Pembahasan Soal
SNMPTN 2012 SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS
Matematika Dasar Disusun Oleh :
Pak Anang
Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan Soal SNMPTN 2012 Matematika Dasar Kode Soal 623 By Pak Anang (http://pak-anang.blogspot.com) 1.
Jika π dan π adalah bilangan bulat positif yang memenuhi ππ = 220 β 219 , maka nilai π + π adalah .... LOGIKA PRAKTIS TRIK SUPERKILAT: A. 3 Dengan mudah kita menentukan nilai π = 2 dan nilai π β€ 20 dan π β₯ 19. Tanpa berfikir panjang jelas jawabannya 2 + 19 β€ π + π β€ 2 + 20 B. 7 Nilai yang mungkin adalah 2 + 19 = 21. C. 19 Jawabannya D! ο D. 21 E. 23 Penyelesaian: ππ = 220 β 219 = 21+19 β 219 = 2 β 219 β 219 = (2 β 1) β 219 = 1 β 219 = 219 Diperoleh, π = 2 dan π = 19, sehingga π + π = 2 + 19 = 21
2.
Jika β999, β997, β995, β¦ adalah barisan aritmetika, maka suku bernilai positif yang muncul pertama kali adalah suku ke .... LOGIKA PRAKTIS TRIK SUPERKILAT: A. 500 Karena selisihnya 2, maka kita pasti tahu bahwa suku positif pertama adalah 1, B. 501 π’π = π + (π β 1)π = 1, sehingga: β999 + 2(π β 1) = 1 C. 502 β 2(π β 1) = 1 + 999 D. 503 1 + 999 E. 504 β πβ1= Penyelesaian:
β
2 π = 500 + 1 = 501
Ingat, suku ke-π barisan aritmetika adalah: π’π = π + (π β 1)π dimana π adalah suku pertama dan π adalah beda/selisih. Perhatikan barisan β999, β997, β995, β¦ memiliki suku pertama π = β999 dan beda π = 2. Jadi, suku ke-π barisan tersebut dapat dinyatakan sebagai: π’π = β999 + 2(π β 1) Nilai dari π’π akan bernilai positif jika memenuhi: π’π > 0 Sehingga, ππ > 0 β β999 + 2(π β 1) > 0 β 2(π β 1) > 999 999 (π β 1) > β 2 999 β π> +1 2 β π > 500,5 Jadi, nilai terkecil dari π yang memenuhi π > 500,5 dan π β β adalah 501.
Bimbel SBMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 1
3.
Jika π + 1 dan π β 1 adalah akar-akar persamaan π₯ 2 β 4π₯ + π = 0, maka nilai π adalah .... A. 0 LOGIKA PRAKTIS TRIK SUPERKILAT: Bilangan yang dijumlah β4. B. 1 β2 dan β2 kan? C. 2 Karena selisihnya 2. Maka yang satu ditambah 1, satunya dikurang 1. D. 3 β3 dan β1. E. 4 Berapa perkaliannya? Penyelesaian:
3.
Ingat, jika akar-akar persamaan kuadrat π΄π₯ 2 + π΅π₯ + πΆ = 0 adalah π₯1 dan π₯2 , maka: π΅ π₯1 + π₯2 = β π΄ πΆ π₯1 β π₯2 = π΄ (π + 1) dan (π β 1) adalah akar-akar persamaan π₯ 2 β 4π₯ + π = 0, maka: (π + 1) + (π β 1) = β β
2π = 4 4 π= 2 π=2
β β
(β4) 1
diperoleh akar-akar persamaan tersebut adalah π + 1 = 2 + 1 = 3 dan π β 1 = 2 β 1 = 1. Sehingga persamaan kuadrat yang akar-akarnya 3 dan 1 adalah: (π₯ β 3)(π₯ β 1) = 0 β π₯ 2 β 4π₯ + 3 = 0 Sehingga dengan melihat persamaan π₯ 2 β 4π₯ + 3 = 0, jadi diperoleh nilai π = 3.
4.
Jika nilai rata-rata tes matematika 20 siswa kelas A adalah 65 dan nilai rata-rata 10 siswa lainnya di kelas tersebut adalah 80, maka nilai rata-rata semua siswa kelas A adalah .... A. 72 LOGIKA PRAKTIS TRIK SUPERKILAT: B. 71 65 -------------π₯Μ
-----------------------------80 1 bagian 2 bagian C. 70 D. 69 Jadi rata-rata gabungan adalah 65 ditambah sepertiganya 15. E. 68 65 + 5 = 70 Penyelesaian:
Ingat, jika ππ΄ dan ππ΅ menyatakan banyak anggota kelompok A dan B, serta π₯Μ
π΄ dan π₯Μ
π΅ adalah ratarata nilai kelompok A dan B, maka nilai rata-rata gabungan A dan B adalah: ππ΄ π₯Μ
π΄ + ππ΅ π₯Μ
π΅ π₯Μ
πππ = ππ΄ + ππ΅ Misal, rata-rata semua siswa kelas A dinyatakan sebagai π₯Μ
πππ , maka: π₯Μ
πππ =
20 β 65 + 10 β 80 1300 + 800 2100 = = = 70 20 + 10 30 30
Bimbel SNMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 2
5.
Jika π΄ = ( A. B. C. D. E.
β6 β3 0 3 6
2 0 1 5 ),π΅ = ( ), dan det(π΄π΅) = 12, maka nilai π₯ adalah .... 1 π₯ 0 β2 LOGIKA PRAKTIS TRIK SUPERKILAT:
Ingat, sifat determinan yaitu det(π΄π΅) = det(π΄) β det(π΅)
Jadi hitung sendiri-sendiri determinan A dan determinan B, lalu kalikan keduanya. det(π΄) = 2π₯ det(π΅) = β2 Jadi, det(π΄π΅) = det(π΄) β det(π΅) β 12 = 2π₯ β (β2) β 12 = β4π₯ β π₯ = β3
Penyelesaian:
π π
Ingat, jika det(π΄) menyatakan determinan matriks π΄ = ( π det(π΄) = | π
π | = ππ β ππ π
π ) , maka: π
2 0 1 5 π΄π΅ = ( )β( ) 1 π₯ 0 β2 (2 β 1 + 0 β 0) (2 β 5 + 0 β (β2)) =( ) (1 β 1 + π₯ β 0) (1 β 5 + π₯ β (β2)) 2 10 =( ) (5 1 β 2π₯) Sehingga, 2 10 | 1 (5 β 2π₯) = 2(5 β 2π₯) β (10 β 1) = 10 β 4π₯ β 10 = β4π₯
det(π΄π΅) = |
Dikarenakan nilai det(π΄π΅) = 12, maka: β4π₯ = 12 β π₯ = β3
Bimbel SBMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 3
6.
Jika π(π₯) = 5π₯ β 3, π(π₯) = 3π₯ + π, dan π β1 (π(0)) = 1, maka nilai π(2) adalah .... A. 5 LOGIKA PRAKTIS TRIK SUPERKILAT: Ingat sifat fungsi invers yaitu: π(π₯) = π¦ β π β1 (π¦) = π₯ B. 6 π β1 (ππππππ) = 1 β π(1) = ππππππ C. 8 Jadi, D. 11 π(1) = π(0) E. 12 5β1β3= 3β0+π Penyelesaian: π(π₯) = 5π₯ β 3
2=π Akibatnya, π(π₯) = 3π₯ + 2 Sehingga nilai dari π(2) = 3 β 2 + 2 = 6 + 2 = 8
Perhatikan bahwa: π¦ = 5π₯ β 3 β 5π₯ = π¦ + 3 π¦+3 β π₯= 5 Jadi diperoleh invers dari π: π β1 (π₯) =
π₯+3 5
Sehingga, π β1 (π(π₯)) = π β1 (3π₯ + π) (3π₯ + π) + 3 = 5 3π₯ + π + 3 = 5 Maka dengan substitusi π₯ = 0 akan diperoleh: π β1 (π(0)) =
3(0) + π + 3 π + 3 = 5 5
Padahal dari soal diketahui π β1 (π(0)) = 1, maka diperoleh: π+3 =1βπ+3=5 5 β π =5β3 β π=2 Dari π = 2 diperoleh fungsi π: π(π₯) = 3π₯ + 2 Jadi, π(2) = 3(2) + 2 = 6 + 2 = 8
Bimbel SNMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 4
7.
Jika diagram batang di bawah ini memperlihatkan frekuensi kumulatif hasil tes matematika siswa kelas XII, maka persentase siswa yang memperoleh nilai 8 adalah .... F r e k u e n s i
K u m u l a t i f
30 25 20 15 10 5 0 2
3
4
5
6
7
8
9
10
Nilai Siswa
A. B. C. D. E.
12% 15% 20% 22% 80%
Penyelesaian: Jika ππ menyatakan frekuensi kelas ke-π dan ππ menyatakan frekuensi kumulatif, maka: ππ = ππ π β ππ πβ1 Dan dari diagram frekuensi kumulatif tersebut, banyaknya siswa yang memperoleh nilai 8 adalah: π8 = ππ 8 β ππ 7 = 22 β 19 = 3 Sehingga persentase siswa yang memperoleh nilai 8 adalah: π8 (%) =
π8 3 Γ 100% = Γ 100% = 12% ππ 10 25
Bimbel SBMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 5
8.
Jika π log π + π log π2 = 4, maka nilai π log π adalah .... 3 A. 4 B.
1
C.
4
2 3
D. 2 E.
3 2
Penyelesaian: π
log π + π log π2 = 4 β π log π + 2 βπ log π = 4 β (1 + 2) β π log π = 4 β 3 βπ log π = 4 4 π β log π = 3 3 π β log π = 4 9.
Di suatu kandang terdapat 40 ekor ayam, 25 ekor di antaranya betina. Di antara ayam betina tersebut, 15 ekor berwarna putih. Jika banyak ayam berwarna putih adalah 22 ekor, maka banyak ayam jantan yang tidak berwarna putih adalah .... A. 5 B. 7 C. 8 D. 10 E. 15 Penyelesaian: Banyaknya ayam jantan berwarna putih adalah 22 β 15 = 7 ekor. Sehingga banyak ayam jantan yang tidak berwarna putih adalah (40 β 25) β 7 = 8 ekor.
Bimbel SNMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 6
10.
Jika π₯ + π§ = 2, π¦ + 4π§ = 4, dan 2π₯ + π¦ = 6, maka nilai π₯ + 2π¦ + 3π§ adalah .... A. 2 B. 4 C. 6 D. 8 E. 10 Penyelesaian: π₯ + π§ = 2 .................................. (1) π¦ + 4π§ = 4 ................................ (2) 2π₯ + π¦ = 6 ............................... (3) Eliminasi π¦ pada persamaan (3) dan (2): 2π₯ + π¦ = 6 π¦ + 4π§ = 4 2π₯ β 4π§ = 2 β π₯ β 2π§ = 1 .......................... (4) Eliminasi π₯ pada persamaan (1) dan (4): π₯+π§ =2 π₯ β 2π§ = 1 3π§ = 1 1 βπ§= 3 1
Substitusikan π§ = 3 ke persamaan (4) diperoleh nilai π₯: π₯+π§=2β π₯+ β β β
1 =2 3
1 3 6 1 π₯= β 3 3 5 π₯= 3 π₯ =2β
1
Substitusikan π§ = 3 ke persamaan (2) diperoleh nilai π₯: 1 π¦ + 4π§ = 4 β π¦ + 4 ( ) = 4 3 4 β π¦+ =4 3 β β β
4 3 12 4 π¦= β 3 3 8 π¦= 3 π¦ = 4β
Jadi nilai π₯ + 2π¦ + 3π§ adalah: 5 8 1 5 16 3 24 π₯ + 2π¦ + 3π§ = ( ) + 2 ( ) + 3 ( ) = + + = =8 3 3 3 3 3 3 3
Bimbel SBMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 7
11.
Jika gambar di bawah ini adalah grafik fungsi kuadrat π dengan titik puncak (β2, β1) dan melalui titik (0, 5), maka nilai π(2) adalah .... Y
X β5
β2
β4 β5 β6
A. B. C. D. E.
β17 β18 β19 β20 β21
Penyelesaian: Persamaan fungsi kuadrat yang melewati titik puncak (π₯π , π¦π ) adalah: 2
π¦ = π(π₯ β π₯π ) + π¦π Diketahui titik puncak (β2, β1), sehingga persamaan fungsi kuadrat adalah: π¦ = π(π₯ + 2)2 β 1 Nilai konstanta π bisa ditentukan dengan mensubstitusi π₯ dan π¦ dengan satu titik lain yang diketahui pada grafik yaitu titik (0, β5): π¦ = π(π₯ + 2)2 β 1 β β5 = π(0 + 2)2 β 1 β β5 = 4π β 1 β β5 + 1 = 4π β β4 = 4π β π = β1 Sehingga persamaan fungsi kuadrat yang dimaksud adalah: π(π₯) = π¦ = β1(π₯ + 2)2 β 1 = β(π₯ 2 + 4π₯ + 4) β 1 = βπ₯ 2 β 4π₯ β 4 β 1 = βπ₯ 2 β 4π₯ β 5 Jadi nilai dari π(2) adalah: π(2) = β(2)2 β 4(2) β 5 = β4 β 8 β 5 = β17
Bimbel SNMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 8
12.
Nilai minimum fungsi objektif (tujuan) π(π₯, π¦) = π₯ + 4π¦ dengan kendala 3π₯ + 2π¦ β₯ 24, π₯ β₯ 2, dan π¦ β₯ 3 adalah .... A. 38 B. 26 C. 24 D. 18 E. 16 Penyelesaian: Perhatikan grafik! Y
12
9
(2, 9)
3
π¦β₯3
(6, 3) 2
π₯β₯2
6
8
X 3π₯ + 2π¦ β₯ 24
Dari grafik di atas, titik-titik pojok yang merupakan titik ekstrim adalah titik (6, 3) dan (2, 9), lalu kita lakukan uji titik pojok tersebut untuk mendapatkan nilai minimum dari fungsi objektif (tujuan) π(π₯, π¦) = π₯ + 4π¦: (6, 3) β π(π₯, π¦) = (6) + 4(3) = 6 + 12 = 18 (2, 9) β π(π₯, π¦) = (2) + 4(9) = 2 + 36 = 38 Jadi fungsi objektif (tujuan) akan minimum pada titik (6, 3) dengan nilai minimumnya adalah 18.
Bimbel SBMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 9
13.
Jika π adalah suku pertama, π adalah rasio, dan ππ = 3(2π+1 β 2) adalah jumlah π suku pertama deret geometri, maka nilai π + π adalah .... LOGIKA PRAKTIS: A. 4 π(π π β 1) B. 5 Ingat rumus ππ = πβ1 C. 6 D. 7 6(2π β 1) π+1 Perhatikan juga π = 3(2 β 2) = π E. 8 2β1 Penyelesaian:
Jadi, jelas bahwa π + π = 6 + 2 = 8
Perhatikan bahwa, ππ = 3(2π+1 β 2) β ππ = 3 β 2(2π β 1) 6(2π β 1) β ππ = 2β1 Padahal, ingat kembali rumus jumlah π suku pertama deret geometri: π(π π β 1) πβ1 Sehingga diperoleh nilai π = 6 dan π = 2. ππ =
Jadi nilai π + π = 6 + 2 = 8
Bimbel SNMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 10
14.
Jika suatu persegi dengan panjang sisi satu satuan dibagi menjadi 5 persegi panjang dengan luas yang sama seperti ditunjukkan pada gambar, maka panjang ruas garis π΄π΅ adalah .... TRIK SUPERKILAT: Perhatikan bahwa luas kelima persegi panjang kan sama! Sedangkan di bagian atas sudah ada dua persegi panjang, maka artinya panjang sisi tegak persegi tersebut adalah 2 bagian dibanding 3 bagian.
π΄
Jadi tinggi bagian bawah adalah 3 bagian dari keseluruhan 5 bagian. 3
Ya!!! Panjang AB adalah .....!!! 5
π΅
A.
4
B.
3
C.
5
D.
2
E.
2
5 5 6 3 5
Penyelesaian: Perhatikan persegi dengan sisi 1 satuan berikut: Luas persegi tersebut adalah: πΏ = π 2 = 12 = 1 satuan luas Persegi dengan 1 satuan luas tersebut dibagi menjadi 5 persegi panjang dengan luas yang sama. Artinya, setiap persegi panjang memiliki luas: πΏ = 5 Γ πΏππππ πππ πππππππ β πΏππππ πππ πππππππ =
πΏ 1 = satuan luas 5 5
Perhatikan gambar di bawah ini:
π΄ π₯ π΅
π¦
Perhatikan daerah berwarna biru, misalkan setiap persegi panjang vertikal bawah berukuran π₯ Γ π¦. Perhatikan juga bahwa terdapat 3 persegi panjang dengan ukuran luas yang sama, persegi panjang tersebut juga membagi sisi persegi menjadi 3 bagian yang sama pula. Karena sisi persegi adalah 1 1 satuan, maka dengan mudah ditunjukkan bahwa panjang π¦ = 3 satuan. 1
Padahal luas setiap persegi panjang vertikal bawah tersebut adalah 5 satuan luas, sehingga: π₯Γπ¦ =
1 1 1 βπ₯Γ = 5 3 5 1 1 3 3 β π₯=5= Γ = 1 5 1 5 3
Bimbel SBMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 11
15.
Semua nilai π₯ yang memenuhi (2π₯ + 1)(π₯ β 1) β€ (π₯ β 1) adalah .... A. π₯ β€ 1 B. π₯ β₯ 0 1 C. π₯ β₯ 2 1
D. 2 β€ π₯ β€ 1 E. 0 β€ π₯ β€ 1 Penyelesaian: (2π₯ + 1)(π₯ β 1) β€ (π₯ β 1) (2π₯ β + 1)(π₯ β 1) β (π₯ β 1) β€ 0 β (2π₯ 2 β π₯ β 1) β (π₯ β 1) β€ 0 β 2π₯ 2 β π₯ β 1 β π₯ + 1 β€ 0 β 2π₯ 2 β 2π₯ β€ 0 Pembuat nol β 2π₯ 2 β 2π₯ = 0 β 2π₯(π₯ β 1) = 0 β 2π₯ = 0 atau π₯ β 1 = 0 β π₯ = 0 atau π₯ = 1 Periksa daerah penyelesaian pada garis bilangan, + β
0
1
Jadi himpunan penyelesaiannya adalah {π₯|0 β€ π₯ β€ 1}.
Untuk download rangkuman materi, kumpulan SMART SOLUTION dan TRIK SUPERKILAT dalam menghadapi SNMPTN serta kumpulan pembahasan soal SNMPTN yang lainnya jangan lupa untuk selalu mengunjungi http://pak-anang.blogspot.com. Terimakasih, Pak Anang.
Bimbel SNMPTN 2013 Matematika Dasar by Pak Anang (http://pak-anang.blogspot.com)
Halaman 12