagalan komponen rangkaian primer hanya terjadi bila sistem scram tidak berfungsi, sedangkan kerusakan elemen bakar karena hilangnya pendingin primer akibat gagalnya tangki, beam tube dan kolom termal, hanya terjadi bila sistem pendingin teras 'darurat gagal. Dengan didisainnya pohon kegagalan ini diharapkan akan lebih mempermudah mendapatkan
sebab-sebab kecelakaan reaktor yang mungkin terjadi, baik di dalam
gedung reaktor maupun disekitar gedung reaktor DAFT AR PUST AKA 1.
Sudjatmi
K. A. Segi-segi Kese/amatan Reaktor. Buletin Batan. Badan Tenaga Atom
Nasional. Edisi Tahun XVIII No.2, 1997; 2.
Anonim. Laporan Ana/isis Kese/amatan Pendahu/uan Peningkatan Daya Reaktor TRIGA Mark II Bandung 2000 KW. PPTN-BATAN, 1996;
3.
Hiromitsu
Kumamoto
& Ernest
J.
Henley
Probabilistic
Risk Assessment
and
Management for Engineers and Scientists, The Institute of Electrical and Electronics Engineers, Inc., New York, 1996,
333
Seminar Tahunan Pengawasan Pemanfaatan
ISSN 1693 - 7902
Tenaga Nuklir - Jakarta, II Desember 2003
DISKUSI Pertanyaan (Tukiran, P2TRR - BATAN) 1. Kenapa radiasi tinggi di ruang reaktor setelah up grade 2 Mwattl 2. Pernah tidak dilakukan analisis ATWS dengan pohon kegagalan? Jawaban (Sujatmi, P3TkN - BATAN) 1. Oaya dinaikkan sehingga fluks naik dan radiasi meningkat, sekarang sudah ditambah shielding sehingga radiasi turun. 2. Saya tidakfbelum pernah melakukan.
Pertanyaan (Sony, P2TKN - BATAN) 1. Apakah metode yang diterapkan sudah sesuai, karena analisis pohon kegaga1an pada umumnya
diterapkan
untuk menentukan
kegagalan
sistem, misalnya
: sistem
pendingin pimer, sistem proteksi reaktor dan lain-lain sehingga dapat diketahui komponen kritisnya? 2. Judul tidak sesuai dengan isi yang disampaikan, karena hanya menganalisis satu kasus (elemen bakar pecah)? 3. Analisis kegagalan hasilnya secara kualitatif dan kuantitatif.
Kualiitatif berupa
kebolehjadian gagal sedangkan kuantitatif berupa kombinasi minimal cutset (basic event). Oalam makalah atau presentasi ini kedua hal tersebut tidak kelihatan? Jawaban (Sujatmi, P3TkN - BATAN) 1. Metoda sudah sesuai, karena dari kejadian yang paling tidak diinginkan yaitu hasil jisi
keluar ke lingkungan
dicari penyebab-penyebabnyadan
seterusnya
sampai
penyebab awal yang mungkin terjadi sesuai dengan pohon yang telah dibuat. 2. Eleman bakar pecah hanya salah satu kasus yang diterangkan, kasus lain dapat dilihat pada pohon kegagalan yang telah dibuat. 3. Secara kuantitatif dapat dilihat pada pohon yang dihasilkan secara kuantitatif belum dibuat.
334