BIAStatistics (2015) Vol. 9, No. 1, hal. 1-7
PERANCANGAN PARAMETER DENGAN PENDEKATAN TAGUCHI UNTUK DATA DISKRIT Faula Arina Jurusan Teknik Industri, Universitas Sultan Ageng Tirtayasa Banten Email :
[email protected]
ABSTRAK Taguchi merupakan suatu metode yang berbasis eksperimen untuk memperbaiki kualitas produk dan proses dengan biaya seminimal mungkin melalui tahap perancangan sistem, parameter dan toleransi. Pada perancangan parameter bertujuan mengoptimalisasi parameter dari masing-masing elemen sistem sehingga deviasi fungsional dari produk akan minimum. Sebelumnya, penelitian tentang perancangan parameter menggunakan taguchi hanya fokus pada data yang kontinu , pada makalah ini akan memberikan gambaran perancangan parameter pada data diskrit atau dalam bentuk diskontinu yang berarti hasil eksperimen hanya bernilai diskrit seperti cacat dan tidak cacat. Dan akan diterapkan di PT. X yang mengurangi kerusakan pada produk Vbelt type KZL untuk motor matic.. Kerusakan terjadi karena belum didapat setting optimum terhadap building machine. Hasil penelitian ini diperoleh dengan perancangan parameter two-class discrete data didapat peningkatan kualitas v-belt yang tidak rusak naik dari 79% menjadi 97,1% dan yang rusak turun dari 21% menjadi 2,9%.Rancangan eksperimen untuk data diskrit sama dengan data kontinu. Perbedaan utama adalah ukuran sampel yang diperlukan dan hasil analisisnya. Kata Kunci: Taguchi, two-class discrete data, perancangan parameter
1.
PENDAHULUAN
Kualitas barang atau jasa merupakan faktor utama menentukan kinerja perusahaan. Quality control dilakukan untuk menjaga konsistensi kualitas produk/jasa yang dihasilkan sesuai dengan kebutuhan pasar. Desain eksperimen menjadi metode yang melengkapi off line quality control untuk mendapatkan setting mesin optimal dan menghasilan desain parameter produk yang robust (Montgomery, 2001). Off line quality control menjadi bagian yang sulit dipisahkan ketika proses quality improvement di dalam skala industri secara terus-menerus diterapkan (Belavandram, 1995). Pada tahun 1949 Dr. Genichi Taguchi memperkenalkan konsep ini ketika permasalahan kualitas produk tidak hanya dapat diatasi secara online quality control. Tahapan perancangan parameter sebuah produk menjadi titik awal penyebab terjadinya cacat selama proses manufaktur berlangsung.. Sebelumnya, penelitian tentang perancangan parameter menggunakan Taguchi hanya fokus pada data yang kontinu pada makalah ini akan memberikan gambaran perancangan parameter pada data diskrit atau dalam bentuk diskontinu yang berarti hasil eksperimen hanya bernilai diskrit seperti cacat dan tidak cacat. Dan diterapkan di PT. X yang mengurangi kerusakan pada produk Vbelt type KZL untuk motor matic. Kerusakan terjadi karena belum didapat setting optimum terhadap building machine. 2.
METODE PENELITIAN
2.1. Perancangan Parameter Untuk Data Diskrit Perancangan parameter untuk data diskrit merupakan rancangan yang dipergunakan untuk menentukan level-level dari faktor yang dapat mengoptimumkan respon dengan meminimalkan efek dari faktor noise dan biaya, namun data yang dipergunakan adalah data diskrit / atribut (Taguchi, 2005). Data diskrit memberikan
1
perbedaan yang kurang kuat daripada data kontinu sebagai contoh bila suatu produk diklasifikasikan baik maka tidak ada ukuran yang pasti seberapa baik produk tersebut. Oleh karena itu data kontinu lebih disarankan untuk dipergunakan bila memungkinkan, karena akan memperkecil ukuran sampel yang diperlukan. Untuk lebih meningkatkan perbedaan dalam data diskrit harus digunakan katagori /atribut yang lebih banyak karena penambahan katagori tersebut akan membuat data diskrit bersifat semi kontinyu secara alami (Park, 1996). 2.2. Two Class Discrete Data Ketika hasil eksperimen diklasifikasikan dalam dua kelas seperti rusak dan tidak rusak maka digunakan Two Class Discrete Data. Misalkan diperiksa n data dan hasilnya adalah 0 dan 1 (Park, 1996). Dalam Two Class Discrete Data ada dua pendekatan yaitu 1) Analisis SN Rasio dan 2) Analisis data secara langsung Analisis SN Rasio
yi
0, jika item rusak 1, jika item tidak rusak
(1)
Bila bagian yang tidak rusak dinyatakan dengan p’ karena y i mengikuti distribusi Bernoulli, maka diperoleh nilai ekpetasi dan variansi dari y i
E yi p ' var yi p ' 1 p ' Jika didapatkan kumpulan data y1 , y2 , y3 ,, yn maka bagian data yang tidak rusak menjadi y y yn p 1 2 (2) n Dan rata-rata variansi adalah 2
T 2 y1 y2 yn 1 2 Sm np np 2 n n n Total variasi
ST yi2 yi np i
(3)
i
Dan variansi errornya Se ST Sm np np 2 np 1 p
(4)
Dalam Two Class Discrete Data, Taguchi (2005) merekomendasikan SN rasio 1 S n Sm y2 Sm 10 log m 10 log 1 1 SN 10 log 10 log 10 log nV p V Se V
(5)
Dari persamaan (5) diperoleh ketika p naik maka SN ratio juga naik. Oleh karena itu semakin besar nilai SN semakin baik. Langkah-langkah analisis SN Rasio adalah 1. Menentukan matrik Ortogonal Array berdasarkan banyaknya faktor dan level 2. Menghitung SN Rasio berdasarkan persamaan (5) untuk tiap treatment 3. Menyusun tabel ANOVA untuk SN Rasio 4. Menentukan nilai estimasi SN rasio pada kondisi optimum
2
Biastatistics Vol 9, No.1, Februari 2015
5. Dari nilai estimasi SN Rasio dapat diperoleh bagian item yang tidak rusak (p) dalam kondisi optimum. Analisis Data Secara Langsung Langkah-langkah analisis Data Secara langsung adalah 1. Menghitung banyaknya item yang tidak rusak untuk tiap level dan Faktor 2. Menyusun tabel Anova 3. Menghitung Pure Variation (Prosentase kontribusi dari variasi error) 4. Menghitung Contribution Rasio (prosentase kontribusi secara relatif dari faktor- factor dan level-levelnya). 5. Menentukan kondisi optimum untuk faktor–faktor dan level 6. Menentukan Estimasi bagian yang tidak cacat berdasarkan kondisi optimum ( ˆ ) Dari dua pendekatan untuk mengatasi data 0/1 (two class), SN ratio merupakan pendekatan analisis yang sederhana, sedangkan analisis data secara langsung adalah pendekatan statistik yang reliabel. Metode Omega (Ω) Metode Omega adalah suatu metode logit transformation yang berfungsi untuk mengestimasi bagian yang tidak cacat berdasarkan kondisi optimum. Nilai estimasi antara 0 dan tak berhingga, sehingga nilai ˆ hanya berubah diantara 0 dan 1.
ˆ
1 1
(6)
2.3. Multi Class Discrete Data Jika jumlah kelas lebih dari dua katagori misalnya sangat baik, baik, sedang dan jelek. Untuk menganalisis multi class discrete data ada dua metode.Yaitu metode skoring dan analisis akumulasi (Park, 1996). Metode Skoring Jika data yang bersifat kategori atau ranking maka akan diberikan bobot/skor 0,1,2,3, ..., k-1 atau 1,2,3, ...,k. Langkah-langkah: 1. 2. 3. 4.
Menghitung SN rasio berdasarkan bobot kelas Menghitung Jumlah Kuadrat Menyusun tabel ANOVA Menentukan kondisi optimum
Analisis Akumulasi Analisis akumulasi menggunakan frekuensi dalam perhitungannya dan digunakan ketika nomor kelas mempunyai arti yang praktis. Langkah-langkah: 1. 2. 3. 4. 5.
Membuat tabel frekuensi kelas kumulatif Menghitung bobot masing-masing kelas kumulatif Menghitung jumlah kuadrat Menyusun tabel ANOVA Menentukan kondisi optimum
3.
HASIL DAN PEMBAHASAN Sebelum eksperimen dilakukan penentuan faktor dan brainstorming dengan pihak perusahaan diperoleh Tabel 1.
Biastatistics Vol 9, No.1, Februari 2015
level berdasarkan
3
Tabel 1. Faktor & Level Percobaan Setting Awal 30-40 900 1 silinder Tipis
Faktor Hardness Stecher Roll(Kgf) Sudut Cutting Bar Silinder Stecher Roll Ukuran Cutting Bar
A B C D
Low (-1) 30-40 450 1 silinder tipis
Level High (+1) 40-50 900 2 silinder tebal
Setting awal adalah setting yang digunakan perusahaan sebelum diadakan 7 penelitian. Setelah itu dilakukan perancangan eksperimen dengan Matrik OA L8 (2 ) dan diperoleh hasil eksperimen pada Tabel 2. Tabel 2. Data Percobaan N o
1 2 3 4 5 6 7 8
Faktor-faktor Terkontrol
A
B
AxB
C
AxC
AXD
D
1 1 1 1 2 2 2 2
1 1 2 2 1 1 2 2
1 1 2 2 2 2 1 1
1 2 1 2 1 2 1 2
1 2 1 2 2 1 2 1
1 2 2 1 1 2 2 1
1 2 2 1 2 1 1 2
v-belt yang tidak terjadi cacat pinhole dari 47 item yang diperiksa 44 43 45 32 39 44 42 41
SN 1 10log 1 p
11,66 10,31 3,29 6,88 11,66 9,24 8,35 13,52
Pada Tabel 3 terdapat nilai rasio SN dari masing-masing faktor ,kemudian dipilih nilai yang terbesar dari level tiap faktor untuk mendapatkan nilai yang terbaik dalam menaikkan jumlah produk yang tidak cacat, lebih jelasnya dapat dilihat pada Gambar 1. Kombinasi level yang dapat mengoptimalkan respon baik dari rata-rata maupun variasi adalah A1, B1,C2 dan D2. Dan interaksi A1xB1, A2xC2, A2XD2. Tabel 3. Main Effects dari Rasio SN Cacat Pinhole Level 1 2
Faktor B C 10,721 8,741 8,010 9,990
A 8,037 10,694
D 9,033 9,697
Main Effects Plot for SN Rasio Data Means A
11
B
10
Mean
9 8 1
2
1
C
11
2 D
10 9 8 1
2
1
2
Gambar 1 Mean efek dari SN Ratio
4
Biastatistics Vol 9, No.1, Februari 2015
Dari Tabel 4 menunjukkan nilai F hitung yang lebih kecil dari Ftabel = F(0,05,1,3) =10,128, dilakukan Pooled. Faktor yang di Pooled tersebut ialah Faktor C, AxC dan D. Dengan tingkat kepercayaan 95%, faktor – faktor yang berpengaruh signifikan ialah faktor Hardness Strecher Roll (A), Sudut Cutting Bar (B), dan interaksi antara Hardness Strecher Roll (A) dengan Bahan Cutting Bar (D). Tabel 4. Anova SN Rasio Source of variation A B AXB C AXC AXD D e T
SS
Df
MS
F 10,496 10,932 15,155
Pure variation 12,770 13,357 19,036
Contribution ratio (%) 17,525 18,329 26,123
14,115 14,702 20,381 3,119 0,033 19,639 0,883 4,035 72,872
1 1 1 1 1 1 1 3 7
14,115 14,702 20,381
19,639
14,603
18,294
25,104
9,414
12,919 100,0
1,345
Perbandingan kondisi optimum dengan kondisi sekarang untuk Rasio SN dari Faktor Signifikan Kondisi optimum merupakan faktor-faktor yang signifikan dan memiliki nilai rasio SN terbesar antara level, yaitu μ(A2 B1 A1xB1 A2xD2) = A1B1 A1 A2 D2 D2 y = 10,989 – 8,037 + 12,593 – 9,697 + 9,37= 15,218 SN dari kondisi optimum =15,218
1 10log 1 p
, sehigga p= 0,971
Settingan building machine yang digunakan oleh PT. X pada kondisi sekarang : μ(A1 B2 C1 D1 A1xB1 A2xD2) = 5,085 + 9,272 – 2(8,037) + 7,477 = 5,76 SN kondisi sekarang =5,76 10log 1 1 sehingga p = 0,79. p
Dengan kondisi optimum, bagian yang tidak cacat dari produk meningkat dari 79% menjadi 97,1%. Analisis Data Secara Langsung Berdasarkan Tabel 2 diperoleh banyaknya item yang tidak rusak untuk tiap level dan Faktor, kemudian dihitung main effect diperoleh Tabel 5. Tabel 5 Main effect Untuk Analisis Data Secara Langsung level 1 2
A 158 172
B 173 157
AxB 173 157
Faktor C 161 169
AxC 163 167
AXD 172 158
D 166 164
Pada Tabel 6 dilakukan Pooled untuk Faktor C, AxC dan D karena nilai F yang lebih kecil dari F(0,05,1,369) =3,867. Dengan tingkat kepercayaan 95%, pengaruh yang signifikan terhadap cacat pinhole adalah faktor Hardness Strecher Roll (A), Sudut Cutting Bar (B), dan interaksi antara A dan B serta interaksi Hardness Strecher Roll (A) dengan Bahan Cutting Bar (D).
Biastatistics Vol 9, No.1, Februari 2015
5
Tabel 6 ANOVA Untuk Analisis Data Secara Langsung Source of variation A B AXB C AXC AXD D Pooled e T
SS
Df
MS
F
Pure variation
0,521 0,681 0,681 0,170 0,043 0,521 0,011 37,745 40,372
1 1 1 1 1 1 1 372 375
0,521 0,681 0,681 0,170 0,043 0,521 0,011 0,1021
5,107 6,671 6,671
0,4192 0,5788 0,5788
Contribution ratio (%) 1,0384 1,4336 1,4336
5,107
0,4192
1,03784
38,3763
95,056 100,0
Metode OMEGA untuk Direct Analysis (Analisa Data Secara Langsung) ˆ( A2 B1 A1 xB1 A2 xD2 ) A1 B1 A1 A2 D2 D2 y 87 158 89 164 330 94 188 94 188 376 = 0,925 - 0,840 + 0,947 - 0,872 + 0,878
1,038 1 1 1 0,925 1 0,947 1 0,878 1 0,02252 1 1 0,840 1 0,878 1 1 1 ˆ 0,978 1 0,02252
Kualitas v-belt untuk yang tidak cacat meningkat mencapai 97,8 persen dengan tingkat kecacatannya sebesar 2,2 persen. 4. KESIMPULAN 1. Rancangan eksperimen dengan pendekatan Taguchi untuk data diskrit sama dengan data kontinu. Perbedaan utama adalah ukuran sampel yang diperlukan dan hasil analisisnya. 2. Settingan optimum terhadap building machine untuk mengurangi cacat pinhole adalah Hardness Stecher Roll 40-50 kgf (A2), Sudut Cutting Bar 450 (B1), interaksi Hardness stecher Roll 30- 40 kgf dengan Sudut Cutting Bar 450 (A1xB1), dan interkasi Hardness Stecher Roll 40-50 kgf dengan Ukuran Cutting Bar Tebal (A2xD2). 3. Peningkatan kualitas v-belt yang tidak rusak berdasarkan SN rasio adalah naik dari 79% menjadi 97,1% dan yang rusak turun dari 21% menjadi 2,9%. Berdasarkan analisa data langsung kualitas v-belt yang tidak rusak mencapai 97,8 persen dengan tingkat kecacatan sebesar 2,2 persen. 5.
DAFTAR PUSTAKA
Belavandram, N. 1995. Quality by Design : Taguchi Technique for Industrial Expermentation. First Edition, Prentise Hall, London.
6
Biastatistics Vol 9, No.1, Februari 2015
Montgomery, D.C. 2001. Design and Analysis of Experiment (5rd ed). New York :John Wiley & Sons, Inc. Park, S.H, 1996. Robust Design And Analysis for Quality Engineering. Chapman and Hall. London. Taguchi, G. Chowdhury, S. dan Wu, Y. 2005. Taguchi’s Quality Engineering Handbook. New Jersey : John Wiley & Sons,Inc
Biastatistics Vol 9, No.1, Februari 2015
7