Monograph Models for Estimating Tree Biomass
FIN
AL
Haruni Krisnawati Wahyu Catur Adinugroho Rinaldi Imanuddin
CO
PY
at Various Forest Ecosystem Types in Indonesia
Bogor, July 2012
MINISTRY OF FORESTRY FORESTRY RESEARCH AND DEVELOPMENT AGENCY
RESEARCH AND DEVELOPMENT CENTER FOR CONSERVATION AND REHABILITATION
AL
FIN PY
CO
Monograph Models for Estimating Tree Biomass
CO
PY
at Various Forest Ecosystem Types in Indonesia
FIN
AL
Haruni Krisnawati Wahyu Catur Adinugroho Rinaldi Imanuddin
Bogor, July 2012
MINISTRY OF FORESTRY FORESTRY RESEARCH AND DEVELOPMENT AGENCY
RESEARCH AND DEVELOPMENT CENTER FOR CONSERVATION AND REHABILITATION
Jakarta, Oktober 2011
PY
Haruni Krisnawati Wahyu Catur Adinugroho Rinaldi Imanuddin
CO
Monograph Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
AL
© 2012 Research and Development Center for Conservation and Rehabilitation, Forestry Research and Development Agency ISBN: 978-979-3145-93-8 All rights reserved
FIN
It is prohibited to reproduce all or part of this monograph, in the form of photocopy, print, microfilm, electronic media or any other form, except for education or other non-commercial purposes by including the following sources: Krisnawati, H., W.C. Adinugroho and R. Imanuddin. 2012. Monograph: Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia. Research and Development Center for Conservation and Rehabilitation, Forestry Research and Development Agency, Bogor, Indonesia. Translated from:
Krisnawati, H., W.C. Adinugroho dan R. Imanuddin. 2012. Monograf: Model-Model Alometrik untuk Pendugaan Biomassa Pohon pada Berbagai Tipe Ekosistem Hutan di Indonesia. Pusat Penelitian dan Pengembangan Konservasi dan Rehabilitasi, Badan Penelitian dan Pengembangan Kehutanan, Bogor, Indonesia. Published by: Research and Development Center for Conservation and Rehabilitation, Forestry Research and Development Agency – Ministry of Forestry Jl. Gunung Batu No. 5, Bogor 16610, Indonesia Tel/Fax: +62 251 8633234 / +62 251 8638111 Email:
[email protected]; website: http://www.p3kr.com
ii
Foreword
PY
Ecosystem Types in Indonesia” was prepared to solve this problem. This monograph is a product of the study by researchers of the Forestry Research and Development Agency (FORDA) on the research related to the tree biomass and volume allometric models that have already been developed at various tree species and forest ecosystem types in Indonesia. This monograph is expected to serve as an important input to the development of the Indonesian National Carbon Accounting System (INCAS). In order to produce this monograph, an extensive study of the available literature was required. The constructive input of experts on the substance of the monograph during the Focus Group Discussion and the Expert Team meeting have increased the quality of this monograph. This was an essential input to the realization and achievement of this monograph. We would like to express our appreciation and thanks to all the parties that have contributed directly or indirectly to the preparation of this monograph. Thank you to IAFCP (IndonesiaAustralia Forest Carbon Partnership) that provided financial assistance to the discussion of the final draft of this monograph through the Focus Group Discussion and Expert Team meeting and also assisted in the publication. Specifically, to the Director of the Research and Development Center for Conservation and Rehabilitation and to the Writer Team, we express our appreciation for and congratulations on this achievement.
FIN
AL
CO
It is clear that climate change, as an implication of the increased concentration of greenhouse gas (GHG) in the atmosphere, has had an impact on the sustainability of the earth’s living creatures. In order to protect the stability of the concentration of GHG in the atmosphere, several mitigation and adaptation efforts should be made to reduce GHG emissions and minimize the impact of climate change. As a framework for mitigating the impacts of climate change, REDD+ is perceived as one of the policy mechanisms that has huge potential to reduce emissions from deforestation and forest degradation, through its role in conservation, sustainable forest management and enhancement of forest carbon stocks. One of the important components for the implementation of REDD+ is the application of a transparent, comparable, coherent, complete and accurate MRV (measurement, reporting and verification) system. The challenge in implementing such a system is enabling society and concerned parties to understand their role in attaining targets for reducing emissions and increasing carbon stocks. At a most basic level, the tools for the calculation of carbon stocks and the monitoring of changes should be prepared in order to calculate the emissions level in all ecosystem types and land uses. Under a REDD+ mechanism, the method for determining the Reference Emission Level most appropriate to the specific local conditions in Indonesia is imperative. For this, specific allometric models that are appropriate to the location, ecosystem type and tree species are necessary. Currently, the guidelines or references related to the use of allometric models for estimating biomass and carbon stock as well as for determining the local (specific) emission factor are not yet available in Indonesia. The monograph “Allometric Models for Estimating Tree Biomass at Various Forest
Jakarta, July 2012 Director General of the Forestry Research and Development Agency,
Dr. Ir. Iman Santoso, M.Sc
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
iii
Acknowledgements
PY
Australia Forest Carbon Partnership (IAFCP), IAFCP Coordinators, and Senior Forestry Expert, Silver Hutabarat from INCAS-IAFCP. High appreciation is also given to the team of experts who reviewed the draft monograph, i.e. Teddy Rusolono (IPB), Ronggo Sadono (UGM), Fajar Pambudi (Unmul), Tatang Tiryana (IPB), Sofwan Bustomi (FORDA), Ari Wibowo (FORDA), and Djoko Wahjono (FORDA), and to all the participants of the Focus Group Discussion on “Assessment of Tree Biomass and Volume Allometric Models for Carbon Accounting in Indonesia” that was held on 7-8 June 2012 in Bogor and the participants of the Expert Team Meeting held on 27-28 June 2012 in Jakarta, who have provided constructive inputs for the completion of the contents and substance of this monograph. We hope that this monograph will be beneficial.
FIN
AL
CO
This monograph was prepared on the initiative of the Writer Team as researchers of the Research and Development Center for Conservation and Rehabilitation – Forestry Research and Development Agency. However, we are very much aware that without the support and assistance of several parties, this monograph could never have been realized. Because of this, we would like to express our thanks to all the parties who have assisted in the preparation of this monograph, especially to Enok Heryati and Popi Berlin (technician of Forest and Environmental Service Valuation Research Group – Research and Development Center for Conservation and Rehabilitation) who have assisted in the compilation of data and information from various sources of literature. The compilation of this monograph would not have been possible without the strong support and encouragement of the Director General of the Forestry Research and Development Agency (FORDA) with in Ministry of Forestry, the Director of the Research and Development Center for Conservation and Rehabilitation in FORDA, the Director of the Forest Resources Inventory and Monitoring (Directorate General of Forestry Planning) as the Executing Agency of Indonesia-
iv
Bogor, July 2012 Writer Team, Haruni Krisnawati Wahyu Catur Adinugroho Rinaldi Imanuddin
Table of Contents Foreword ......................................................... iii Acknowledgements ......................................... iv Table of Contents .............................................. v List of Tables.................................................... vi List of Figures ................................................. vii
Background ......................................... 3 Objectives and Benefits ......................... 4 Data Collection ..................................... 7 Evaluation of the Allometric Models ... 10
3. Description of the Database ...................... 11
4.2
Tree Volume Allometric Models .......... 28
5.1
Variability of tree biomass and volume estimates within natural forest ecosystem ........................................... 33
5.2
Variability of tree biomass and volume estimates within plantation forest ecosystem ........................................... 36
Source of Information of the Allometric Models ............................................... 13 Geographical Distribution of the Allometric Models .............................. 14
6. The Use of Allometric Models for Estimating Biomass ............................ 41 7. Closing....................................................... 57 References ...................................................... 61 Appendices ..................................................... 65
FIN
3.2
Tree Biomass Allometric Models ......... 27
AL
3.1
4.1
CO
2. Methods ...................................................... 5 2.1 2.2
Scope of the Allometric Models by Species................................................ 22
5. Tree Biomass and Volume Estimates......... Estimates......... 31
1. Introduction ................................................. 1 1.1 1.2
3.4
PY
Abstract ........................................................... xi
Distribution of the Allometric Models by Ecosystem Type ............................. 16
4. Allometric Models ..................................... 25
List of Appendices ......................................... viii Glossary ........................................................... ix
3.3
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
v
List of Tables Scope of the allometric models in this monograph connected to land use categories according to the IPCC Guidelines and Directorate General of Forestry Planning .... 17
2.
Biomass allometric models that can be used to estimate aboveground tree biomass according to the main ecosystem type ......... 46 Volume allometric models that can be used to estimate tree volume according to the main ecosystem type .......................................... 49
The values of BEF (biomass expansion factor) that have been developed for some tree species and ecosystem types in Indonesia .... 51
5.
Default value of BEF according to IPCC Guidance (2003) ........................................ 54
6.
Default value of BCEF according to IPCC Guidelines (2006) ...................................... 55
7.
Possible sequences to determine the approach used in biomass estimation (numbers of sequences refer to Figure 19) ... 55
FIN
AL
CO
3.
4.
PY
1.
vi
List of Figures
2.
Parts of the trees measured for the tree biomass allometric model ............................. 9
3.
Types of volume measured for the tree volume allometric model .............................. 9
4.
The number of literatures that presented tree biomass and/or volume allometric models used in this monograph until mid-2012....... 13
5.
Geographical distribution of the availability of tree biomass and volume allometric models that have been developed in Indonesia ........ 15
6.
Geographical distribution of the available tree biomass allometric models developed in Indonesia ................................................... 18
7.
Geographical distribution of the available tree volume allometric models developed in Indonesia ................................................... 21
8.
Distribution of the available tree biomass and volume allometric models by ecosystem type ........................................................... 22
9.
Distribution of the available tree biomass allometric models by species ...................... 23
13. Aboveground tree biomass estimated from various biomass allometric models for dryland forest, peat swamp forest and mangrove forest ecosystem types (References are based on Appendix 3) ........ 34 14. Tree volume estimated from various volume allometric models for dryland forest, peat swamp forest and mangrove forest ecosystem types (References are based on Appendix 5)............................................... 5)............................................... 35
PY
Selection of the literatures used for analysis in this monograph ........................................ 8
15. Aboveground tree biomass estimated from various biomass allometric models for fast-growing and slow-growing tree species (References are based on Appendix 3) ......... 37
CO
1.
16. Tree volumes estimated from various volume allometric models for fast-growing and slowgrowing tree species (References are based on Appendix 5)............................................... 38
AL
17. Aboveground tree biomass for (a) Acacia mangium and (b) Pinus merkusii estimated from various biomass allometric models developed from several locations (References are based on Appendix 3) ......... 39
10. Distribution of the available tree volume allometric models by species ...................... 24
FIN
11. Distribution of the available tree biomass allometric models according to the part of tree biomass measured ............................... 27
12. Distribution of the available tree volume allometric models according to volume types (tdl on stem volume followed by numbers indicates that the model was developed for estimating stem volume up to the top diameter limit of the stem, i.e. 4 cm, 5 cm, 7 cm, and 10 cm) .......................................... 29
18. Tree volumes for (a) Acacia mangium and (b) Pinus merkusii estimated from various allometric volume models developed from several locations (References are based on Appendix 5)............................................... 40 19. The diagram presenting the procedures of the use of available allometric models for estimating tree biomass .............................. 45
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
vii
List of Appendices 3. References-Appendices 1 and 2 .................... 89 4. Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia ......................... 95 5. References-Appendix 4.............................. 115
FIN
AL
CO
PY
1. Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia ......................... 67 2. List of tree species included in the development of biomass allometric models for mixed-species ......................................... 85
viii
Glossary Aboveground tree : Total oven-dry weight of all parts of a tree above the ground including stem, biomass branch, twig, leaves, flower and fruit if any Accuracy
: How close an estimated value is to the actual (measured) value
Allometry
: The relationship between the size or growth of a component with that of the whole organism
BCEF
: Biomass Conversion and Expansion Factor,, a factor used for expansion of merchantable growing stock volume to aboveground biomass, stated in unit per ha
PY
Belowground tree : Total oven-dry weight of the part of a tree under the ground (roots) biomass : Systematic error, or deviation from the true value of measurement
Biomass
: Total dry weight of living organism, stated in kilograms or tons
Branch biomass
: Total oven-dry weight of the branch part of a tree
Branch volume
: Volume of the part of the tree that grows from the trunk
Carbon
: Chemical element with symbol C and atomic number 6
Carbon stock
: Carbon stored in biomass
Clear bole height
: Height of the tree measured until its first branching
Correction factor
: Constant value used to correct the bias as a consequence of the data transformation to the logarithm value
Merchantable volume
: Stem volume up to the height of crown base
Dbh
: Volume of the crown part of a tree : Diameter at breast height height, a diameter as high as the breast or about 1.3m above the ground : A measure of how well the variation of dependent variable (Y) ( can be explained by the independent variable ((X) in the regression model, often written with the symbol R2 or R-sq
FIN
Determination coefficient
AL
Crown volume
CO
Bias
Error
: Residual or deviation
Firewood volume
: Wood volume measured on the basis of the wood that is used for firewood. The firewood volume is not determined one by one, but in stacked volume
Flower biomass
: Total oven-dry weight of the flower part of a tree
Form factor
: The correction factor; calculated from the ratio between the actual volume of the tree and the cylinder volume with the same diameter and height
Fruit biomass
: Total oven-dry wight of the fruit part of a tree
Height of the crown base
: Height of the tree measured until the branches form a crown
Leaf biomass
: Total oven-dry weight of the leaf part of a tree
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
ix
Regression analysis : A statistical method for estimating the relationship between a dependent variable or response variable (Y) and one or more independent variables or predictor variables (X) : Total oven-dry weight of the root part of a tree
Sample
: Object selected to represent a population and used for analysis
Sample tree
: A tree selected to represent a population with the criteria normal growth
Stand
: Community of plants (trees) in a certain area
Stand BEF
: Stand Biomass Expansion Factor, a factor used to expand the stem biomass per unit area of the stand [∑( Volume*wood density)] to aboveground stand biomass
Stem biomass
: Total oven-dry weight of the stem part of a tree
Total tree height
: Length of a tree that has fallen plus the height of the remaining base (stump), stated in meters with one digit after the decimal point
PY
Root biomass
Total stem volume : Volume measured on the basis of total height (until the top) of the tree Total tree biomass : Total oven-dry weight of all the parts of a tree
Factor, a factor used to expand the stem biomass to : Tree Biomass Expansion Factor, aboveground tree biomass
Tree volume
: A product of basal area and tree height/length, and then corrected by a constant factor (known as a tree form factor)
Twig biomass
: Total oven-dry weight of the twig part of a tree
CO
Tree BEF
Clear bole volume : Stem volume measured until the height of the first branch Variant
: How far the data is distributed at the average
Volume
: The quantity of three-dimensional space of an object, stated in cubic meter, as a product of the basic units of length, width/thickness, and height
: Also known as specific gravity of wood, i.e. oven-dry weight per unit volume of wood (kg/m3 or gr/cm3)
FIN
Wood density
AL
Stem volume up to : Stem volume measured until the height of a certain point diameter (example: 4 x cm top diameter cm, 5 cm, 7 cm, 10 cm) limit
x
Glossary
Abstract
AL
CO
PY
This monograph reviews tree biomass and volume allometric models that have been developed for various tree species and ecosystem types in Indonesia. The mathematical forms of the allometric models, the associated statistical parameters, as well as information about the size (tree diameter and height) and the number of sample trees used to develop the models were collated from various sources published in scientific journals (both national and international), research and technical reports, proceedings and student theses. The total number of the allometric models presented in this monograph is 807 models consisting of 437 allometric models for estimating tree biomass components and 370 allometric models for estimating several types of tree volume. Results of the spatial distribution analyses of the existing allometric models indicated that 90% of the allometric models were developed for three major islands (Java, Kalimantan and Sumatra). A relatively small number of biomass allometric models were developed for eastern islands of Indonesia (Papua and Sulawesi), except for several volume allometric models. Either biomass or volume allometric models are available for some major ecosystem types in Indonesia even though their distributions are uneven throughout the country. Most (88%) of the biomass allometric models were developed to estimate aboveground tree biomass components. Besides information on the model distribution and data coverage, this monograph also analyzes variability of the predicted biomass and volume resulted from the models, the use of the models for estimating tree biomass, gap analysis and strategy to fill the gaps. The collected information of allometric models provides a basic tool for estimation of forest biomass based on its ecosystem type. The information also provides input to support the national carbon accounting system and estimation of carbon stock changes from greenhouse gas emissions reduction and carbon stock enhancement in the land-based sector.
FIN
Keywords:: allometric model, biomass, volume, tree diameter, tropical forest ecosystem, Indonesia
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
xi
AL
FIN PY
CO
PY CO AL FIN
Introduction
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
1
AL
FIN PY
CO
FIN
AL
CO
Accurate information on the forest carbon stored in biomass is required to describe the conditions of the forest ecosystem to support the management of forests and specifically, the sustainability of forest resources, understanding the dynamics of carbon in the forest ecosystem, and estimating the impact on the ecosystem as a consequence of deforestation, change in land use, and climate change (Eamus et al., 2000; Comley and McGuiness, 2005; Soares and SchaefferNovelli, 2005). This information is also imperative as a basic component in the accounting and monitoring of national carbon (Eamus et al., 2000; Snowdon et al., 2000; Keith et al., 2000) which is the main input in developing a strategy for the reduction of greenhouse gas (GHG) emissions, particularly carbon dioxide (CO2) from the land sector. The carbon stock that is stored in the forest biomass and its changes (the loss of carbon through emissions as a consequence of deforestation and forest degradation, and the increase in carbon through sequestration from growth, forest regeneration, aforestation and reforestation) should be measured and monitored because the changes in carbon stock will influence the concentration of carbon dioxide (CO2) in the atmosphere. The carbon stock and its changes are relatively difficult to measure, and its estimated value probably still depends on the uncertainty level (Clark et al., al., 2001; Jenkins et al., 2003). This uncertainty can be due to sampling error, measurement error or regression model error (MacDicken, 1997). Reliability of the estimated forest carbon stock and understanding of the dynamics of carbon in the forest ecosystem can be increased by applying current knowledge concerning tree allometry, in the form of the biomass allometric model and the volume allometric model (Jenkins et al., 2003;
Zianis and Mencuccini, 2003; Lehtonen et al., 2004). The biomass allometric model can be used to directly estimate the stand tree biomass, from tree measurement data (diameter or combination of diameter and height) in the forest stand inventory, or by adding the specific gravity or wood density and the biomass expansion factor (IPCC, 2003) or the biomass conversion and expansion factor (IPCC, 2006) in using the tree volume allometric model. From the aggregation of the biomass of individual trees, the biomass of the forest stand can be obtained. A remote sensing technique can also be applied to estimate the stand forest volume and biomass (Montes eett al al., 2000; Drake at al., al., 2002). However, the accuracy of the estimated value greatly depends on the data from measuring tree dimensions in the field; in this case, the allometric model is still needed to estimate the biomass at individual tree level before the estimated biomass at stand level or wider forest area can be obtained. The allometric model is commonly used in biology to describe change in a systematic way (Huxley, 1993; Parresol, 1999). The term allometry comes from the Greek word ‘allos’ which means ‘other’ and ‘metron’ which means ‘measurement’ (Niklas, 1994). Allometry is used to indicate a proportion between the relative growth rates of the different components of one individual tree. This relationship is mathematically referred to as an allometric model wherein it is generally stated in the form of a logarithmic or power function. By using the allometric model that is already formulated, the biomass of one tree can be estimated just by entering the parameter of the result of measuring the dimension of the tree, like the diameter at breast height (Dbh) or the combination of Dbh and height. The stand biomass can later be calculated by summing the biomass of individual trees.
PY
1.1 Background
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
3
specific local allometric models based on the tree species and forest ecosystem types in Indonesia.
1.2 Objectives and Benefits
PY
This monograph aims to serve as a reference in estimating forest biomass through: (1) compilation and review on tree biomass and volume allometric models that have been developed for several tree species and forest ecosystem types in Indonesia, (2) development of an allometric model database to know the status of information currently available on tree allometry, identification of the gaps of information and modeling method, and (3) optimization of the use of allometric models. This monograph provides basic information for the national carbon accounting system and for estimating the carbon stock change from GHG emissions reduction, for example through the REDD+ mechanism. Furthermore, this monograph can be used as a supporting instrument in the implementation of Presidential Decree No. 71/2011 concerning the Implementation of the National Greenhouse Gas Inventory, particularly in the land-based sector.
FIN
AL
CO
In the mechanism of REDD+ (Reducing Emissions from Deforestation and Forest Degradation, and the role of conservation, sustainable forest management and enhancement of forest carbon stock), allometric models that are appropriate to the specific condition of the location in Indonesia are necessary to estimate the change in the biomass and forest carbon stocks produced from the activity of reducing GHG emissions. Currently, guidelines or references related to the use of allometric models for estimating biomass and carbon stock and determining the local (specific) emission factor in Indonesia are unavailable. On the other hand, the allometric models to estimate tree biomass (including its components, e.g. stem, branches, twigs and leaves) and tree stem volume (including measurements from the tree stem volume to the height of the first branch or crown base, the volume of the tree stem up to a certain point diameter limit and the total stem volume) have already been developed for several tree species and forest ecosystems in Indonesia. In order to use these allometric models as a reference, a comprehensive study on tree biomass and volume allometric models that already exist for Indonesia is necessary. A study on several tree volume allometric models in Indonesia was conducted by Bustomi et al. (2002); however, it is limited to the tree species found in plantation forests. Keith and Krisnawati (2010) conducted a comprehensive study on research related to the estimation of forest biomass in Indonesia, including the tree biomass allometric models that already existed. The compilation of tree biomass and volume allometric models requires a huge amount of time, energy and cost (particularly for large tree samples). Because of this, allometric models for the estimation of tree biomass (both biomass and volume) that have been developed in Indonesia should be compiled in a database and analyzed to obtain a reference on the
4
Introduction
PY CO AL FIN
02
Methods
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
5
AL
FIN PY
CO
FIN
AL
CO
The compilation of tree biomass and volume allometric models presented in this monograph is based on existing allometric models that have been developed for several tree species and forest ecosystem types in Indonesia. In order to compile these models, a survey and literature study were conducted of more than 250 references that reported or presented the results of studies related to tree biomass and/or volume or model formulation for estimating these dimensions to estimate carbon stock stored in biomass at various types of vegetation and forest ecosystems in Indonesia. Sources of literature studied included national and international publications, in the form of published scientific journals and seminar proceedings, and unpublished research reports, technical reports, student theses and dissertations. The literatures studied in this monograph were limited to literatures issued or published prior to mid-2012. From the above literatures, the study was then limited to only the literature that reported or presented allometric models that were developed from sample trees or field data gathered from the site or location of the research applying the destructive sampling (Figure 1). The destructive method directly measures the biomass by harvesting the sample tree and measuring the actual biomass of every individual component of the sample tree (stem, branch, twig, leaves, roots, flower and fruit if any) by weighing. The literatures that present the result of the estimation of the forest biomass and carbon stock in one location but use the general allometric model such as the one developed by Brown (1997) and Chave et al. (2005), or that which use an allometric model developed in another location (outside the research location) were not included in this monograph. Similarly, mathematical models produced from the relationship of the remote sensing data
(satellite image), like the non-destructive method for the estimation of aboveground biomass, are not included in this monograph. From each literature studied, all information related to the details of the location was recorded: (1) location of the research or location where the sample trees were obtained (province, district, sub-district, village or specific name of the location), (2) geographical position (longitudinal and latitudinal coordinates), (3) condition of the location (forest type, rainfall, temperature, altitude, soil type, land use history), and (4) stand condition (dominant tree species, stand age for plantation forests, year of harvesting for loggedover forests or year when a disturbance occurred (such as burning) for secondary forests, spacing or stand density, stand height, etc.). Aside from these, the time when the research or sample tree collection in the field site was carried out was also recorded. This information (if available from the literature source) was compiled and stored in a database.
PY
2.1 Data Collection
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
7
Stocktaking information through tracking the literature related to tree biomass and volume estimation
Does the literature have an allometric model?
No
PY
Yes
Was the model developed sitespecific?
No
CO
Yes
The literature is included in the analysis of this monograph
Selection of the literatures used for analysis in this monograph
AL
Figure 1.
The literature is included in the database
FIN
For allometric models, the following information was recorded: (1) method of obtaining the sample trees, (2) component or part of the tree biomass measured for the biomass allometric model (Figure 2), (3) type of the tree volume used for the volume allometric model (total height, height of commercial tree or up to diameter of a certain point of the stem) (Figure 3), (4) method for formulation of the allometric model, (5) number of sample trees used to formulate the model, (6) size of the sample trees (diameter and height), (7) variables used to formulate the model, (8) model form (power, logarithm, polynomial, etc.), and (9) statistical parameters of the resulted model. For the biomass, several information was also recorded in the database, including the methods for measuring the green weight of the tree biomass components in the field, taking sub-samples from
8
Methods
every component for drying and weighing in the laboratory, and drying the sub-samples in the laboratory. The value used as input in the biomass allometric model is the biomass defined as the dry weight of the organic material in kilograms. All data compiled in the database were mapped based on the geographic references (longitude, latitude and specific name of the location). If the geographic information was not reported in the literature and only the location name was available, the coordinates of the location were acquired from the administrative map and Google Earth. This information was then spatially overlapped to find the geographic distribution of the available information on the allometric models according to location (island or province) and ecosystem type in Indonesia.
Flower Leaves
Fruit
Stem Twig Branch
PY
St Stump
Stem Volu ume up to 4 cm top diametter limit
Stem m Volume up to 7 cm top diameter limit
Stem V Volume up to 10 cm top dia ameter limit
Merchantablle Volume
Clear Bole Volume
Total Stem Volume
FIN Figure 3.
Stem Volume up to 5 cm to S op diameter limit
Parts of the trees measured for the tree biomass allometric model
AL
Figure 2.
CO
R t Root
Types of volume measured for the tree volume allometric model
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
9
FIN
AL
CO
The existing tree biomass and volume allometric models are very useful for the estimation of forest biomass and carbon stocks in Indonesia. Therefore, model selection in this monograph was not based on location, forest type, tree species, site condition, stand age, sampling method and statistical analysis method used to develop the allometric models. The main considerations in evaluating the tree biomass and volume allometric models are statistical values, including: (1) unit value of the independent variable or predictor variable (X) and dependent variable or response variable (Y), (2) value of parameter coefficient, (3) value of the standard error of the parameter, and (4) value of the determination coefficient (R2) that reflects the proportion of the total variation of Y that can be explained by the variation of X X.. Also, the use of a correction factor in these allometric models was evaluated (Baskerville, 1972; Sprugel, 1983; Snowdon, 1990). The correction factor is
primarily needed to eliminate the bias that is introduced when data transformation is used (e.g. logarithm transformation) in the regression analysis of the allometric model with the least squares method. However, information on the value of the correction factor is not included in the Appendix of this monograph since studies that reported or used the correction factor are minimal. Apart from the criteria above, evaluation was also carried out through testing by accounting the biomass values of individual trees based on the diameter of the sample trees used to formulate the model and comparing them with the estimated biomass curve obtained from the model. An evaluation of the qualitative performance of the model based on biological or logical considerations was also applied in this monograph. Some of the allometric models reported in the literature are not recommended for use. The reasons for this, among others, are that the estimated parameter obtained from the model is not realistic (for example, the parameter value is negative and the form of the tree allometry obtained is not realistic, that is overestimated or underestimated).
PY
2.2 Evaluation of the Allometric Models
10
Methods
PY CO AL FIN
03
Description of the Database
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
11
AL
FIN PY
CO
CO
The source of information of the allometric model presented in this monograph was obtained from 193 literatures (published and unpublished). From these literatures, most of the information was obtained from scientific journals or research reports (61%). Aside from these, 62 literatures (32%) are student theses and dissertations from Indonesian universities while the remaining literatures (7%) are seminar proceedings. The data and information compiled from these various sources are important for metadata analysis (Scargle, 2000) because if it focused only on published scientific journals, research reports or proceedings, 32% of the information collected would not be included in this monograph. Besides this, the information presented would be less comprehensive and probably biased as it would not reflect diverse data and information from a variety of current literature. From the 193 literatures used in this monograph that reported allometric models, 42% presented allometric models to estimate tree biomass (total tree biomass, aboveground tree biomass, and biomass of tree’s components such as stem, branches, twigs, leaves, flowers, fruit, bark, stump, and roots) (Appendix 1) and 58% presented allometric models to estimate tree volume (total tree volume, volume up to crown base or clear bole volume, and volume of the tree up to certain top diameter limit) (Appendix 4). Most (94%) of the allometric models presented in Appendices 1 and 4 of this monograph were reported in the period of 1980–2012 (Figure 4). It is apparent that research interest in tree biomass or volume allometric model development has increased continuously since 1970–1980 up
to present. The development of tree biomass allometric models began rapidly after the year 2000, compared with previous years where only 1-5 literatures reported biomass allometric models. In the period of 2000-2012, about 77% of published literatures presented allometric models for the tree biomass estimation. This development was in line with the increasing need for information on evaluating or estimating biomass and forest carbon stocks as well as its changes as a follow-up of the UN Convention on Climate Change and the Kyoto Protocol (UN, 1998). Furthermore, the negotiations on reducing emissions from deforestation and forest degradation, and the role of conservation, sustainable forest management, and enhancement of forest carbon stock in developing countries (REDD+) during the commitment period postKyoto Protocol also led to more attention being focused on the methodology of biomass and carbon stock estimation (UNFCCC, 2009).
PY
3.1 Source of Information of the Allometric Models
Jumlah Number of Pustaka Literatures
FIN
AL
100 1 90
Volume
80
Biomassa
70 60 50 40 30 20 10 0 1970-1980
Figure 4.
1980-1990 1990-2000 Periodtahun Periode
2000-2012
The number of literatures that presented tree biomass and/or volume allometric models used in this monograph until mid2012
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
13
3.2 Geographical Distribution of the Allometric Models
FIN
AL
CO
PY
Each reference of the location of the tree biomass or volume allometric models developed in Indonesia was classified according to island or province to obtain information on the spatial distribution of the availability of tree biomass
and volume allometric models in Indonesia. This spatial distribution reflects the distribution of the location for sampling trees used to develop the allometric models. From the spatial distribution of the availability of the tree biomass and volume allometric models in Indonesia (Figure 5), it can be seen that most (90%) of the allometric models that have been
Figure 5.
14
Geographical distribution of the availability of tree biomass and volume allometric models that have been developed in Indonesia
Description of the Database
development of tree biomass allometric models was only reported from one location in Sulawesi and two locations in Papua while the development of tree volume allometric models was reported from several locations in Maluku, Nusa Tenggara, Papua and Sulawesi (Figure 5).
FIN
AL
CO
PY
developed came from three islands, i.e. Java, Kalimantan and Sumatra. This is an indication that so far, the location of the research or sample collection of the tree biomass and volume were mostly conducted in these three islands. For islands in the eastern part of Indonesia, the available information on tree biomass and volume allometric models is still relatively limited. The
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
15
3.3 Distribution of the Allometric Models by Ecosystem Type
FIN
AL
CO
Each reference of the allometric model location is categorized according to the ecosystem type, i.e. natural forests and plantation forests. The types of natural forests were then differentiated into dryland forests, peat swamp forests and mangrove forest. If the information was available from the literature source, each type of natural forest ecosystem was classified again according to its condition, primary or secondary. In this monograph, primary forests are forests that are not yet intensively disturbed by human land use activities while secondary forests are forests that are already intensively disturbed by human land use activities, such as fire and harvesting. Plantation forests were differentiated into industrial plantation forests managed by state and private-owned companies (hereafter referred to as plantation forests in this monograph) and community plantation forests (hereafter referred to as community forests). The consideration in the classification of these two types of plantation forests is more on the silvicultural treatment and the management applied. The silvicultural treatment and management of industrial plantation forests are in general more intensive compared to community plantation forests, which would probably influence the production of tree biomass. Aside from the ecosystem types outlined above, heath forests are also included in this study because this type of forest has specific vegetation characteristics (generally stunted trees with thin stems, thick leaves and a low biodiversity
compared to other low dryland forest ecosystem) and its soil is nutrient poor (Whitmore, 1975; MacKinnon et al. 1996; Richards, 1996). Information on several biomass allometric models developed for crop plantations (such as rubber and oil palm) and agricultural plants (such as coffee and banana) are also included in the Appendix of this monograph. If the categories for the above ecosystem types are connected to land use classifications according to the IPCC Guideline (2006) and forest and land use classifications conducted by the Directorate General of Forestry Planning (Ministry of Forestry), then the scope of the allometric models in this monograph according to these two types of classification is shown in Table 1. The IPCC Guideline divided the use of lands into 6 categories for the purpose of reporting the GHG inventory, i.e.: (1) Forest Land, (2) Cropland, (3) Grassland, (4) Wetlands, (5) Settlements, and (6) Other Lands. The Directorate General of Forestry Planning divided the forest covers and land uses in Indonesia into 23 classes that include forested areas and other land use areas (Table 1).
PY
Therefore, survey and literature study from various sources of information (library, research institutions, universities, etc.) throughout Indonesia will be conducted continuously to update the data and information already compiled in the database and analyzed in this monograph.
16
Description of the Database
Scope of the allometric models in this monograph connected to land use categories according to the IPCC Guidelines and Directorate General of Forestry Planning Category by IPCC Guideline
Scope of Category by Directorate allometric models General in this monograph of Forestry Planning
Mangrove Forest Plantation Forest Community Forest Agriculture Estate
Forest Primary Dryland Forest Secondary Dryland Forest Primary Peat Swamp Forest Secondary Peat Swamp Forest Primary Mangrove Forest Secondary Mangrove Forest Plantation Forest Other Land Use Area Shrub-Mixed Dryland Farm Dryland Agriculture Estate Crop Plantation Transmigration Area Rice Field Grassland
Forest Land
Cropland
CO
Forest Ecosystem Dryland Forest; Heath Forest Peat Swamp Forest
From the distribution of the availability of allometric models (biomass and volume) according to the ecosystem type (Figure 8) it can be seen that almost all types of forest ecosystems in Indonesia have available information on tree biomass or volume allometric models although this is not evenly distributed across all sites or islands (Figures 6 and 7). Plantation forests (including community forests) have relatively more information on tree biomass allometric models at about 52% of the total available information on tree biomass allometric models (Figure 8), with the largest distribution in Java (Figure 6). This indicates that research activities related to the estimation of biomass are mostly conducted in plantation forests in Java. This could be because the research interest is higher in this region, with easy access to research locations, and the availability of laboratory facilities are sufficient for analyzing biomass. The dryland forest ecosystem occupies the next rank with about 17% (Figure 8) of available tree biomass allometric models, particularly in Kalimantan and Sumatra where the sample trees were obtained (Figure 6).
PY
Table 1.
Grassland
Shrub
Wetlands
Swamp Swamp shrub
Settlements Other Land
AL
Settlement Area Barren Land Fish Pond Airport Mining Area Water Cloud covered
FIN
-
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
17
PY CO AL FIN Figure 6.
Geographical distribution of the available tree biomass allometric models developed in Indonesia
The majority of the volume allometric models are for the plantation and dryland forest ecosystem types, which cover about 44% and 38% respectively of the total number of tree volume allometric models reviewed in this monograph (Figure 8). The large contribution for these types of forest ecosystem occurred primarily during 1990-2000 when the activity of tree sampling was conducted mostly in plantation forest areas managed by Perum Perhutani in Java and in the production natural forest areas (HPH/IUPHHK) in some
18
Description of the Database
of the provinces of four large islands (Sumatra, Kalimantan, Sulawesi and Papua). The number of locations with available allometric models according to the ecosystem type is also very diverse. The heath forest ecosystem has the smallest representation in the total number of sampling location (1% of the total number of available allometric models), with sampling locations in the provinces of West Kalimantan and Central Kalimantan (Figure 6). This number, although small, can probably represent
PY CO AL FIN
the condition of the heath forests in Indonesia, wherein 77% (of the 32.000 km2 that remains in Indonesia) is located in Kalimantan or about 20% of low dryland forest that remains in Kalimantan (MacKinnon et al., 1996). The peat swamp forest ecosystem type has a representation of 7% of the number of sampling locations for the tree biomass allometric models and 6% for the tree volume allometric models (Figure 8). This number does not represent the condition of the peat swamp forests in Indonesia
that covers an area of 20.6 million ha (10.8% of the land area of Indonesia), spreading across four large islands, i.e. Sumatra (35%), Kalimantan (32%), Papua (30%), and Sulawesi (3%) (Wahyunto et al., 2005). Most (73%) of the allometric models developed in this peat swamp forest ecosystem type were based on sample trees collected from several locations in Riau and Central Kalimantan provinces (Figure 6 and Figure 7). Most of the dryland forest ecosystem can be found in Kalimantan, Sulawesi and Papua.
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
19
PY CO AL FIN Figure 7.
Geographical distribution of the available tree volume allometric models developed in Indonesia
Although the total number of available tree biomass and volume allometric models for this type of ecosystem occupy the second rank after the plantation forest ecosystem (Figure 8), the locations with available information on biomass allometric models do not represent the large distribution of dryland forest areas in those three islands, considering that the biodiversity
20
Description of the Database
and vegetation structures in this type of forest ecosystem are very diverse, from lowland to highland forests. The database indicates that the availability of allometric models for highland forest ecosystem over 1000 m above sea level is relatively very minimal. A wide area of mangrove forest vegetations can be found in Papua, covering more than half of
PY CO AL FIN
the total extent of mangrove forests in Indonesia (Ruitenbeek, 1992). However, the availability of allometric models for the mangrove forest ecosystem in this area is very low, except for several tree volume allometric models that have been developed in West Papua (Figure 7). Of the total 15 literatures available on the tree biomass and volume allometric models for mangrove forest
ecosystem type, 77% of the models were developed based on sample trees collected from the mangrove forest areas in the provinces of West Kalimantan and Riau (Figures 6 and 7).
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
21
60 Volume
Number of allometric models (%)
50
Biomass
40
30
20
PY
10
0
CO
Figure 8.
Ecosystem type
(Schima wallichii) (6%), tusam (Pinus merkusii) Schima wallichii (5%) and sengon (Paraserianthes ( falcataria) (5%). Apparently, the development of volume allometric models has been faster than that of biomass allometric models (Figure 10); it includes more than 70 species of 42 genera. From the total number of available tree volume allometric models, 89% were developed for specific species, both tree species growing in natural forests and in plantation forests. The remaining 11% of the models was developed for mixed-species, including species from Dipterocarpaceae family, non-Dipterocarpaceae, commercial woods, Shorea genera, non-Shorea, etc. Most of the tree volume allometric models for natural forests were developed for meranti (Shorea sp.) (19%), followed by keruing (Dipterocarpus sp.) (5%). For plantation forests, the species with the most available tree volume allometric models are Acacia spp. (mainly A. mangium and A. auriculiformis) (12%), Pinus merkusii (6%) and Eucalyptus sp. (E. deglupta and E. grandis) (4%).
AL
3.4 Scope of the Allometric Models by Species
FIN
Of the total number of available biomass allometric models, 47% were developed for natural forest ecosystem types (dryland forest, peat swamp forest and mangrove forest), and 53% were developed for plantation forest ecosystems (including community forests). The number of species included in the tree biomass allometric models presented in this monograph is about 47 species, including 24% mixed-species of trees (Figure 9). The list of tree species included in the biomass allometric models developed for mixedspecies in several forest ecosystems can be seen in Appendix 2. Of the tree biomass allometric models developed for specific species (Figure 9), it seems that many allometric models were developed for plantation forests, particularly for mangium (Acacia mangium) (14%), followed by puspa
22
Description of the Database
Distribution of the available tree biomass and volume allometric models by ecosystem type
FIN
AL
CO
PY
Acacia auriculiformis Acacia crassicarpa Acacia mangium Agathis loranthifolia Avicennia marina Borassodendron borneensis Bruguiera parviflora Bruguiera sexangula Bruguiera spp. Bruguiera gymnorrhiza Cotylelobium burckii Coffea sp. Dalbergia latifolia Dipterocarpaceae Dipterocarpus sp. Dipterocarpus kerrii Elaeis guineensis Elmerrillia celebica Elmerrillia ovalis Eucalyptus grandis Ficus sp. Geunsia pentandra Gigantochloa sp. Gmelina arborea Gonystylus bancanus Hevea brasiliensis Hopea sp. Intsia sp. Macaranga gigantea tteea a Musa paradisiaca diis d isiia acca a Palaquium sp. qu q uiiu um m ssp p.. Paraserianthes eess fa ffalcataria allcca atta arriia a Pi P in nu uss m me errkku ussiiii Pinus merkusii Piper aduncum Pi P ipeerr a ip ad du un nccu um m Po P om meeti tia a ssp p.. Pometia sp. Rh R hiiz iz o op ph ho orra aa ap piiccu ulla atta a Rhizophora apiculata Rh R hiiz iz o op ph ho orra am mu uccrro on na atta a Rhizophora mucronata Rh R hiiz iz o op ph ho orra a ssp p Rhizophora sp. Schima wallichii SSc ch hiim ma aw wa allllii SSh ho o Shorea sp. Shorea SSh ho orreea a leprosula SSh ho o Shorea parvifolia Swietenia macrophylla Swietenia mahagony Tectona grandis Xylocarpus granatum Mixed Species
0
5
10
15
20
25
Number of biomass allometric models (%)
Figure 9.
Distribution of the available tree biomass allometric models by species
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
23
FIN
AL
CO
PY
Acacia Agathis Alstonia Altingia Bischofia Bruguiera Calophyllum Dactylocladus Dalbergia Diospyros Dipterocarpus Disoxylum Dryobalanops Duabanga Durio Eucalyptus Eusideroxylon Gmelina Gonystylus Heritiera Hopea Intsia Manilkara Melanorrhoea Palaquium Paraserianthes Parashorea Peronema Pinus Podocarpus uss u Pometia meeti m tia a Pterocarpus occa o arrp rpu uss Pterospermum rro ossp peerrm mu um m Rhizophora Rh R hiiz izo op ph ho orra a Schima SScch hiim ma a SSh ho orreea a Shorea Swietenia SSw wiieetteen niia a Syzygium SSy yzyyg yz giiu um m TTectona Te ecctto on na a TTimonius Ti im mo on niiu uss To To Toona Vatica SSh ho orreea a & Gonystylus G Shorea SSh ho orreea a&D Shorea Dipterocarpus Non Shorea Non Dipterocarpaceae Commercial Timbers Dipterocarpaceae Dipterocarpaceae Non Shorea Mixed Species
0
3
6
9
12
Number of volume allometric models (%)
Figure 10. Distribution of the available tree volume allometric models by species
24
Description of the Database
15
PY CO AL FIN
04
Allometric Models
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
25
AL
FIN PY
CO
4.1 Tree Biomass Allometric Models where X = independent variable (Dbh, or combination of Dbh and height), and Y = dependent variable (biomass); a = allometric model coefficient; and b = allometric model exponent. About 27% of the models are presented in the form of 'linear logarithmic' mathematical
PY
relationship:
where log (Y ((Y) Y)) is a natural logarithmic transformation (ln) or a base-10 logarithmic transformation (‘log 10’ or commonly denoted
CO
The total number of tree biomass allometric models presented in this monograph is 437 (from 81 literatures). These have been compiled from various models developed separately for trees’ biomass components and are classified by ecosystem type, tree species, and location (province) (Appendix 1). Most (88%) of the tree biomass allometric models that have been developed in Indonesia are for estimating aboveground tree biomass, either total aboveground tree biomass or the biomass of an individual tree’s components above the ground (Figure 11). There are still few allometric models (less than 12%) developed for estimating belowground tree biomass (roots). These models are mainly developed from sample roots of small trees. This is because the root biomass sampling is difficult and takes time, effort, and considerable costs.
as ‘log’) from biomass data (total tree biomass including root, total aboveground biomass, or biomass of each component of a tree ), log ((X) is Dbh (either natural logarithmic transformation (ln) or logarithmic transformation with base 10
Total Biomass Aboveground Biomass + Stilt Root Aboveground Biomass Fruit Flower + Fruit Leaves Twig Branch + Twig g Branch ncch n h Bark Ba B arrkk Stem Stump m-S St tu um mp p Stem St S te em m Cl C le ea arr B Bo olle eS St te em m Clear Bole Stem Stem Branch St S te em m+B Br ra an ncch h Stump Sttu S um mp p Stilt Sti S tilltt Root Ro R oo ott Root cm) Ro R oo ott ((D D > 0.5 0..5 0 5 ccm m)) (D < 0.5 0..5 0 5 cm) ccm m)) Roott (D Root Ro R oo ott
AL
(log)), while a and b are regression coefficients. Most biomass allometric models in this
monograph are presented in the form of non-linear
FIN
mathematical relationship (power function), but in
0
20
40
practice most of the researchers apply logarithmic transformations in the process of fitting the regression model using the least squares method in order to create a linear regression relationship and then back-transformed into the original arithmetic
60
80
100
Number of allometric models (%)
Figure 11. Distribution of the available tree biomass
allometric models according to the part of tree biomass measured
value to estimate tree biomass. Transformation of biomass value into a logarithmic value in the regression with the least squares method leads to bias when logarithmic value is back-transformed to the original unit (Baskerville, 1972; Sprugel,
Based on the models developed in Indonesia, tree biomass allometric models are usually presented in the form of power function:
1983; Snowdon, 1990). Nevertheless, this bias can be avoided by multiplying the result with a correction factor (Sprugel, 1983; Parresol, 1999):
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
27
Or If using a base-10 logarithmic transformation.
where
is the estimated biomass value,
average value of biomass, and error variance
is the
is the value of
FIN
AL
CO
The other alternative to avoid linear logarithmic transformation is the direct application of a nonlinear regression method, which can be found in several statistical softwares. Almost all of the tree biomass allometric models analyzed in this monograph use a Dbh (diameter at breast height) variable, or a combination of Dbh and tree height. About 82% of the biomass allometric models use only one variable, i.e. Dbh, as a tree biomass estimator, while the remaining (18%) uses a tree height variable in addition to the diameter variable as the tree biomass estimators. The forms of mathematical relationship used in tree biomass allometric models are shown in Appendix 1. The number of sample trees used to develop biomass allometric models varied from 3 to 200 trees, with most of the models using 20-30 trees on average (Appendix 1). However, the allometric models with a small number of sample trees ((N < 10) are not recommended to be used for estimating tree biomass. According to sources of literature, the majority of models used sample trees from a single stand, but some used sample trees from several similar stands, spreading across one or many research locations. The range of diameter of sample trees used to develop the biomass allometric models also varied (Appendix 1). For the dryland forest ecosystem, diameter of sample trees used were 1 - 130 cm, with the small diameter sample trees (Dbh maximum <10 cm) were commonly used to develop biomass allometric models for secondary dryland forest or
post-fire forest. Biomass allometric models for the peat swamp forest ecosystem used sample trees with diameter of 2 - 75.1 cm; with a minimum Dbh of 2 cm is commonly used for secondary peat swamp forest. The sample tree diameters for the mangrove forest ecosystem were 1.1 - 67.1 cm, with a maximum Dbh < 10 cm encountered in the biomass allometric models for the mangrove species in areas planted after harvesting activity or in rehabilitation forests. For plantation forest ecosystems, the range of diameter used was about 1- 95 cm; small trees were commonly used to develop biomass allometric models in young plantation forests. The variety of sample tree diameters shows that the range of diameter needs to be considered when using existing tree biomass allometric models. The extrapolation or use of allometric models to estimate tree biomass outside the diameter range of the sample trees should be conducted with caution since the resulting estimated value could be under- or overestimate. The value of the determination coefficient ((R2) from the regression models varied. It is commonly (98%) in the range of between > 0.5 and close to 1.00. Lower values of R2 were also found in this monograph, particularly for tree biomass allometric models for leaves, flowers and fruits, with a few sample trees and small diameters.
PY
If using a natural logarithmic transformation
28
Allometric Models
4.2 Tree Volume Allometric Models Tree volume allometric models that have been developed in Indonesia are presented in Appendix 4, classified according to ecosystem type, tree species and location (province). In total, 370 volume allometric models are compiled in this monograph, consisting of total stem volume model (45%), stem volume up to the first branch and stem volume up to the crown base (31%), and stem volume up to a certain top diameter limit (21%). The rest are models for estimating volume
Total Stem Volume Crown Volume Branch Volume Fuelwood Volume Stem Volume tdl4 Stem Volume tdl5 Stem Volume tdl7 Stem Volume tdl10 Merchantable Volume Clear Bole Stem Volume 0
10
20
30
40
50
Number of alllometric models (%)
Figure 12. Distribution of the available tree volume allometric
CO
models according to volume types (tdl on stem volume followed by numbers indicates that the model was developed for estimating stem volume up to the top diameter limit of the stem, i.e. 4 cm, 5 cm, 7 cm, and 10 cm)
al., 1995; Krisnawati and Bustomi, 2002; 2004). Nevertheless, the additional time, staff and budget required for application in the field need to be considered if the tree height variable has to be included. In fact, not all of the literature sources of tree volume allometric models reported the number of trees sampled in order to develop the model. According to literatures that reported this information, the number of sample trees varied from 36 to 2392, with 50 - 150 trees commonly used (Appendix 4). The range of diameter of sample trees for each volume allometric model also varied from 5.0 to 50.7 cm. The diameter range of sample trees was 10 - 150.7 cm for dryland forest ecosystem; 19 -110 cm for peat swamp forest ecosystem; 10 57.6 cm for mangrove forest ecosystem; and 5 110 cm for plantation forest ecosystem (Appendix 4). The variation of diameter indicates that the range of diameter needs to be considered when using volume allometric model to estimate tree volume and biomass.
PY
of parts of a tree, such as branches, crown and firewood (Figure 12).
The value of the determination coefficient ((R2) resulted from volume estimation regression models was commonly high, from 0.62 to almost 1.00. This shows that over 60% of the variation of volume data can be explained by the variation of diameter (in the case of only one variable used as an estimator) or variation of diameter and height data (in the case of a combination of two variables used, diameter and height). Of those determination coefficients, over 95% of tree volume allometric models had a determination coefficient of over 0.90.
FIN
AL
Similar with the tree biomass allometric models, most of the volume allometric models analyzed in this monograph were presented in the form of non-linear function (power function), although during the process of model fitting, most of the researchers applied a logarithmic transformation and then back-transformed the value into an arithmetic value to estimate tree volume. The bias introduced when the logarithmic transformation was used can be avoided by multiplying the estimated value with a correction factor as explained previously in the biomass allometric models (Sub-Section 4.1). Approximately 65% of the tree volume allometric models developed used a single variable, i.e. diameter at breast height (Dbh) as a volume estimator, while 35% used a combination of Dbh and tree height variables. The result of the regression relationship analysis of tree volume allometric models shows that using additional height variables aside from diameter can improve the prediction of 1 - 3% compared to using the diameter variable only (Wahjono et
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
29
AL
FIN PY
CO
PY CO AL FIN
05
Tree Biomass and Volume Estimates
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
31
AL
FIN PY
CO
FIN
AL
CO
There is a high variation of tree biomass estimates between the natural forest ecosystem types, including dryland forest, peat swamp forest and mangrove forest ecosystems (Figure 13). This variation of biomass estimates was also found within a single type of ecosystem. For instance, trees with the same diameter (Dbh = 40 cm), the aboveground tree biomass estimated from the biomass allometric models varied between 431 and 1590 kg/tree for mixed-species that existed in the dryland forest ecosystem (Figure 13a), between 887 and 1743 kg/tree for mixedspecies in the peat swamp forest ecosystem (Figure 13b), and between 645 and 2748 kg/tree for several dominant tree species in the mangrove forest ecosystem (Figure 13c). The larger the tree diameter, the bigger the difference in biomass value estimated by these allometric models for these three types of ecosystem (Figure 13). The variety of tree biomass estimates was significant. Aside from the different types of allometric models used, other factors also inf luenced the results, such as ecological condition, environment, location and the diverse anthropogenic factors in those three types of
ecosystem that might influence the biomass value of a tree. From the three types of natural forest ecosystem compared (Figure 13a-c), it can be seen that variation in the biomass estimates of the trees in peat swamp forest was considerably less compared to the other two types of natural forest. However, this variation was only represented by five available biomass allometric models that had been developed in Riau, South Sumatra and Central Kalimantan. The composition of flora, species, and the growth rate of trees in each ecosystem type also contributed to the development of tree biomass. The varied estimation values were also found in the tree volumes within and across those three ecosystem types (Figure 14). Depending on the volume allometric model used, the value of volume estimates on trees with the same diameter and from the same ecosystem type showed variation. As an example, a tree with a diameter of 50 cm gave a volume of 1.9 - 2.4 m3 for mixed-species in the dryland forest ecosystem (Figure 14a), from 2.4 to 2.7 m3 for mixed -species in the peat swamp forest ecosystem (Figure 14b), and from 1.3 to 2.2 m3 for some dominant species in the mangrove forest ecosystem (Figure 14c). However, several volume allometric models for dryland forest and peat swamp forest ecosystems gave relatively consistent estimates of tree volume (Figure 14a-b).
PY
5.1 Variability of tree biomass and volume estimates within natural forest ecosystem
Aboveground Biomass (kg/tree)
5000 Adinugroho (2009)
(a) Dryland Forest (DLF)
4000
Ambagau (1999) Basuki et al. (2009)
3000
Ketterings et al. (2001) Samalca (2007)
2000
Thojib et al. (2002) 1000
Yamakura et al. (1986) Hashimoto et al. (2004)
0 0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 Dbh (cm)
PY
(b) Peat Swamp Forest (PSF)
CO
Istomo (2006)
3000 2000 1000 0 0
5
AL
Aboveground Biomass (kg/tree)
5000 4000
Jaya et al. (2007) Novita (2010) Dharmawan et al. (2012) Widyasari (2010)
10 15 20 25 30 35 40 45 50 55 60 65 70 Dbh D bh (cm) (cm)
5000
oorest rest (MF) (MF)
Aboveground Biomass (kg/tree)
FIN
((c) c) M
4000
Am B Bg R Ra Ra Xg
3000 2000
: Avicenia marina : Bruguiera sp. : Bruguiera gymnorrhiza : Rhizophora sp. : Rhizophora apiculata : Rhizophora mucronata : Xylocarpus granatum
1000
Ra (Amira, 2008) Am (Dharmawan & Siregar, 2008) Ra (Hilmi, 2003) Rm (Hilmi, 2003) B (Hilmi, 2003) Rm (Sukardjo & Yamada, 1992) Bg (Krisnawati et al., 2012) Xg (Talan, 2008)
0 0
5
10 15 20 25 30 35 40 45 50 55 60 65 70
R (Supratman, 1994)
Dbh (cm)
Figure 13. Aboveground tree biomass estimated from various biomass allometric models for dryland forest, peat swamp Figure 13. forest Aboveground tree biomass estimated from various biomass allometric models for dryland and mangrove forest ecosystem types (References are based on Appendix 3) forest, peat swamp forest and mangrove forest ecosystem types (References are based on Appendix 3) 34
Tree Biomass and Volume Estimates
1
6 Broadhead (1995) Direktorat Inventarisasi Hutan (1990b) Pusat Inventarisasi Hutan (1985) Pusat Inventarisasi Hutan (1986a) Pusat Inventarisasi Hutan (1986b) Pusat Inventarisasi Hutan (1986c) Pusat Inventarisasi Hutan (1988) Wiroatmodjo (1995) Direktorat Inventarisasi Hutan (1990d) Direktorat Inventarisasi Hutan (1990h) Direktorat Inventarisasi Hutan (1990i)
Tree Volume (m3)
(a) Dryland Forest (DLF) 4
2
0 0
5
10 15 20 25 30 35 40 45 50 55 60 65 70
6 (b) Peat Swamp Forest (PSF)
CO
Direktorat Inventarisasi Hutan (1990c)
4
Rachman & Abdurrochim (2000) Soemarna & Suprapto (1971)
2
Direktorat Inventarisasi Hutan (1991a)
0 0
5
AL
Tree Volume (m3)
PY
Dbh (cm)
10 15 20 25 30 35 40 45 50 55 60 65 70 Dbh D bh ((cm) cm)
6
Tree Volume (m3)
FIN
(c)) M Mangrove angrove Forest Forest ((MF) MF) R : Rhizophora sp. Ra : Rhizophora apiculata Rc : Rhizophora congjungata
4
2
Ra (Marlia, 1999) Rc (Sjafe’i, 1972) R (Rachman & Abdurrochim, 1989)
0 0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 Dbh (cm)
Figure 14.Tree volume estimated from various volume allometric modelsfor dryland forest, peat Tree volume estimated from various volume allometric models for dryland forest, peat swamp forest and Figure 14. mangrove forest ecosystem types (References are based on Appendix 5) swamp forest and mangrove forestecosystem types (References are based on Appendix 5) MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
2
35
FIN
AL
CO
A variety was also found in the tree biomass and volume values estimated from the allometric models developed for tree species in plantation forests, either for fast growing species, such as Acacia mangium, Paraserianthes falcataria and Eucalyptus sp., or slow growing species such as Pinus merkusii, Swietenia macrophylla and Tectona grandis (Figures 15 and 16). From the three species compared, for each category of growth rate in the plantation forest ecosystem (Figures 15 and 16), this shows that the biomass allometric models were relatively consistent in predicting aboveground tree biomass compared to the volume allometric models with the variation of tree biomass for the tree species were relatively smaller. However, the variety was only reflected by the three biomass allometric models, which used sample trees of small diameter (< 50 cm). In general, a larger variation in biomass from allometric models occurs in estimated values as the tree diameter grows. A variety in tree biomass and volume estimates was also found for allometric models developed for trees of the same species. Figures 17 and 18 show examples of the estimated values of tree biomass and volume allometric models for
Acacia mangium and Pinus merkusii developed for several locations in Indonesia. Although the same methods were used to develop the allometric models, the variety of biomass and volume estimates resulted from these models was mainly caused by the variation in environmental condition and anthropogenic factors in Indonesia. The difference in methodology used for sampling and field measurement may also influence the result of biomass and volume estimation. Result of analysis of the tree biomass and volume allometric models conducted for Acacia mangium and Pinus merkusii (Figure 17) indicates that different allometric models used to estimate biomass resulted in a variety of tree biomass estimates for the same diameters, even though for some models (such as Pinus merkusii) merkusii) they were developed using sample trees taken in nearby locations (Figure 17). However, the difference in models used did not indicate a significant difference in the volume estimation between locations (Figure 18).
PY
5.2 Variability of tree biomass and volume estimates within plantation forest ecosystem
36
Tree Biomass and Volume Estimates
Aboveground Biomass (kg/tree)
3000 (a) Fast growing species
2500 2000
Mangium (Heriansyah et al., 2003)
1500
Sengon (Rusolono, 2006) Ekaliptus (Onrizal et al., 2009)
1000 500 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Dbh (cm)
(b) Slow growing species
CO
2500 2000
Jati (Hendri, 2001)
1500
Tusam (Hendra, 2005)
1000
Mahoni (Adinugroho & Sidiyasa, 2006)
500 0 0
AL
Aboveground Biomass (kg/tree)
3000
PY
0
5 10 15 20 25 30 35 40 45 50 55 60 65 70
FIN
Dbh (cm)
Figure 15. Aboveground tree biomass estimated from various biomass allometric models for fast-growing and slowFigure 15. growing Aboveground tree(References biomassare estimated from various biomass allometric models for fast tree species based on Appendix 3) growing and slowgrowing tree species (References are based on Appendix 3)
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
37
6
Tree Volume (m3)
(a) Fast growing species Mangium (Siswanto & Harbagung, 2004)
4
Sengon (Bustomi et al., 2008) Ekaliptus (Direktorat Inventarisasi Hutan, 1990g)
2
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
PY
0
Dbh (cm) 6
CO
Tree Volume (m3)
(b) Slow growing species 4
Jati (Pramugari, 1982) Mahoni (Wahjono & Sumarna, 1987)
2
0 0
AL
Tusam (Imanuddin, 1999)
5 10 15 20 25 30 35 40 45 50 55 60 65 70 Dbh (cm)
FIN
Figure16. 16. Tree estimated from various volume allometric for fast-growing andfast slow-growing Figure Treevolumes volume estimated from various volume models allometric models for growingtree andspecies (References are based on Appendix 5) slowgrowing tree species (References are based on Appendix 5)
38
Tree Biomass and Volume Estimates
Aboveground Biomass (kg/tree)
3000 (a) Acacia mangium
2500
JABAR (Heriansyah et al., 2003)
2000
JABAR (Purwitasari, 2011)
1500
SUMSEL (Wicaksono, 2004)
1000
KALTIM (Hardjana, 2011a) JABAR (Heriyanto & Siregar, 2007a)
500 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Dbh (cm)
(b) Pinus merkusii
CO
2500
JABAR (Siregar, 2007b)
2000
JABAR (Heriansyah et al., 2003)
1500
JABAR (Hendra, 2005)
1000 500 0 0
AL
Aboveground Biomass (kg/tree)
3000
PY
0
JABAR (Heriyanto & Siregar, 2007)
5 10 15 20 25 30 35 40 45 50 55 60 65 70
FIN
Dbh (cm)
Figure 17. Aboveground tree biomass for (a) Acacia mangium and (b) Pinus merkusii estimated from various biomass Figure 17.allometric Aboveground tree biomass for (a) Acacia(References mangium merkusii estimated from models developed from several locations areand(b) based onPinus Appendix 3) various biomass allometric models developed from several locations(References are based on Appendix 3)
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
39
6 (a) Acacia mangium
Tree Volume (m3)
JABAR (Setiawan, 1995) 4
KALBAR (Siswanto & Harbagung, 2004) KALSEL (Imanudin & Bustomi, 2004)
2
SUMSEL (Sumarna & Bustomi, 1986)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
PY
0
Dbh (cm) 6
CO
JABAR (Imanuddin, 1999)
4
JABAR (Pangaribuan, 1990) JATENG (Sukmana et.al., 1976)
2
0
JATIM (Suharlan et al., 1977)
5 10 15 20 25 30 35 40 45 50 55 60 65 70
FIN
0
AL
Tree Volume (m3)
(b) Pinus merkusii
Dbh (cm)
Figure 18. Tree volumes for (a) Acacia mangium and (b) Pinus merkusii estimated from various allometric volume models Figure 18. Tree volumes for (a)locations Acacia(References mangiumare and (b)on Pinus merkusii estimated from various developed from several based Appendix 5) allometric volume models developed from several locations(References are based on Appendix 5)
40
Tree Biomass and Volume Estimates
PY CO AL FIN
06
The Use of Allometric Models for Estimating Biomass
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
41
AL
FIN PY
CO
Approach-1 is used when the tree biomass allometric model is available for a species or ecosystem type to be estimated in a certain site (species species or ecosystem and sitespecific model).. If the biomass allometric
PY
FIN
AL
1.
model for a certain species or ecosystem type in a certain site is available, the next step is to identify whether the range of diameter (Dbh) of trees from forest inventory has similar diameter range of the sample trees used to develop the biomass allometric model. If the trees’ diameter is in the same range as the sample trees, then the biomass allometric model can be applied directly to estimate the tree biomass. The biomass allometric models that can be used to estimate tree biomass based on the species or ecosystem type using Approach-1 are presented in Table 2. The (aboveground) stand biomass can then be estimated by summing the biomass from individual trees that make up the stand. [[Note Note: if the diameter of the trees from forest [Note: inventory is out of the diameter range of the sample trees, then validation is required to test the estimated values of tree biomass. If the estimated value shows a tendency to be an over- or underestimate, then Approach-2 can be applied].
CO
The available tree biomass and volume allometric models are very useful for estimating the forest biomass and carbon stocks in Indonesia, despite the variability of estimates produced by the models. The tree biomass and volume allometric models compiled in this monograph can be applied directly to forest stand inventory to estimate the biomass and carbon stocks in a certain location by using only measurable tree parameters, such as Dbh and height, with some conditions based on the approaches used. Figure 19 presents a sequence diagram of approach or methodology in using allometric models for estimating aboveground tree biomass and then estimating aboveground stand biomass. In general, the diagram in Figure 19 can be explained by several approaches as follows:
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
43
1
1
FOREST INVENTORY DATA FOREST INVENTORY DATA Species, Diameter Height (H)) (Tree (Tree Species, Diameter (D),(D), andand Height (H))
2
2
11 11
Is the biomass Is the biomass allometricallometric model model available available on the site? on the site?
Yes 3
Yes Yes
3
8
PY No No No
9
AL
Is the D distribution Is the D distribution of inventory of inventory in the in the range of sample range of sample trees’for D used trees’ D used the for the biomass allometric biomass allometric model? model?
9
Is the tth he eD Is d di distribution the is sttrri Dib bu distribution uttiio on n nv n ve en ntto or ry y iin n tth he ein the of inventory of inventory the range sample ofpllsample e range off s o sa am mp e us u se ed d orr for trees’ D trees’ used D ffo for used biomass biomass allometric allometric b llo om me et trriic c mo m od de e model pe p ed d on on model developed developed other site? other site? ot o t
No No
5
No
Yes
5
FIN
USE ET TH THE HE EB BI BIOMASS USE IO OM MA THE AS SS SBIOMASS ALLOMETRIC ALLOMETRIC LL L LO OM ME ET TR RIIC C MODEL MO M OD DE EL L MODEL B = f ((D D)),, BB== ff ((D D,, H H) (D), (D, (D), B) = f (D, H)
6
13 13
Is the D distribution Is the D distribution of inventory in the of inventory in the range of sample range of sample trees’ D used the trees’ D used forfor the volume allometric volume allometric model? model?
No No
No No Yes Yes
Yes Yes
10 1 0
10 USE THE USE BIOMASS THE BIOMASS ALLOMETRIC ALLOMETRIC MODEL MODEL AVAILABLE AVAILABLE ON OTHER ON OTHER SITE SITE
No No
Yes Yes
Yes es e s Yes
4
Yes
Was volume Was Wa W as s tth the he ethe volume allometric model allllo a om me ettrriic c model allometric developed developed thethe de d ev ve ello op pe ed d fforfor same sa s am me es sp p species/ same species/ ecosystem onon thethe e coecosystem syst site? site?
Is a biomass Is a biomass allometric allometric modelmodel available available on other on other site site that has that the has same the same species/ecosystem species/ecosystem of mo off the site? the site?
No
Yes
12 1 2 12
8
CO
No
4
Is the volume Is the volume allometric model allometric model available site? available on on thethe site?
No
Yes
Was the biomass Was the biomass allometricallometric model model developed developed for the for the same species/ same species/ ecosystem ecosystem on the on the site? site?
Yes
No
14 14 THE VOLUME USEUSE THE VOLUME ALLOMETRIC MODEL ALLOMETRIC MODEL = f (D), f (D, V =V f (D), V =Vf =(D, H) H)
B = f (D), B =Bf =(D), f (D, B =H)f (D, H)
6
ABOVEGROUND TREE BIOMASS (kg) ABOVEGROUND TREE BIOMASS (kg)
7
7
Figure 19. The diagram presenting the procedures of the use of available allometric models for estimating tree biomass
44
The Use of Allometric Models for Estimating Biomass
23 23
No No
25
AreAre both both treetree D and D and H H data data available? available?
25
DevelopDevelop a new allometric a new allometric model based modelon based on
No No
SNI 7725:2011 SNI 7725:2011
YesYes 24 24
Is a volume volume allometric allometric model model available available on on other othersite site that that has has the the same same species/ecosystem species/ecosystem ofof the site? site?
USE USE THETHE GEOMETRIC GEOMETRIC FORMULA FORMULA
PY
20 20
V =V¼π = ¼π x D2xxDH2 xx FH x F
No No Yes Yes Is Is the the D distribution distribution of of inventory inventory in inthe the range range of of sample sample trees’ trees’ D used used for forthe the volume volume allometric allometric model model developed developedon on other other site? site?
No No Yes Yes
16 16
No No
Is s ttr tree Is re ee etree BEF BE B EF FBEF va v value allu ue value e av a va aiavailable? illa ab blle e? ? available?
YesYes Ye Yes
18
USE US U SE E USE TH T THE HE ETHE FORMULA FO F O FORMULA
FIN
USE USE THE THE VOLUME VOLUME ALLOMETRIC ALLOMETRIC MODEL MODEL AVAILABLE AVAILABLE ON ONOTHER OTHER R SITE SITE
No
YesYes
17 1 7 17
22 22
No N o
AreAre wood wood density density datadata available? available?
AL
21 21
CO
15 15
B =BV= WD x WD x BEF x tree BEFtree tree ttr re ee eVx tree
18
19
USE THE USEFORMULA THE FORMULA B = Σ(V Btree =x Σ(V WD) x WD) x tree x BEFstand BEFstand
19 USE THEUSE FORMULA THE FORMULA B = VstandBx=BCEF Vstand x BCEF
((D D, ,H H) ) VV = = f (D), (D), V V ==ff(D, (D, H)
ABOVEGROUND ABOVEGROUND STAND STANDBIOMASS BIOMASS (ton/ha) (ton/ha)
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
45
Table 2.
Biomass allometric models that can be used to estimate aboveground tree biomass according to the main ecosystem type
Ecosystem Type
Tree Species
Location
Allometric models
No. of sample trees
DBH (cm)
R2
Sources
KALTENG
lnAGB = -3.408 + 2.708 lnDb
40
1.1-115
0.98
Anggraeni (2011)
NATURAL FOREST DLF
Mixed Mixed
KALTIM
lnAGB = -1.201 + 2.196 lnD
122
6-200
0.96
Basuki et al. (2009)
Intsia sp.
Papua
lnAGB = - 0.762 + 2.51 logD
13
5.5-40
0.99
Maulana and Asmoro (2011b)
DLF
Pometia sp.
Papua
logAGB = -0.841 + 2.572 logD
15
5-40
0.99
Maulana and Asmoro (2011a)
DLFs
Mixed
Jambi
lnAGB = -2.75 + 2.591 lnD
29
7.6-48.1
0.95
Ketterings et al. (2001)
DLFs
Mixed
Jambi
AGB = 0.11ρD2+0.62
DLFs
Mixed
KALTIM
AGB = 0.19999 D2.14
DLFs
Mixed
Jambi
AGB = 0.0639 D2.3903
DLFs
Schima wallichii
SUMSEL
AGB = 0.459 D1.364
29
7.6-48.1
63
2-24.2
0.93
Adinugroho Adinugroho (2009)
21
10.3-48
0.97
Thojib et al (2002)
15
3-24.6
0.92
Salim (2006)
CO
PY
DLF DLF
nda
Ketterings et al al. (2001)
Mixed
KALBAR
lnAGB = -1.861 + 2.528 lnD
12
2.55-30.3
0.99
Onrizal (2004)
Avicennia marina
JABAR
AGB = 0.1848 D2.3524
47
6.4-35.2
0.98
Darmawan & Siregar (2008)
MF
Bruguiera gymnorrhiza
KALBAR
logAGB = -0.552 + 2.244 logD
33
5-60.9
0.99
Krisnawati et al. (2012)
MF
Rhizophora apiculata
KALBAR
logAGB = -1.315 + 2.614 logD
37
2.5-67.1
0.96
Re-analyzed from Amira (2008)
MF
Xylocarpus granatum
KALBAR
logAGB = -0.763 + 2.23 logD
30
5.9-49.4
0.95
Talan (2008)
PSF
Mixed
KALTENG
AGB = 0.107 D2.486
nda
2-35
0.90
Jaya et al. (2007)
PSFs (post-fire)
Mixed
SUMSEL
AGB = 0.153 D2.40
20
2-30.2
0.98
Widyasari (2010)
PSFs (post-logging)
Mixed
SUMSEL
AGB = 0.206 D2.451
30
5.3-64
0.96
Novita (2010)
FIN
AL
HF MF
PLANTATION FOREST PF
Acacia auriculiformis
DIY
AGB = 0.078 (D2H)0.902
10
nda
0.96
BPKH Wil. XI & MFP II (2009)
PF
Acacia crassicarpa
SUMSEL
AGB = 0.027 D2.891
10
6-28
0.96
Rahmat (2007)
PF
Acacia mangium
JABAR
AGB = 0.199 D2.148
22
1.4-18.9
0.99
Heriyanto & Siregar (2007a)
PF
Acacia mangium
SUMSEL
AGB = 0.070 D2.58
30
8.69-28.3
0.97
Wicaksono (2004)
PF
Dalbergia latifolia
DIY
AGB = 0.7458 (D2H)0.6394
10
nda
0.89
BPKH Wil. XI & MFP II (2009)
PF
Eucalyptus grandis
SUMUT
AGB = 0.0678 D2.5794
18
2.4-27.2
0.99
Onrizal et al (2008; 2009)
PF
Gmelina arborea
KALTIM
AGB = 0.06 (D2H)0.88
24
nda
0.98
Agus (2002)
PF
Paraserianthes falcataria
JABAR
AGB = 0.1126 D2.3445
34
2-30
0.94
Siringoringo & Siregar (2006)
46
The Use of Allometric Models for Estimating Biomass
Location
Allometric models
No. of sample trees
DBH (cm)
R2
Sources
PF
Paraserianthes falcataria
JATENG
logAGB = -1.239 + 2.561 logD
30
< 43.8
0.97
Rusolono (2006)
PF
Paraserianthes falcataria
JATIM
AGB = 0.3196 D1.9834
35
16.6-31.2
0.87
Siregar (2007a)
PF
Pinus merkusii
JABAR
AGB = 0.0936 D2.4323
80
0.4-44
0.95
Siregar (2007b)
PF
Pinus merkusii
JABAR
logAGB = -0.686 + 2.26 logD
30
17.8-57
0.94
Hendra (2002)
PF
Shorea leprosula
JABAR
AGB = 0.032 D2.7808
18
9.9-20
0.98
Heriansyah et al. (2009)
PF
Swietenia macrophylla
JABAR
logAGB = -1.32 + 2.65 logD
30
14.3-36.9
0.96
Adinugroho & Sidiyasa (2006)
PF
Swietenia mahagony
JATENG
AGB = 0.903 (D2H)0.684
10
nda
0.99
BPKH Wil. XI & MFP II (2009)
PF
Tectona grandis
JABAR
AGB = 0.054 D 2.579
PF
Tectona grandis
JATENG
AGB = 0.015 (D2H)1.084
PF
Tectona grandis
DIY
AGB = 0.370 D2.125
PY
Tree Species
Ecosystem Type
32
4.8-26.2
0.98
Siregar (2011)
10
nda
0.98
BPKH Wil.XI & MFP II BPKH (2009) (2009)
15
5.1-27.1
0.92
Aminuddin (2008)
Approach-2 is used when the tree biomass allometric model for a species or ecosystem type to be estimated is not available at the site, but the biomass allometric model for the species or ecosystem type has been developed for another site. If the biomass allometric model for a tree species or ecosystem type has been developed for another site, it is necessary to check whether the range of tree diameters from the forest inventory is in the diameter range of the sample trees used to develop the tree biomass allometric model. If the tree diameters from the forest inventory are within the range of the diameter of the sample trees, the biomass allometric model developed in another site can be applied directly to estimate the tree biomass. As in Approach-1, the biomass allometric models that can be used to estimate tree biomass gained using Approach-2 are presented in Table 2. The (aboveground) stand biomass
FIN
AL
2.
CO
Note: Biomass allometric models were taken from above ground tree biomass (AGB) allometric models as presented in Appendix 1 with the criteria: if several aboveground tree biomass allometric models are available for the same species or ecosystem type at the same site, the allometric model is chosen from those which has a wider range of diameter in their sample trees, a higher determination coefficient (R2), and sufficient sample size (n ≥ 10).
3.
can later be measured by summing the biomass of individual trees that comprise the stand. [Note: If the diameter of the trees from forest inventory is out of the diameter range of the sample trees, then validation is required to test the estimated values of tree biomass. If the estimation value shows a tendency to be an over- or underestimate, the Approach-3 can be applied]. Approach-3 is used when the tree biomass allometric model has not been developed for a species or ecosystem type (either in the site or in another site), but a tree volume allometric model specific to species or ecosystem type has been developed for the site to be estimated. As for the use of biomass allometric model, the first step before using the volume allometric model is to identify the diameter range of the trees that have been used to develop the model.
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
47
where:
Biomasstree
aboveground tree biomass (kg) Volumetree = merchantable volume (m3) WD = wood density (kg/m3) BEFtree = biomass expansion factor for trees The volume allometric models that can be used to estimate tree volume (Vtrees ((Vtrees) Vtrees using Approach-3 is shown in Table 3. The information of the species wood density in Indonesia can be gained from varous resources, such as from Oey (1964), al. (2004), and Martawidjaya Abdurrochim et al. et al. (2005). If the wood density for the species to be estimated is not available, then the average value of the wood density of the genus can be used. The value of tree BEF can be obtained by a comparison or ratio between the aboveground tree biomass and the stem biomass.
FIN
AL
=
CO
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
48
Several values of the tree BEF have already been developed for some tree species and ecosystem types in Indonesia (Table 4). The (aboveground) stand biomass can be calculated by summing the individual biomass from the trees in the stand.
PY
If the tree diameters from forest inventory are within the range of the sample trees, then volume allometric model can be implemented directly to estimate the volume of the trees. [Note: if the tree diameters from the forest inventory are outside the range of diameter from the sample trees, validation is required, and it is necessary to evaluate the estimated tree volume resulting from the model. If the estimated value shows a tendency to over-or under-estimate, Approach-4 can be used]. In order to convert the value of the tree volume into aboveground biomass, the tree volume estimated from the allometric volume model can be multiplied by the value of wood density and the biomass expansion factor:
The Use of Allometric Models for Estimating Biomass
Table 3.
Volume allometric models that can be used to estimate tree volume according to the main ecosystem type
Ecosystem Tree Species Type
Location
Allometric models
No. of sample trees
DBH (cm)
R2
Sources
NATURAL FOREST Dipterocarpaceae (Non Shorea)
Maluku
V = 0.0002134 D2.4613
50
nda
0.99
Direktorat Inventarisasi Hutan (1990e)
DLF
Dipterocarpus cornutus
KALBAR
V = 0.000417 D2.21
268
23-139
0.98
Priyanto (1997)
DLF
Dipterocarpus cornutus
KALSEL
V = 0.000141 D2.5141
129
20-> 100
nda
Soemarna and Siswanto (1986a)
DLF
Dipterocarpus cornutus
KALTIM
V = 0.0001075 D2.145 H0.557
130
12-140
nda
Yudjar and Budi (1991)
DLF
Dryobalanops lanceolata
KALBAR
V = 0.0000893 D2.619
105
20-94
0.97
Siswanto et al., al (1996)
DLF
Dryobalanops spp.
KALBAR
V = 0.000661 D2.1
268
22.5-118
0.97
Priyanto Priyanto (1997)
DLF
Duabanga sp.
NTB
V = 0.000107 D2.5541
68
nda
0.99
Direktorat Direktorat InventaInventa risasi Hutan (1990f)
DLF
Eusideroxylon zwageri
SUMSEL
V = 0.0001049 D2.5728
262
8-33
nda
Harbagung and Suharlan (1984)
DLF
Non-Dipterocarpaceae
Maluku
DLF
Non-Duabanga and Toona
NTB
DLF
Shorea leprosula
KALSEL
DLF
Shorea spp.
Jambi
DLF
Shorea spp.
KALBAR
DLF
Shorea spp.
DLF
CO
PY
DLF
55
nda
0.99
Direktorat Inventarisasi Hutan (1990e)
V = 0.000051464 D2.5874
204
nda
0.95
Direktorat Inventarisasi Hutan (1990f)
nda
nda
nda
Wardaya (1990)
V = 0.0003053 D2.3035
134
20-100
nda
Soemarna and Suyana (1980)
V = 0.000372 D2.25
268
23-140
0.97
Priyanto (1997)
KALSEL
V = 0.0001865 D2.4257
204
20-154
nda
Suyana and Soemarna (1984)
Shorea spp.
KALTENG
V = 0.0002427 D2.3894
172
20->105
0.97
Wahjono and Soemarna (1985)
DLF
spp.. Shorea spp
KALTIM
V = 0.000331 D2.332
188
20-124
0.97
Soemarna and Suyana (1981)
DLF
Shorea spp spp..
Lampung
V = 0.000942 D2.0647
nda
nda
0.92
Soemarna (1977)
DLF
spp.. Shorea spp
Maluku
V = 0.000239 D
50
nda
0.99
Direktorat Inventarisasi Hutan (1990e)
DLF
Shorea spp spp..
Riau
V = 0.000507 D2.1894
100
20-84
0.95
Siswanto (1988)
DLF
Shorea spp spp.. & Dipterocarpus
KALTENG
V = 0.000261 D
61
10->60
0.99
Wahjono and Imanuddin (2007)
DLF
Shorea sumatrana
SUMBAR
V = 0.0001546 D2.4664
nda
nda
nda
Soemarna and Siswanto (1986b)
DLF
Toona suren
NTB
V = 0.00013 D2.5017
68
nda
0.97
Direktorat Inventarisasi Hutan (1990f)
DLF
Vatica celebencis
SULSEL
V = 0.000313 D2.2656
200
20-79
nda
Suyana and Soemarna (1981)
MF
Bruguiera spp.
KALBAR
V = 0.00008196 D2.568
80
7-48
nda
Soemarna (1980b)
MF
Rhizophora conjungata
KALTIM
V = 0.0000675 D1.947 H0.714
nda
nda
nda
Sjafe’i (1972)
FIN
V = 0.73 + 0.000045 (D2H)
AL
V = 0.000168 D2.507
2.4329
2.37847
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
49
No. of sample trees
DBH (cm)
R2
Sources
V = 0.0000534 D2.097 H0.739
180
nda
nda
Soemarna (1980a)
PABAR
V = 0.00029 D
nda
nda
nda
Rachman and Abdurrochim (1989)
Dactylocladus stenostachys
KALTENG
V = 0.000156 D2.107 H0.445
233
29-79.5
nda
Soemarna (1978)
PSF
Dipterocarpacea (Non Shorea)
KALTENG
V = 0.000136 D2.5035
nda
nda
0.97
Direktorat Inventarisasi Hutan (1991b)
PSF
Gonystilus sp.
KALTENG
V = 0.000124 D2.538
nda
nda
0.97
Direktorat Inventa Inventarisasi Hutan (1991b)
PSF
Other species non Dipterocarpaceae and Gonystillus
KALTENG
V = 0.000166 D2.438
nda
nda
0.97
Direktorat Inventa Inventarisasi Hutan (1991b)
PSF
Intsia sp.
PABAR
V = 0.000141 D2.477
PSF
Shorea spp.
KALTENG
V = 0.000101 D2.5844
PSF
Vatica spp.
PABAR
V = 0.0002953 D2.2705
HRW
Callopyllum sp.
KALBAR
Ecosystem Tree Species Type
Location
Allometric models
MF
Rhizophora spp.
KALBAR
MF
Rhizophora spp.
PSF
H
0.462
PY
1.890
nda
0.97
Direktorat InventaInventa risasi risasi Hutan (1990c)
nda
nda
0.98
Direktorat Inventa Inventarisasi Hutan (1991b)
246
nda
0.78
Direktorat Inventarisasi Hutan (1990c)
logV = -1.005 + 2.556 logD
107
20-75
0.98
Krisnawati and Bustomi (2002)
logV = -4.155 + 2.605 logD
PF
Acacia auriculiformis
JATENG
nda
nda
0.95
Siswanto (2008)
PF
Acacia mangium
JABAR
CO
246
logV = -3.321 + 1.99 logD
46
5-35
0.98
Krisnawati et al., (1997)
PF
Acacia mangium
KALBAR
V = 0.000253 D2.292
51
10-35
0.94
Siswanto and Harbagung (2004)
PF
Acacia mangium
KALSEL
V = 0.000328 D2.2764
nda
nda
0.98
Imanuddin and Bustomi (2004)
PF
Acacia mangium
SUMSEL
V = 0.000122 D2.4697
103
nda
nda
Soemarna and Bustomi (1986)
PF
Agathis loranthifolia
JATENG
logV = -3.824 + 2.447 logD
nda
nda
0.96
Siswanto and Imanuddin (2008)
PF
Alstonia sp. sp.
SUMSEL
V = 0.000081 D2.06 H0.662
61
nda
0.92
Ermawati (1995)
PF
Altingia exelsa
JABAR
V = 0.000257 D
nda
nda
nda
Siswanto and Wahjono (1996)
PF
Dalbergia latifolia
Bali
V = 0.0004757 D2.0449
59
nda
0.91
Direktorat Inventarisasi Hutan (1990a)
PF
Dalbergia latifolia
JATIM
Log V = -3.56789 + 2.114559 log D
nda
nda
0.83
Siswanto and Imanuddin (2008)
PF
Dalbergia sisoides
NTT
V = 0.0000723 D2.4646
125
nda
0.98
Direktorat Inventarisasi Hutan (1990g)
PF
Eucalyptus spp.
NTT
V = 0.00006598 D2.5056
130
nda
0.98
Direktorat Inventarisasi Hutan (1990g)
PF
Gmelina arborea
SUMSEL
V = 0.0000669 D1.952 H0.794
103
5->30
0.99
Wahjono et al., (1995)
FIN
AL
PLANTATION FOREST
50
The Use of Allometric Models for Estimating Biomass
2.2563
Location
Allometric models
No. of sample trees
DBH (cm)
R2
Sources
PF
Manilkara kauki
Bali
V = 0.00122 D1.7445
90
nda
0.84
Direktorat Inventarisasi Hutan (1990a)
PF
Paraserianthes falcataria
Banten
V = 0.00011 D2.5414
nda
nda
0.94
Bustomi and Imanuddin (2004)
PF
Paraserianthes falcataria
JABAR
logV = -3.859 + 2.48 logD
nda
nda
nda
Bustomi et al., (1995)
PF
Paraserianthes falcataria
JATIM
logV = -3.702 + 2.423 logD
nda
nda
0.98
Siswanto (2008)
PF
Pinus merkusii
JABAR & JATIM
V = 0.0000305 D1.642 H1.356
nda
nda
nda
Soemarna and Sudiono (1972)
PF
Pinus merkusii
JATENG
V = 0.00000831 D3.254
100
nda
0.97
Suparno (1994)
PF
Pometia acuminata
PABAR
V = 0.000002 D2.394 H1.511
PF
Swietenia macrophylla
JATIM
V = 0.000305 D2.162
PY
Ecosystem Tree Species Type
nda
nda
nda
Rachman and Abdurrochim (1989)
nda
nda
nda
Wahjono W ahjono and Soemarna (1987)
Table 4.
CO
Note: Volume allometric models were taken from commercial tree volume models (merchantable volume or clear bole volume) as presented in Appendix 4 with the criteria: if several commercial tree volume models are available for the same species or ecosystem type at the same site, then the allometric model is chosen from those which has a wider range of diameter in their sample trees, a higher determination coefficient (R2), and sufficient sample size (n ((n> n> > 30).
The values of BEF (biomass expansion factor) that have been developed for some tree species and ecosystem types in Indonesia
Tree species/ecosystem type
BEF value
Source
Wicaksono (2004)
Bruguiera gymnorrhiza
1.61
Krisnawati et al. (2012)
Bruguiera sp.
1.57
Hilmi (2003), reanalyzed
1.58
Langi (2007), reanalyzed
1.61
Langi (2007), reanalyzed
Endospermum diadenum
1.66
Thoyib et al. (2002), reanalyzed
Eucalyptus grandis
1.33
Onrizal et al. (2009), reanalyzed
Evodia sp.
1.42
Hashimoto et al. (2004), reanalyzed
Ficus sp.
1.11
Hashimoto et al. (2004), reanalyzed
Fordia sp.
1.32
Hashimoto et al. (2004), reanalyzed
Gardenia anysophylla
1.82
Thoyib et al. (2002), reanalyzed
Geunsia pentandra
1.11
Hashimoto et al (2004), reanalyzed
Gonystylus bancanus
1.67
Siregar (1995), reanalyzed
Hevea brasiliensis
1.73
Cesylia (2009), reanalyzed
Macaranga gigantea
1.43
Thoyib et al. (2002), reanalyzed
Macaranga spp.
1.16
Hashimoto et al. (2004), reanalyzed
Melastoma malabathricum
1.06
Hashimoto et al. (2004), reanalyzed
Elmerrillia celebica
FIN
Elmerrillia ovalis
AL
1.33
Acacia mangium
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
51
Tree species/ecosystem type
BEF value
Source
1.16
Hashimoto et al. (2004), reanalyzed
Paraserianthes falcataria
1.34
Rusolono (2006), reanalyzed
Pinus merkusii
1.31
Hendra (2002)
Piper aduncum
1.07
Hashimoto et al. (2004), reanalyzed
Rhizophora apiculata
1.55
Amira (2008)
Rhizophora macronata
1.61
Hilmi (2003), reanalyzed
Rhizophora spp.
1.68
Supratman (1994), reanalyzed
Schima wallichii
1.37
Salim (2006), reanalyzed
Swietenia macrophylla
1.36
Adinugroho and Sidiyasa (2006)
Tectona grandis
1.46
Hendri (2001), reanalyzed
Trema sp.
1.14
al.. (2004), reanalyzed Hashimoto et al
Xylocarpus granatum
1.81
Talan (2008)
Mixed Species (Heath forest)
1.23
al. (2000) reanalyzed Miyamoto et al.
Mixed species (Secondary dryland forest)
1.49
Adinugroho (2009)
Mixed species (Logged-over peat swamp forest)
1.33
Novita (2010), reanalyzed
CO
Approach-4 is used when the volume allometric model for a specific species or ecosystem type in a specific site ((species species or ecosystem and site-specific model) model) is not available, but the volume allometric model is available or has been developed in another site. If the volume allometric model for a tree species or ecosystem type is available in another site, then the next step is to ensure that the range of tree diameters from the inventory is within the diameter range of sample trees used to develop the model. If the tree diameters from the inventory are within the range of the sample tree diameters, then the volume allometric model, which has been developed in another site, can be directly applied. [Note: if the tree diameters from the inventory are outside the sample trees’ diameter range, then validation is necessary to check the tree volume estimates resulted by the model. If the estimate value shows
a tendency to over- or under-estimate, then Approach-5 can be applied].
FIN
AL
4.
PY
Nauclea sp.
52
The Use of Allometric Models for Estimating Biomass
In order to convert the tree volume into the aboveground biomass, the tree volume should be multiplied by the value of wood density and the tree biomass expansion factor, as it is described in Approach-3. The (aboveground) stand biomass can later be obtained by summing the biomass of individual trees in the stand.
5.
Approach-5 is used when the biomass and volume allometric models are not available for a specific species or ecosystem type, but the height data (besides diameter) is available from field measurement or inventory of trees in the stand. If the tree height data is available, the tree volume can then be obtained using the geometric formula approach (tree volume is
calculated as cylinder volume multiplied with the stem form factor) as follows:
tree volume (m3) 3.14 diameter at breast height (cm) tree height (m) form factor
Approach-6 is used in the condition where: (a) a biomass allometric model is not available for a tree species or ecosystem type to be estimated; however, (b) a volume allometric model or height data (besides diameter) is available, which can be used to estimate volume for the specific species or ecosystem type; and (c) the wood density data is available, but (d) tree BEF data is not available. If the tree BEF value developed specifically for the species or ecosystem type to be estimated is not available, then this approach for the stand BEF value can be applied. For the stand BEF, Brown and Lugo (1992) developed an equation to calculate BEF for broad-leaved forests, as follows:
AL
CO
The form factor (F) is the correction factor; calculated from the ratio between the actual volume of the tree and the cylinder volume with the same diameter and height. If the form factor for the specific species to be estimated is not available, then a general stem form factor of 0.6 can be applied (Krisnawati and Harbagung, 1996). The estimated tree volume resulted from the above geometric approach is then converted into aboveground tree biomass following Approach-3 and Approach-4, i.e. tree volume gained from
6.
PY
where: V = π = Dbh = H = F =
the geometric calculation is multiplied by the species wood density and the tree’s biomass expansion factor. The (aboveground) stand biomass can later be measured by summing the biomass of the individual trees in the stand.
BEF = Exp {3.213 – 0.506*Ln(BV)} for BV < 190 t/ha
FIN
1.74 for BV ≥ 190t/ha (n = 56; R2adj = 0.76) where:
BV = the biomass of inventoried volume (t/ha); calculated as the product of VOB/ha (m3/ha) and wood density (t/m3)
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
53
Table 5.
Default value of BEF according to IPCC Guidance (2003)
Climatic zone Tropical
Forest type
Minimum Dbh (cm)
BEF (including bark)
Conifer
10
1.3 (1.2 – 4.0)
Broadleaf
10
3.4 (2.0 – 9.0)
If the average wood density for the family is also unavailable, then the aboveground stand biomass can be calculated using the BCEF value value as follows:
For conifer forests, BEF value is determined in the range of 1.05 - 1.58, with an average value of 1.3 (Se= 0.06). Besides the above equation, the default BEF value according to IPCC Guidance (2003) can also be applied (Table 5). For Approach-6, the value of biomass estimates is the value of aboveground stand biomass:
PY
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
where: Biomassstand = aboveground stand biomass (ton/ha) Vstand = stand volume (m3/ha) BCEF = biomass conversion and expansion factor In this approach, the default value of BCEF as specified in the IPCC Guidelines (2006) can be used (Table 6).
CO
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �� 𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊� ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
Approach-7 is used when the following conditions are present: (a) no tree biomass allometric model is available for a certain species or ecosystem type to be estimated, but (b) a volume allometric model or height data (besides diameter) is available, which can be used to estimate volume for the specific species or ecosystem type; and (c) wood density value is unavailable for specific species or species group (genus, family). In this Approach-7, if the value of specific wood density for the tree species to be estimated is unavailable, it is possible to use the average value of wood density for the genus. If the average wood density for the genus is also not available, it is acceptable to use the average wood density for the family.
FIN
7.
54
8.
AL
where: Biomassstand = aboveground stand biomass (ton/ha) Volumetree = tree volume (m3) WD = wood density (kg/m3) BEFstand = stand biomass expansion factor
The Use of Allometric Models for Estimating Biomass
Approach-8 is used when the following conditions are present: (a) no specific tree biomass allometric models nor volume allometric models are available for the species or ecosystem type to be estimated, (b) no height data (besides diameter) is available for estimation of tree volume using a geometric formula approach, and (c) no data on wood density is available, either for species or species group (genus, family).
Table 6.
Default value of BCEF according to IPCC Guidelines (2006)
Humid Tropical
Forest type Conifer
Natural forests
Volume (m3) <10
11-20
21-40
41-60
61-80
80-120
120-200
>200
4
1.75
1.25
1
0.8
0.76
0.7
0.7
(3-6)
(1.4-2.4)
(1-1.5)
(0.8-1.2)
(0.7-1.2)
(0.6-1)
(0.6-0.9)
(0.6-0.9)
9
4
2.8
2.05
1.7
1.5(1-1.8)
1.3
0.95
(4-12)
(2.5-4.5)
(1.4-3.4)
(1.2-2.5)
(1.2-2.2)
(0.9-1.6)
(0.7-1.1)
No
Sequence
8
1-2-3-4-8-9-11-12-13-14-15-25-6-7
9
1-2-3-4-8-9-11-12-13-14-15-16-17-6-7 1-2-3-4-8-9-11-12-13 1-2-3-4-8-9-11-1213-14-15-16-17-6-7 -14-15-16-17-6-7
10
1-2-3-4-8-9-11-12-13-14-15-18-7 1-2-3-4-8-9-11-12-13 1-2-3-4-8-9-11-1213-14-15-18-7 -14-15-18-7
11
1-2-3-4-8-9-11-12-13-14-15-19-7 1-2-3-4-8-9-11-12-13 1-2-3-4-8-9-11-1213-14-15-19-7 -14-15-19-7
12
1-2-3-4-8-9-11-12-13-14-15-25-6-7 1-2-3-4-8-9-11-12-13 1-2-3-4-8-9-11-1213-14-15-25-6-7 -14-15-25-6-7
13
1-2-3-4-8-9-11-12-20-21-22-15-16-17-6-7
14
1-2-3-4-8-9-11-12-20-21-22-15-16-18-7
15
1-2-3-4-8-9-11-12-20-21-22-15-19-7
16
1-2-3-4-8-9-11-12-20-21-22-15-25-6-7
17
1-2-3-4-8-9-11-12-20-21-22-15-16-17-6-7 1-2-3-4-8-9-11-12-20-
18
1-2-3-4-8-9-11-12-20-21-22-15-16-18-7 1-2-3-4-8-9-11-12-20-
19
1-2-3-4-8-9-11-12-20-21-22-15-19-7
CO
If this condition occurs, it is suggested that a new biomass allometric model should be developed for the specific species and ecosystem type in the site in question. The procedure for developing the new tree biomass allometric model refers to the Indonesian National Standard (SNI) 7725:2011 regarding the Development of allometric equations for estimating forest carbon stocks based on the field measurements (groundbased forest carbon accounting). Through the above approaches, a sequence flow of applications can be developed to obtain an estimated value of aboveground tree biomass and/or an estimated value of aboveground stand biomass (Table 7). The choice of approach used will determine the accuracy level and the complexity of the methodology. The smaller the number of approach used, the higher the accuracy of the estimated value for biomass of specific species or ecosystem type at the site.
PY
Climatic zone
1-2-3-4-8-9-11-12-20-21-22-15-25-6-7
21
1-2-3-4-8-11-12-20-23-24-15-16-17-6-7
22
1-2-3-4-8-11-12-20-23-24-15-16-18-7
23
1-2-3-4-8-11-12-20-23-24-15-19-7
24
1-2-3-4-8-11-12-20-23-24-15-25-6-7
25
1-2-3-4-8-11-12-20-23-25-6-7
26
1-2-3-4-8-11-12-20-21-22-15-16-17-6-7
Possible sequences to determine the approach used in biomass estimation (numbers of sequences refer to Figure 19)
27
1-2-3-4-8-11-12-20-21-22-15-16-18-7
28
1-2-3-4-8-11-12-20-21-22-15-19-7
29
1-2-3-4-8-11-12-20-21-22-15-25-6-7
Sequence
30
1-2-3-4-8-11-12-20-21-22-15-16-17-6-7
31
1-2-3-4-8-11-12-20-21-22-15-16-18-7
32
1-2-3-4-8-11-12-20-21-22-15-19-7
FIN
AL
20
Table 7.
No 1
1-2-3-4-5-6-7
2
1-2-3-4-5-6-7
3
1-2-3-4-8-9-10-6-7
4
1-2-3-4-8-9-10-6-7
5
1-2-3-4-8-9-11-12-13-14-15-16-17-6-7
6
1-2-3-4-8-9-11-12-13-14-15-16-18-7
7
1-2-3-4-8-9-11-12-13-14-15-19-7
33
1-2-3-4-8-11-12-20-21-22-15-25-6-7
34
1-2-3-4-8-11-23-24-15-16-17-6-7
35
1-2-3-4-8-11-23-24-15-16-18-7
36
1-2-3-4-8-11-23-24-15-19-7
37
1-2-3-4-8-11-23-24-15-25-6-7
38
1-2-3-4-8-11-23-25-6-7
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
55
Sequence
No
Sequence
39
1-2-3-8-9-10-6-7
79
1-2-11-12-13-14-15-16-17-6-7
40
1-2-3-8-9-10-6-7
80
1-2-11-12-13-14-15-18-7
41
1-2-3-8-9-11-12-13-14-15-16-17-6-7
81
1-2-11-12-13-14-15-19-7
42
1-2-3-8-9-11-12-13-14-15-16-18-7
82
1-2-11-12-13-14-15-25-6-7
43
1-2-3-8-9-11-12-13-14-15-19-7
83
1-2-11-12-20-21-22-15-16-17-6-7
44
1-2-3-8-9-11-12-13-14-15-25-6-7
84
1-2-11-12-20-21-22-15-16-18-7
45
1-2-3-8-9-11-12-13-14-15-16-17-6-7
85
1-2-11-12-20-21-22-15-19-7
46
1-2-3-8-9-11-12-13-14-15-18-7
86
1-2-11-12-20-21-22-15-25-6-7
47
1-2-3-8-9-11-12-13-14-15-19-7
87
1-2-11-12-20-21-22-15-16-17-6-7 -22-15-16-17-6-7
48
1-2-3-8-9-11-12-13-14-15-25-6-7
88
1-2-11-12-20-21-22-15-16-18-7 21-22-15-16-18-7 21 -22-15-16-18-7
49
1-2-3-8-9-11-12-20-21-22-15-16-17-6-7
89
1-2-11-12-20-21-22-15-19-7 1-2-11-12-20-21 1-2-11-12-2021-22-15-19-7 -22-15-19-7
50
1-2-3-8-9-11-12-20-21-22-15-16-18-7
90
1-2-11-12-20-21-22-15-25-6-7 1-2-11-12-20-21 1-2-11-12-2021-22-15-25-6-7 -22-15-25-6-7
51
1-2-3-8-9-11-12-20-21-22-15-19-7
91
1-2-11-12-20-23-24-15-16-17-6-7
52
1-2-3-8-9-11-12-20-21-22-15-25-6-7
92
1-2-11-12-20-23-24-15-16-18-7
53
1-2-3-8-9-11-12-20-21-22-15-16-17-6-7
93
1-2-11-12-20-23-24-15-19-7
54
1-2-3-8-9-11-12-20-21-22-15-16-18-7
94
1-2-11-12-20-23-24-15-25-6-7
55
1-2-3-8-9-11-12-20-21-22-15-19-7
95
1-2-11-12-20-23-25-6-7
56
1-2-3-8-9-11-12-20-21-22-15-25-6-7
96
1-2-11-12-20-21-22-15-16-17-6-7
57
1-2-3-8-11-12-20-23-24-15-16-17-6-7
97
1-2-11-12-20-21-22-15-16-18-7
58
1-2-3-8-11-12-20-23-24-15-16-18-7
98
1-2-11-12-20-21-22-15-19-7
59
1-2-3-8-11-12-20-23-24-15-19-7
99
1-2-11-12-20-21-22-15-25-6-7
60
1-2-3-8-11-12-20-23-24-15-25-6-7
100
1-2-11-12-20-21-22-15-16-17-6-7
61
1-2-3-8-11-12-20-23-25-6-7
101
1-2-11-12-20-21-22-15-16-18-7
62
1-2-3-8-11-12-20-21-22-15-16-17-6-7
102
1-2-11-12-20-21-22-15-19-7
63
1-2-3-8-11-12-20-21-22-15-16-18-7
103
1-2-11-12-20-21-22-15-25-6-7
64
1-2-3-8-11-12-20-21-22-15-19-7
104
1-2-11-23-24-15-16-17-6-7
65
1-2-3-8-11-12-20-21-22-15-25-6-7
AL
CO
PY
No
1-2-11-23-24-15-16-18-7
1-2-3-8-11-12-20-21-22-15-16-17-6-7 1-2-3-8-11-12-20-21 1-2-3-8-11-12-2021-22-15-16-17-6-7 -22-15-16-17-6-7
106
1-2-11-23-24-15-19-7
67
1-2-3-8-11-12-20-21-22-15-16-18-7 1-2-3-8-11-12-20-21 1-2-3-8-11-12-2021-22-15-16-18-7 -22-15-16-18-7
107
1-2-11-23-24-15-25-6-7
68
1-2-3-8-11-12-20-21-22-15-19-7 1-2-3-8-11-12-20-21 1-2-3-8-11-12-2021-22-15-19-7 -22-15-19-7
108
1-2-11-23-25-6-7
69
1-2-3-8-11-12-20-21-22-15-25-6-7 1-2-3-8-11-12-20-21 1-2-3-8-11-12-2021-22-15-25-6-7 -22-15-25-6-7
70
1-2-3-8-11-23-24-15-16-17-6-7
71
1-2-3-8-11-23-24-15-16-18-7
72
1-2-3-8-11-23-24-15-19-7
73
1-2-3-8-11-23-24-15-25-6-7
74
1-2-3-8-11-23-25-6-7
75
1-2-11-12-13-14-15-16-17-6-7
76
1-2-11-12-13-14-15-16-18-7
77
1-2-11-12-13-14-15-19-7
78
1-2-11-12-13-14-15-25-6-7
FIN
105
66
56
The Use of Allometric Models for Estimating Biomass
Note: The underlined red numbers indicate directional arrows in dashed-lines (Figure 19) which means that the sequence continued, despite the required information being unavailable.
PY CO AL FIN
07
Closing
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
57
AL
FIN PY
CO
during climactic conditions (undisturbed by human land use activities). Allometric models for secondary natural forest ecosystems (especially old secondary forest) are required to calculate the growth process and the accumulation of forest biomass more completely after human land use activities.
4.
The tree sample data used to develop biomass allometric models is still relatively limited to sample trees of less than 100 cm. Biomass data of sample trees above 100 cm is necessary considering that large trees contribute significantly to the total biomass in forest ecosystems.
PY
3.
Most of the allometric models are developed based on relationship of log-log regression (biomass log is a function of diameter log). The usee of this logarithmic transformation is to us make the relationship model linear and the range of error ((error variance) homogeneous. Logarithm transformation back to the original unit will introduce bias that needs to be corrected. But, bias correction for the transformed data cannot be performed while calculating individual tree biomass as the standard error values are not reported in the literature (bias values that have been generated are not known).
The availability of allometric models for ecosystem types in eastern Indonesia (including Sulawesi, Maluku, Nusa Tenggara and Papua) is still lacking. These models are urgently needed considering that the vegetation structure and taxonomy of tree species in eastern Indonesia are very different from those in western Indonesia, which is separated by the Wallace line.
FIN
1.
AL
CO
Data and information on carbon stocks stored in forest biomass including spatial changes are necessary to develop GHG emissions reduction strategies as the result of deforestation and forest degradation as well as to increase forest carbon stocks. A comprehensive, credible and verified National Carbon Accounting System is required. It is therefore necessary to prepare the tools for biomass and carbon stock estimation and to monitor the changes, in order to determine the emission reduction that takes place. One of the initial steps in developing the system is to make an inventory and review of tree biomass and volume allometric models that have been developed in accordance with the local conditions in Indonesia. The results of the studies presented in this monograph show that tree biomass and volume allometric models have been developed for various tree species and forest ecosystems in Indonesia. Current models in general represent major forest ecosystem types, although the distribution of the models may not represent all variations of tree species and ecosystems that exist in Indonesia. From the database and the results of the study of allometric models that have been developed in Indonesia, several gaps have been identified, such as:
2.
The availability of allometric models for primary and secondary natural forest ecosystem types is relatively limited, but these models are necessary to determine the maximum biomass of natural forests
To fill these information gaps, possible strategies can be carried out: 1.
Identification of locations that are not currently represented by the data and identification of new sources of information about the development of allometric models for estimating forest biomass at various locations in Indonesia. Information on spatial distribution of the sampling location of allometric models, overlapped with the spatial distribution of forest ecosystem type in Indonesia, can be used to identify these gaps.
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
59
Therefore, to determine the location of sample trees for measuring biomass in the field it is necessary to consider the distribution and representation of the locations.
4.
Sample tree data used to develop allometric models should cover the range of tree diameters in the population (representing the existing distribution of diameter class), and the sample should be representative
Investigation of uncertainty associated with the models caused by the use of logarithmic transformation through analysis of the data of individual tree biomass measurements available from the model, so that bias correction can be applied in the calculation of individual tree biomass.
FIN
AL
CO
3.
The development of general allometric models specific to ecosystem type to cope with the diversity of ecological zone that exists in Indonesia.
PY
2.
of the number of trees in order to produce statistically reliable models. Additional samples of large trees are required to expand the scope of available models, especially for the tree species and forest ecosystem types for which large trees can still be found in the field.
60
Closing
References
PY
Comley, B.W.T. and McGuinness, K.A. 2005. Above- and below-ground biomass, and allometry of four common northern Australian mangroves. Australian Journal of Botany 53 (5): 431-436. Drake, J.B., Dubayah, R.O., Knox, R.G., Clark, D.B. and Blair, J.B. 2002. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sensing of Environment 81: 378–392. Eamus, D., McGuinness, K. and Burrows, W. 2000. Review of allometric relationships for estimating woody biomass for Queensland, the Northern Territory and Western Australia. National Carbon Accounting System Technical Report 5A. Australian Greenhouse Office, Canberra. 56p. Huxley, J.S. 1993. Problems of relative growth. John Hopkins University Press, London. Intergovernmental Panel on Climate Change [IPCC]. 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry, Prepared by the National Greenhouse Gas Inventories Programme. Penman, J., Gystarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. and Wagner, F. (eds.). IGES, Japan. Intergovernmental Panel on Climate Change [IPCC]. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T. and Tanabe, K. (eds.). IGES, Japan. Jenkins, J.C., Chojnacky, D.C., Heath, L.S. and Birdsey, R.A. 2003. National-scale biomass
FIN
AL
CO
Abdurrochim, S., Mandang, Y.I. dan Uhaedi, S. 2004. Atlas Kayu Indonesia Jilid III. Pusat Penelitian dan Pengembangan Teknologi Hasil Hutan, Bogor. Badan Standardisasi Nasional [BSN]. 2011. SNI 7225:2011, Penyusunan persamaan alometrik untuk penaksiran cadangan karbon hutan berdasar pengukuran lapangan (ground based forest carbon accounting). Badan Standardisasi Nasional, Jakarta. Baskerville, G.L. 1972. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forestry 2: 49–53. Brown, S. 1997. Estimating biomass and biomass change of tropical forests, a premier. FAO Forestry Paper 134. Brown, S. and Lugo, A.E. 1982. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14: 161-187. Bustomi, S., D. Wahjono, Harbagung dan Sumarna, K. 2002. Tariff dan Tabel Volume Beberapa Jenis Pohon di Hutan Tanaman. Pusat Litbang Hutan dan Konservasi Alam, Bogor. 79p. Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P. Nelson, B.W., Ogawa, H., Puig, H., Riéra, B., and Yamakura, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87–99. Clark, D.A., Brown, S., Kicklighter, D.W., Chambers, J.Q., Thomlimson, J.R. and Ni, J. 2001. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11(2): 356–370.
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
61
PY
age for boreal forests. Forest Ecology and Management 188: 211–224. MacDicken, K.G. 1997. A guide to monitoring carbon storage in forestry and agroforestry projects. Winrock International Institute for Agricultural Development. 87p. Mackinnon, K., Hatta, G., Halim, H. and Mangalik, A. 1996. The Ecology of Kalimantan. Periplus Editions, Singapore. Martawijaya, A., Kartasujana, I., Kadir, K. dan Prawira, S.A. 2005. Atlas Kayu Indonesia Jilid I (Edisi revisi). Pusat Penelitian dan Pengembangan Hasil Hutan, Bogor. Martawijaya, A., Kartasujana, I., Mandang, Y.I., Prawira, S.A. dan Kadir, K. 2005. Atlas Kayu Indonesia Jilid II (Edisi revisi). Pusat Penelitian dan Pengembangan Hasil Hutan, Bogor. Montes, N., Gauquelin, T., Badri, W., Bertaudiere, V. and Zaoui, E.H. 2000. A non-destructive method for estimating above-ground forest biomass in threatened woodlands. Forest Ecology and Management 130: 37–46. Niklas, K.J. 1994. Plant allometry: the scaling of form and process. University of Chicago Press, Chicago. Parresol, B.R. 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science 45:573-593. Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. 1992. Wood densities of tropical tree species. General Technical Report SO-88. USDA Forest Service,Southern Forest Experiment Station, New Orleans, Louisiana, USA. Richards, P.W. 1996. The Tropical Rain Forest: An Ecological Study. 2nd edition. Cambridge University Press, Cambridge, UK. Ruitenbeek, H.J. 1992. Mangrove Management: An Economic Analysis of Management Options with a Focus on Bintuni Bay, Irian Jaya. Environmental Management and Development in Indonesia Project
FIN
AL
CO
estimators for United States tree species. Forest Science 49: 12–35. Keith, H., Barrett, D. and Keenan, R. 2000. Review of allometric relationships for estimating woody biomass for New South Wales, the Australian Capital Territory, Victoria, Tasmania, and South Australia. National Carbon Accounting System Technical Report 5B. Australian Greenhouse Office, Canberra. 114 p. Keith, H. and Krisnawati, H. 2010. Biomass estimates for Carbon accounting in Indonesia. Preliminary report. IndonesiaAustralia Forest Carbon Partnership. 60p. Ketterings, Q.M., Coe, R., Noordwijk, v.M., Ambagau, Y., and Palm, C.A. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting aboveground tree biomass in mixed secondary forests. Forest Ecology and Management 146: 199–209. Krisnawati, H. dan Bustomi, S. 2002. Tabel isi pohon jenis bintangur (Callophyllum Callophyllum sp.) di KPH Sanggau, Kalimantan Barat. Buletin Penelitian Hutan 630: 1-15. Krisnawati, H. dan Bustomi, S. 2004. Model penduga isi pohon bebas cabang jenis sungkai (Peronema ( Peronema canescens) canescens ) di KPH Banten. Buletin Penelitian Hutan 644: 3950. Krisnawati, H. dan Harbagung. 1996. Kajian angka bentuk batang untuk pendugaan volume jenis-jenis hutan alam. Prosiding Diskusi Hasil-Hasil Penelitian dalam Menunjang Pemanfaatan Hutan yang Lestari, Cisarua, Bogor, 11-12 Maret 1996. Hal 177-191. Lehtonen, A., Mäkipää, R., Heikkinen, J., Sievänen, R. and Liski, J. 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand
62
References
Snowdon, P. 1990. A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forestry Research 21: 720-724.
Wahyunto, S. Ritung, Suparto, H. dan Subagjo. 2005. Sebaran Gambut dan Kandungan Karbon di Sumatera dan Kalimantan. Proyek Climate Change, Forests and Peatlands in Indonesia. Wetlands InternationalIndonesia Programme dan Wildlife Habitat Canada. Bogor. Whitmore, T.C. 1975. Tropical Rain Forests of the Far East. Clarendon Press, Oxford, UK. Zianis, D. and Mencuccini, M. 2003. Aboveground biomass relationship for beech ((Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus spp. Annals of Forest Science 60: 439–448.
CO
Snowdon, P., Eamus, D., Gibbons, P., Khanna, P.K., Keith, H., Raison, R.J. and Kirschbaum, M.U.F. 2000. Synthesis of allometrics, review of root biomass and design of future woody biomass sampling strategies. National Carbon Accounting System Technical Report 17. Australian Greenhouse Office, Canberra. 114 p.
Sumatera Selatan. Buletin Penelitian Hutan 587: 31-44.
PY
(EMDI), Environmental Reports 8, Jakarta and Halifax. Scargle, J. 2000. Publication bias: the “FileDrawer” Problem in scientific inference. Journal of Scientific Exploration 14: 91-106.
Soares, M.L.G. and Schaeffer-Novelli, Y.S. 2005. Aboveground biomass of mangrove species. I. Analysis of models. Estuarine, Coastal and Shelf Science 65: 1-18.
AL
Sprugel, D.G. 1983. Correcting for bias in logtransformed allometric equations. Ecology 64: 209–210. United Nations [UN]. 1998. Kyoto Protocol to the United Nations Framework Convention on Climate Change.
FIN
United Nations Framework Convention on Climate Change [UNFCCC]. 2009. Draft decision [-/CP.15] Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forest and enhancement of forest carbon stocks in developing countries. Subsidiary body for scientific and technological advice, Copenhagen. Wahjono, D., Krisnawati, H. dan Harbagung. 1995. Tabel isi pohon sementara jenis Gmelina arborea di Daerah Subanjeriji,
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
63
AL
FIN PY
CO
PY CO AL FIN
Appendices
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
65
AL
FIN PY
CO
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
67
FIN
Mixed
Borassodendron borneensis
HF
HF
HF
HF
HF
HF
DLF
DLF
DLF
3
4
5
6
7
8
9
10
11
Mixed
Mixed
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
14
15
16
17
18
19
20
21
22
23
24
25
Mixed
13
Dipterocarpaceae
Dipterocarpaceae
Commercial
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
DLF
DLF
12
Mixed
Borassodendron borneensis
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
HF
2
Mixed
HF
1
Species
Ecosystem Type
KALTIM
KALTIM
KALTIM
KALTIM
KALTIM
KALTIM
KALTIM
KALTIM
KALTIM
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTIM
KALTIM
KALTENG
KALTENG
KALTENG
KALBAR
KALBAR
KALBAR
KALBAR
KALBAR
Site
Le
Br+Tw
AGB
AGB
St
AGB
Le
4.8 4.8
184
2
115.0
115.0
115.0
nda
nda
69.7
69.7
69.7
30.3
30.3
30.3
30.3
30.3
Max
1.1
115.0
WL = 0.0915 (WS+WB)0.727
WB = 0.119 Ws
1.059
lnW = -1.498 + 2.234 lnD
5.0
5.0
191 191
5.0
6.0
83
122
76
Ws = 0.02903 (D2H)0.981 lnW = -1.201 + 2.196 lnD
40
lnW = -1.2495 + 2.311 lnD
W = 0.0455 D
55.0 .0
30.1
68.9
5.7
6.0 6.0
14
1.69
130.0
130.0
70.0
200.0
130.0
30.1
30.1
5.7
0.975
5.7
2
14
115.0 14
1.1
115.0
W = 0.0286 D2.41
W = 0.024 (D H)
40
40
lnW = -2.246 + 2.482 lnD
1.1
PY 40
ρ + 2.288 lnW = -3.049 + 0.54 lnWD + 2.288 lnD lnW = -3.408 + 2.708 lnDpkl
1.1 1.1
40
1.1
40
lnW = -0.881 + 0.976 lnWs
40
nda
nda
nda
nda
4.8
184
lnW = -3.217 + 2.057 lnD - 0.018 lnD3
lnW = -3.285 + 2.612 lnD
WL = 0.00944 D2
2
WS = 0.0123 D
lnW = -3.86 + 1.01 lnD2
CO
lnW = -4.28 + 1.36 lnD
2.6
12
2.6
2.6
2.6
2.6
Min
DBH (cm)
184
12
12
12
12
∑ Sample Trees
lnW = -2.26 + 1.27 lnD2
lnW = -3.101 + 2.066 lnD
lnW = -5.298 + 2.926 lnD
lnW = -6.908 + 3.541 lnD
lnW = -2.688 + 2.829 lnD
lnW = -1.861 + 2.528 lnD
Model Form
AL
Br+Tw
St
TTB
AGB
Rt
Le
Br
St
Le
St
Le
Br+Tw
St
Le
Tw
Br
St
AGB
Component
nda
nda
nda
nda
nda
11.1
5.5
5.5
5.5
2.4
2.4
2.4
2.4
2.4
2.4
nda
nda
nda
nda
nda
5.4
5.4
5.4
5.4
5.4
Min
nda
nda
nda
nda
nda
43.5
23.0
23.0
23.0
49.0
49.0
49.0
49.0
49.0
49.0
nda
nda
35.9
35.9
35.9
25.2
25.2
25.2
25.2
25.2
Max
H (m)
0.92
0.90
0.98
0.96
0.99
0.98
0.80
0.90
0.97
0.98
0.98
0.97
0.93
0.97
0.98
nda
nda
0.81
0.91
0.99
0.98
0.97
0.96
0.99
0.99
R2
nda
nda
nda
nda
nda
0.15
nda
nda
nda
0.38
0.39
0.52
0.53
0.52
0.41
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Se
Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia
No
Appendix 1.
78
78
11
11
78
61
38
38
38
8
8
8
8
8
8
78
78
45
45
45
49
49
49
49
49
Ref
Note
68
Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
44
45
46
47
48
49
50
51
52
53
DLFs
37
43
DLFs
36
DLFs
DLFs
35
DLFs
DLFs
34
42
DLFs
33
41
DLFs
32
DLFs
DLF
31
40
DLF
30
DLFs
DLF
29
DLFs
DLF
28
39
DLF
27
38
DLF
Ecosystem Type
26
No
Ficus sp.
Mixed (70 yrs)
Mixed (7 yrs)
Mixed (20 yrs)
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Macaranga gigantea
Macaranga gigantea
KALTIM
Jambi
Jambi
Jambi
KALTIM
KALTIM
KALTIM
KALTIM
KALTIM
KALTIM
KALTIM
KALTIM
Jambi
Jambi
Jambi
Jambi
Jambi
Jambi
Jambi
KALTIM
KALTIM
KALTIM
KALTIM
Papua
AGB
AGB
AGB
AGB
AGB
Rt
Le
Br+Tw
St
AGB
TTB
TTB
AGB
Le
Tw
Br
St
AGB
CO 29
30
W = 0.1135 D1.22 H1.12
3.5
2.0
22.0 .0
63
63
6.1
30
17
W = 0.0639 D2.513 2.349
lnW = -2.59 + 2.6 lnD
W = 0.0639 D
3.5
6.0
21
108
3.2 3.2
10.3
273
W = 0.0639 D2.390
lnW = -2.51 + 2.44 lnD
W = 0.0457 D1.98
W = 0.0263 D 1.79
2.0
63
2.0
2.0
63
63
5.0
61
5.2
3.5
3.5
3.5
W = 0.0166 D2.44
W = 0.0978 D 2.20
W = 0.19999 D2.14
7.6 3.5
9.1
42.0
20.5
48.0
20.3
24.2
24.2
24.2
24.2
24.2
9.0
9.5
48.1
48.1
48.1
48.1
48.1
48.1
48.1
37.4
37.4
37.4
70.0
40.0
70.0
40.0
70.0
70.0
Max
PY 200
lnW = -2.39 + 2.60 lnD W = 0.0978 D2.58
30
lnW = -2.96 + 1.56 lnD
30
30
lnW = -1.32 + 1.17 lnD
lnW = -1.63 + 1.58 lnD
30
W = 0.11 ρ D2+0.62
lnW = -3.64 + 2.77 lnD
29
lnW = -2.75 + 2.591 lnD
7.6
nda
6
WL = 0.144 (WS+W
Le
AGB
0.778 B)
nda
6
nda
6
St WB = 0.0494 Ws1.351
5.0
5.0
5.0
5.5
5.0
5.0
Min
DBH (cm)
Br+Tw
24
15
19
13
20
20
∑ Sample Trees
lnW = -2.193 + 2.371 lnD
logW = -0.8406 + 2.572 logD
lnW = -1.098 + 2.142 lnD
AL
logW = - 0.762 + 2.51 logD
lnW = -1.813 + 2.339 lnD
lnW = -1.232 + 2.178 lnD
Model Form
Ws = 0.0132 (D2H)0.976
AGB
AGB
AGB
AGB
KALTIM
AGB
Papua
AGB
Component
KALTIM
KALTIM
Site
FIN
Macaranga gigantea
Shorea sp.
Pometia sp.
Palaquium sp.
Intsia sp.
Hopea sp.
Dipterocarpus sp.
Species
nda
6.1
6.1
6.1
nda
nda
nda
nda
nda
nda
4.0
5.0
4.8
4.8
4.8
4.8
4.8
nda
nda
nda
nda
nda
nda
6.0
nda
8.0
nda
nda
Min
nda
28.3
28.3
28.3
nda
nda
nda
nda
nda
nda
15.0
10.0
32.4
32.4
32.4
32.4
32.4
nda
nda
nda
nda
nda
nda
22.4
nda
25.9
nda
nda
Max
H (m)
0.95
0.94
0.95
0.97
0.85
0.87
0.66
0.83
0.95
0.93
0.66
0.59
0.93
0.63
0.56
0.65
0.93
Nda
0.95
nda
0.95
0.98
0.98
0.99
0.98
0.98
0.99
0.99
R2
nda
nda
nda
nda
nda
0.24
0.40
0.34
0.16
0.17
nda
nda
0.50
0.77
0.66
0.75
0.77
nda
nda
nda
nda
nda
nda
0.08
nda
0.02
nda
nda
Se
22
73
73
73
22
2
2
2
2
2
33
57
5
5
5
5
5
37
37
74
74
74
11
43
11
44
11
11
Ref
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
69
Ecosystem Type
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
No
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Schima wallichii (3 yrs post-fire)
Schima wallichii (2 yrs post-fire)
Schima wallichii (2 yrs post-fire)
Schima wallichii (2 yrs post-fire)
Schima wallichii (2 yrs post-fire)
Schima wallichii (2 yrs post-fire)
Schima wallichii (1 yr post-fire)
Schima wallichii (1 yr post-fire)
Schima wallichii (1 yr post-fire)
Schima wallichii (1 yr post-fire)
Schima wallichii (1 yr post-fire)
Schima wallichii
Schima wallichii
Schima wallichii
Schima wallichii
Schima wallichii
Piper aduncum
Other types
Geunsia pentandra
Species
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
SUMSEL
SUMSEL
AGB
Le
Tw
Br
St
AGB
Le
Tw
Br
St
AGB
Le
Tw
Br
St
SUMSEL
SUMSEL
AGB
AGB
SUMSEL
KALTIM
AGB
AGB
3.0
15
lnW = -0.902 + 2.33 lnD
lnW = -1.33 + 2.04 lnD
lnW = -3.06 + 3.47 lnD
lnW = -1.84 + 1.99 lnD
lnW = -1.24 + 1.91 lnD
lnW = -0.926 + 2.03 lnD
lnW = -1.68 + 2.87 lnD
lnW = -3.28 + 3.28 lnD
1.6
15
13
13
13
13
13
56
56
1.0
1.0
1.0 1.0
1.0
1.0
1.0
1.1
1.1
4.8
3.0
3.0
3.0
3.0
3.0
3.0
3.0
2.1
1.6
1.6
1.6
1.6
1.6
1.6
PY
1.1
3.0
1.6
56
lnW = -2.44 + 3.57 lnD
1.1
1.6
5.3
5.3
5.3
5.3
5.3
nda
nda
nda
Min
1.6
56
lnW = -1.46 + 2.35 lnD
3.0
24.6
24.6
24.6
24.6
24.6
8.3
20.3
16.2
Max
3.0
56
lnW = -1.22 + 2.67 lnD
W = 0.141 D1.998
CO
3.0
15
1.366
1.1
3.0
15
W = 0.208 D
3.0
15
2.104
W = 0.038 D2.088
3.0
W = 0.262 D
3.2
15
3.2
3.4
Min
DBH (cm)
37
108
20
∑ Sample Trees
W = 0.459 D1.366
lnW = -2.42 + 2.39 lnD
lnW = -2.49 + 2.4 lnD
lnW = -2.89 + 2.62 lnD
Model Form
AL
Component
FIN KALTIM
KALTIM
Site
7.5
3.5
3.5
3.5
3.5
3.5
3.4
3.4
3.4
3.4
3.4
17.0
17.0
17.0
17.0
17.0
nda
nda
nda
Max
H (m)
0.88
0.92
0.85
0.85
0.74
0.88
0.86
0.53
0.91
0.92
0.94
0.92
0.90
0.99
0.99
0.92
0.92
0.81
0.91
R2
0.19
0.09
0.21
0.01
0.17
0.11
0.16
0.01
0.16
0.10
0.09
nda
nda
nda
nda
nda
nda
nda
nda
Se
47
47
47
47
47
47
47
47
47
47
47
60
60
60
60
60
22
22
22
Ref
a
a
a
a
a
a
a
a
a
a
a
Note
70
Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
DLFs
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
Ecosystem Type
73
No
Bruguiera parviflora
Bruguiera parviflora
Bruguiera parviflora
Bruguiera gymnorrhiza
Bruguiera gymnorrhiza
Bruguiera gymnorrhiza
Bruguiera gymnorrhiza
Bruguiera gymnorrhiza
Bruguiera gymnorrhiza
Riau
Riau
Riau
KALBAR
KALBAR
KALBAR
KALBAR
KALBAR
KALBAR
KALBAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
Fl+Fr
Br+Tw
St
Rt
AGB
lnW - -2.01 + 2.51 lnD
lnW = -1.25 + 2.60 lnD
Model Form
14
14
15
15
15
15
∑ Sample Trees
14
lnW = -1.66 + 2.41 lnD
1.3
1.3
1.3
1.3
1.3
1.0
1.0
1.0
1.0
Min
7 7
W = 0.962 (D2H)0.0109 W = 0.0902 (D2H)0.0004
6 7
W = 0.987 (D2H)0.0372
33
33
logW = -1.516 + 2.283 D
logW = -0.552 + 2.244 D
logW = -3.422 + 2.358 D
10.0
10.0
10.0
5.7
24.8
24.8
24.8
33.5
60.9
60.9
60.9
5.0
33
logW = -1.380 + 2.056 D logW = -0.987 + 1.592 D
60.9
55.0 .0
5.0
33
logW = -2.408 + 3.106 D
60.9
35.2
55.0 .0
5.0
33
logW = -0.499 + 2.037 D
W = 0.168 D
60.9
6.4
47
1.794
35.2
35.2
5.0
6.4
47
33
6.4
47
W = 0.185 D2.352
W = 0.291 D2.260
5.1
5.1
5.1
5.1
5.1
4.8
4.8
4.8
4.8
Max
DBH (cm)
PY
14
14
lnW = -3.17 + 3.66 lnD
lnW = -1.90 + 2.45 lnD
CO
lnW = -1.22 + 2.69 lnD
lnW = -1.02 + 2.64 lnD
lnW = -1.25 + 1.35 lnD
lnW = -2.90 + 3.60 lnD
AL
Fl+Fr
Le
Tw
Br
St
Rt
AGB
TTB
Le
Tw
Br
St
AGB
Le
JABAR
JABAR
Tw
Br
JABAR
JABAR
St
Component
JABAR
Site
FIN
Bruguiera gymnorrhiza
Avicennia marina
Avicennia marina
Avicennia marina
Schima wallichii (4 yrs post-fire)
Schima wallichii (4 yrs post-fire)
Schima wallichii (4 yrs post-fire)
Schima wallichii (4 yrs post-fire)
Schima wallichii (4 yrs post-fire)
Schima wallichii (3 yrs post-fire)
Schima wallichii (3 yrs post-fire)
Schima wallichii (3 yrs post-fire)
Schima wallichii (3 yrs post-fire)
Species
nda
nda
nda
7.4
6.6
6.6
6.6
6.6
6.6
6.6
3.5
3.5
3.5
2.5
2.5
2.5
2.5
2.5
2.1
2.1
2.1
2.1
Min
nda
nda
nda
20.9
20.9
20.9
20.9
20.9
20.9
20.9
11.3
11.3
11.3
7.0
7.0
7.0
7.0
7.0
7.5
7.5
7.5
7.5
Max
H (m)
0.94
0.98
0.99
0.98
0.99
0.45
0.82
0.85
0.94
0.97
0.86
0.98
0.98
0.82
0.65
0.85
0.96
0.96
0.54
0.71
0.69
0.84
R2
nda
nda
nda
0.01
0.00
0.44
0.04
0.05
0.04
0.01
nda
nda
nda
0.20
0.04
0.19
0.10
0.10
0.27
0.51
0.37
0.25
Se
40
40
40
39
39
39
39
39
39
39
16
16
16
47
47
47
47
47
47
47
47
47
Ref
a
a
a
a
a
a
a
a
a
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
71
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
MF
102
103
MF
101
Bruguiera sexangula
MF
MF
99
100
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Bruguiera spp.
Bruguiera spp.
Bruguiera spp.
Bruguiera spp.
Bruguiera spp.
Bruguiera spp.
Bruguiera spp.
Bruguiera spp.
Bruguiera spp.
Bruguiera spp.
Riau
Riau
Riau
Riau
Riau
Riau
Riau
Riau
KALBAR
KALBAR
KALBAR
KALBAR
KALBAR
Riau
Riau
Riau
Riau
Riau
Riau
Riau
KALTIM
KALTIM
Br+Tw
Br+Tw
St
Rt
Le
Tw
Br
St
TTB
Le
Tw
Br
St
AGB
Rt
Fr
Le
Tw
Br
St
TTB
Rt
7 9 9
W = 0.8902 (D H) W = 1.0293 (D2H)0.0126
2
0.0796
∑ Sample Trees
W = 0.0685 (D2H)0.0252
Model Form
9
10.8 10.8 10.8
12
12
2.5
2.5
2.5
1.1
1.1
11.1 .1
11.1 .1
34
21
21
21
21
W = 5.59 D0.69 1.34
2.5
2.5
34
34
34
5 5
0.081
W = 0.902 (D H)
W = 0.904 (D2H)0.029
10.0
10.0
1.1
21 2
1.1
21
W = 0.64 D
W = 0.0078 D3.09
W = 2.13 D0.69
W = 0.21 D2.45
W = 0.75 D2.23
logW = -1.68 + 1.92 logD
49.5
49.5
38.2
38.2
38.2
38.2
38.2
38.2
40.0
40.0
40.0
40.0
40.0
22.3
22.3
22.3
22.3
22.3
22.3
22.3
37.0
37.0
37.0
40.5
40.5
40.5
40.5
24.8
Max
PY
10.8
12
10.8
10.8
12
12
10.8
12
34
logW = -1.29 + 1.63 logD
logW = -2.02 + 2.37 logD
10.5
10.5
10.5
10.0
10.0
10.0
10.0
10.0
Min
DBH (cm)
12
11
11
CO
logW = -1.78 + 2.84 logD
logW = -1.34 + 2.60 logD
W = 6.5 D1.00
W = 10.45 D
0.54
W = 5.52 D0.56
W = 6.63 D0.58
W = 4.82 D
0.71
W = 0.95 D1.87
W = 10.11 D
1.3
lnW = -3.89 + 3.04 lnD
lnW = -5.59 + 3.35 lnD
11
W = 0.0602 (D H) 0.00525
lnW = -2.24 + 2.57 lnD
2
9
W = 0.073 (D2H)0.0021
AL
Fl+Fr
St
Riau
KALTIM
Le
Br+Tw
St
Le
Component
Riau
Riau
Riau
Riau
Site
FIN
Bruguiera sexangula
MF
98
Bruguiera sexangula
Bruguiera sexangula
MF
MF
Bruguiera parviflora
96
MF
95
Species
97
Ecosystem Type
No
nda
nda
11.0
11.0
11.0
11.0
11.0
11.0
2.9
2.9
2.9
2.9
2.9
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.3
12.3
12.3
nda
nda
nda
nda
nda
Min
nda
nda
32.0
32.0
32.0
32.0
32.0
32.0
27.3
27.3
27.3
27.3
27.3
19.5
19.5
19.5
19.5
19.5
19.5
19.5
18.0
18.0
18.0
nda
nda
nda
nda
nda
Max
H (m)
0.97
0.99
0.94
0.66
0.68
0.85
0.98
0.98
0.87
0.68
0.88
0.95
0.97
0.98
0.45
0.61
0.91
0.89
0.99
0.99
0.95
0.88
0.91
0.97
0.88
0.95
0.98
0.96
R2
nda
nda
nda
nda
nda
nda
nda
nda
0.22
0.23
0.26
0.20
0.14
nda
nda
nda
nda
nda
nda
nda
0.28
0.54
0.34
nda
nda
nda
nda
nda
Se
40
40
30
30
30
30
30
30
7
7
7
7
7
30
30
30
30
30
30
30
70
70
70
40
40
40
40
40
Ref
Note
72
Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
133
134
135
136
137
138
139
140
141
142
143
144
145
146
CF
MF
132
149
MF
131
CF
MF
130
CF
MF
129
147
MF
128
148
MF
MF
126
127
MF
MF
124
125
MF
Ecosystem Type
123
No
Rhizophora mucronata
Dalbergia latifolia
Mixed
Acacia auriculiformis
Xylocarpus granatum
Xylocarpus granatum
Xylocarpus granatum
Xylocarpus granatum
Xylocarpus granatum
Rhizophora spp.
Rhizophora spp.
Rhizophora spp.
Rhizophora spp.
Rhizophora mucronata
Rhizophora mucronata
Rhizophora mucronata
Rhizophora mucronata
Rhizophora mucronata
Rhizophora mucronata
Rhizophora mucronata
Rhizophora mucronata
Rhizophora mucronata
Rhizophora mucronata
Rhizophora mucronata
DIY
JATENG & DIY
DIY
KALBAR
KALBAR
KALBAR
KALBAR
KALBAR
KALTIM
KALTIM
KALTIM
KALTIM
Riau
Riau
Riau
Riau
Riau
Riau
Rt-slt
AGB
AGB
AGB
Le
Tw
Br
St
AGB
Rt
5 5 5
W = 0.0404 (D H) W = 0.8164 (D2H)0.0359
2
0.0034
∑ Sample Trees
W = 0.0748 (D2H)0.0021
Model Form
11.1
7
49.4
49.4
5.9
5.9 5.9
5.9 5.9
30
10
58
10
0.902
W = 0.078 (D H)
W = 0.022 (D2H)1.010 W = 0.746 (D2H)0.639
nda
nda
nnda da
49.4
5.9
30
30
5.9
30
nda
nda
nda
49.4
49.4
46.5
46.5
11.0
46.5
46.5
11.0
11.0
11.0
11
30 2
24.5
24.5
24.5
24.5
24.5
PY
11.1
11.1
11.1
11.1
24.5
24.5
7.8
7.8
7.8
7.8
7.8
49.5
49.5
49.5
Max
11
logW = -0.968 + 1.51 logD
logW = - 1.00 + 1.79 logD
logW = - 2.20 + 2.78 logD
logW = - 1.09 + 2.28 logD
logW = - 0.763 + 2.23 logD
lnW = -1.79 + 2.21 lnD
lnW = -4.74 + 1.56 lnD + 1.47 lnH
11
11
7
7
7
7
7
11.1
11.1
7
CO
lnW = -5.11 + 1.48 lnD + 2.60 lnH
lnW = -3.04 + 1.75 lnD + 1.15 lnH
W = 0.0008 D3.64
0.87
W = 0.52 D
W = 2.19 D0.86
W = 0.0007 D3.73
W = 0.031 D
2.64
W = 0.47 D2.15
W = 0.5 D
2.32
2.0 2.0
10
Ws = -1.919 + 2.597 logD
2.0
2.0
2.0
10.0
10.0
10.0
Min
DBH (cm)
10
10
Ws = -1.996 + 3.273 logD
WR = -2.4696 + 3.880 logD
10 10
W = -0.904 + 2.950 logD
Ws = -0.933 + 2.753 logD
AL
Br+Tw
St
Rt
Fr
Le
Tw
Br
St
TTB
Rt-slt
Riau
Le
JATENG
Br+Tw
St
AGB
Rt
Fl+Fr
Le
Component
JATENG
JATENG
JATENG
JATENG
Riau
Riau
Riau
Site
FIN
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Species
nda
nda
nda
4.9
4.9
4.9
4.9
4.9
10.5
10.5
10.5
10.5
12.0
12.0
12.0
12.0
12.0
12.0
12.0
4.0
4.0
4.0
4.0
4.0
nda
nda
nda
Min
nda
nda
nda
22.1
22.1
22.1
22.1
22.1
25.0
25.0
25.0
25.0
17.1
17.1
17.1
17.1
17.1
17.1
17.1
7.0
7.0
7.0
7.0
7.0
nda
nda
nda
Max
H (m)
0.89
0.84
0.96
0.75
0.75
0.90
0.95
0.95
0.97
0.94
0.95
0.97
0.91
0.99
0.99
0.91
0.90
0.91
0.90
0.89
0.87
0.90
0.88
0.89
0.95
0.95
0.96
R2
nda
nda
nda
0.20
0.24
0.21
0.12
0.11
0.17
0.32
0.35
0.22
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Se
12
12
12
71
71
71
71
71
70
70
70
70
30
30
30
30
30
30
30
69
69
69
69
69
40
40
40
Ref
a
a
a
a
a
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
73
CF
CF
174
175
CF
165
CF
CF
164
173
CF
163
CF
CF
162
172
CF
161
CF
CF
160
171
CF
159
CF
CF
158
CF
CF
157
170
CF
156
169
CF
155
CF
CF
154
168
CF
153
CF
CF
152
CF
CF
151
166
CF
150
167
Ecosystem Type
No
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Le
SULUT
JATENG
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
SULUT
SULUT
SULUT
SULUT
SULUT
SULUT
SULUT
SULUT
SULUT
AGB
St-fb
A-(D>0.5 cm)
A-(D<0.5 cm)
Stp
Le
Tw
Br
logW = -1.061 + 2.49 logD
logW = -0.701 + 2.4 logD
Model Form
15
15
15
15
logW = -2.678 + 2.88 logD
logW = -2.041 + 2.49 logD
logW = -2.638 + 2.89 logD
logW = -1.2 + 1.83 logD 15 8
logW = -2.0 + 2.67 logD W = -67.6 + 1.442D - 3.16H
H
8 18
W = - 10.3 + 382D -2.08H W = 0.0199 (D2H)0.930
8
W = 144543.9 D2.86 H1.38
8 8
W = - 0.088 + 0.948 D + 0.154H
W = 28.8 D1.04 H0.187
8
8
8
0.939
W = -2.74 + 16.4D + 0.741H
W = 3388.4 D 2.17
W = - 13.7 + 763D -7.69H
8
15
logW = -0.148 + 0.624 logD
W = -32.3 + 550 D - 1.84H
7.5
7.5
7.5
7.5
7.5
7.5
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
50.0
50.0
50.0
50.0
50.0
50.0
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.2
Max
DBH (cm) Min
nda
5.0
5.0
5.0 5.0
55.0 .0
5.0
5.0
5.0
5.0
5.0
7.5
7.5
nda
>50
>50
>50
>50
>50
>50
>50
>50
>50
50.0
50.0
PY
15
logW = -1.58 + 2.79 logD
CO
15
15
15
15
15
15
15
15
15
∑ Sample Trees
logW = -1.190 + 2.71 logD
logW = -1.520 + 2.29 logD
logW = -4.0 + 2.49 logD
logW = -0.863 + 1.63 logD
logW = -2.046 + 2.47 logD
logW = -1.620 + 2.39 logD
logW = -2.092 +2.51 logD
AL
St-stp
AGB
Rt
Fr
Le
Tw
Br
Brk
St
TTB
Rt
Fr
Tw
SULUT
Br
Brk
SULUT
SULUT
St
SULUT
SULUT
TTB
Component
SULUT
Site
FIN
Paraserianthes falcataria
Elmerrillia ovalis
Elmerrillia ovalis
Elmerrillia ovalis
Elmerrillia ovalis
Elmerrillia ovalis
Elmerrillia ovalis
Elmerrillia ovalis
Elmerrillia ovalis
Elmerrillia celebica
Elmerrillia celebica
Elmerrillia celebica
Elmerrillia celebica
Elmerrillia celebica
Elmerrillia celebica
Elmerrillia celebica
Elmerrillia celebica
Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
Min
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.6
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3
Max
H (m)
0.99
0.81
0.85
0.81
0.88
0.97
0.87
0.94
0.97
0.98
0.97
0.77
0.94
0.98
0.98
0.98
0.99
0.99
0.95
0.74
0.89
0.96
0.98
0.96
0.98
0.99
R2
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
0.03
0.11
0.08
0.03
0.11
0.09
0.08
0.03
0.05
0.11
0.01
0.05
0.12
0.11
0.09
0.07
Se
12
56
56
56
56
56
56
56
56
56
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
Ref
b
b
b
b
b
b
b
b
b
Note
74
Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
Ecosystem Type
176
No
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Swietenia mahagony
Pinus merkusii
Pinus merkusii
Pinus merkusii
Paraserianthes falcataria
Paraserianthes falcataria
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
DIY
DIY
DIY
DIY
DIY
DIY
DIY
JATENG
JATENG
JABAR
JABAR
JABAR
JATENG
Tw
Tw
Br
Br
Br
Br
St
St
St
St
AGB
Rt
Fl+Fr
Le
logW = -2.786 + 3.031 logD
logW = -1.061 + 2.343 logD
logW = -1.239 + 2.561 logD
Model Form
5.1 5.1
15
2.176
CO 5.1
15
W = 0.0076 (DH)1.1937
W = 0.016 D2.037
1.486 W = 0.008 (D*ρ*H) (DρH)1.486
W = 0.043 (Dρ)2.450
W = 0.0036 (DH)
1.513
W = 0.037 (DρH) W = 0.009 D2.605
1.523
W = 0.251 (Dρ)2.404
W = 0.014 (DH)1.569
W = 0.048 D2.604
nda nda
30
nda
30
30
nda
nnda da
30
30
nnda da
nda
30
30
nda
nda
30
30
2.0
nda
30
2, 486
nda
5.1
15
W = 0.107 D
27.1
27.1
27.1
27.1
27.1
nda
nda
44.0
44.0
44.0
43.8
43.8
43.8
43.8
43.8
Max
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
35.0
27.1
27.1
PY 5.1
15
W = 0.037 D2.167
W = 0.187 D
5.1
15
W = 0.0498 D2.196 0.751
5.1
15
W = 0.0789 D2.178
W = 0.166 D
2.13
W = 0.412 D
15
nda
10
W = 0.370 D2.125
W = 0.015 (D2H)1.084
nda
10
W = 0.903 (D H) 0.684
0.4
2
0.4
80
W = 0.094 D
80
2.432
W = 0.010 D2.604
0.4
80
W = 0.103 D2.459
nda
nda
nda
nda
Min
DBH (cm)
nda
30
30
30
30
∑ Sample Trees
30
logW = -1.84 + 2.01 logD
logW = -2.39 + 2.496 logD
AL
Br+Tw
St
AGB
TTB
AGB
AGB
Rt
AGB
TTB
Le
Tw
Br
JATENG
St
JATENG
AGB
Component
JATENG
JATENG
Site
FIN
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Min
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Max
H (m)
nda nda
0.97 0.973 0.89 0.890
0.79
0.81
0.85
0.88
nda
nda
nda
nda
nda
nda
0.841 0.84
nda
0.98
nda
nda
0.14
0.08
0.19
0.44
0.22
0.12
0.10
nda
nda
nda
nda
nda
0.10
0.12
0.14
0.09
0.07
Se
0.92 0.921
0.97
0.90
0.91
0.03
0.72
0.85
0.86
0.92
0.93
0.98
0.99
0.94
0.95
0.95
0.93
0.94
0.94
0.96
0.97
R2
17
17
17
17
17
17
17
17
17
17
36
6
6
6
6
6
6
6
12
12
66
66
66
59
59
59
59
59
Ref
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
75
PSF
PSF
PSF
229
PSF
219
227
PSF
218
228
PSF
217
PSF
PSF
216
PSF
PSF
215
226
PSF
214
225
PSF
213
PSF
PSF
212
224
PSF
211
PSF
PSF
210
223
PSF
209
PSF
PSF
208
222
PSF
207
PSF
PSF
206
PSF
PSF
205
220
PSF
204
221
Ecosystem Type
No
Dipterocarpus kerrii
Dipterocarpus kerrii
Cotylelobium burckii
Cotylelobium burckii
Cotylelobium burckii
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
Riau
Riau
Riau
Riau
Riau
Riau
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
2
nda
30
30
nda
nda
2.2897
(DρH) W = 0.085 (Dρ (D ρH) H)1.4345
W = 0.0145D - 0.47D + 30.64D263.32 W = 0.7034D2 - 16.518D + 147.2
AGB
W = 0.217 D
2.38
lnW = -1.53 + 2.38 lnD
lnW = 1.40 + 2.00 lnD -1.82 lnρ
AGB
W = 0.30 D
2.29
lnW = -1.21 + 2.29 lnD lnW = -2.10 + 2.09 lnD + 0.55 lnH
AGB
PY 5.0 5.0
20
5.0
20
20
40.0
40.0
40.0
40.0
40.0
55.0 .0
5.0
20
20
40.0
nda
5.0 5.0
nda
20
W = -0.0012D3 + 0.12D2 2.33D+17.03
nda
nda
nda
nda
nda
nda
nda
W = 0.003D3 - 0.139D2 + 21.189D
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Max
nda
nda
nda
2
W = -0.0142D + 1.553D - 31.817D 3
W = 0.002D3 - 0.15D2 + 3.53D 21.202
3
nda
nda
30
W = 0.4864 (Dρ (Dρ) (D ρ))
nda
30
nda
30
W = 0.0355 (DH) 1.474
2.4695
W = 0.1032 D
W = 0.047 (Dρ (DρH) (D ρH) H)1.2184
CO
30
W = 0.1994 (Dρ (Dρ) (D ρ)) nda
nda
30
1.968
nda
30
nda
nda
30 30
nda
30
W = 0.0225 (DH)1.2501
W = 0.0628 D
2.0565
(DρH)0.8503 W = 0.0466 (D
(Dρ)1.3779 W = 0.125 (D
W = 0.028 (DH)
0.8803
AL
W = 0.0467 D1.5055 nda
nda
30
1.174
30
nda
30
W = 0.0542 (Dρ)1.9173 W = 0.0146 (DρH)
Min
DBH (cm)
∑ Sample Trees
Model Form
AGB
AGB
AGB
Le
Brk
Tw
Br
St
AGB
TTB
TTB
TTB
TTB
Rt
Rt
Rt
Rt
KALTENG
KALTENG
Le
Le
Le
Le
Tw
Tw
Component
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
Site
FIN
Cotylelobium burckii
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Min
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Max
H (m)
0.96
0.96
0.95
0.98
0.97
0.97
0.79
0.91
0.93
0.87
0.95
0.95
0.96
0.93
0.96
0.96
0.92
0.92
0.90
0.89
0.78
0.77
0.79
0.83
0.77
0.76
R2
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Se
4
4
4
4
4
4
35
35
35
35
35
35
17
17
17
17
17
17
17
17
17
17
17
17
17
17
Ref
b
b
b
b
b
b
Note
76
Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSFs
PSFs
PSFs
PSFs
PSFs
PSFs
PSFs
PSFs
PSFs
PSFs
PF
PF
PF
PF
PF
PF
PF
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
Ecosystem Type
230
No
Acacia crassicarpa
Acacia crassicarpa
Acacia crassicarpa
Acacia crassicarpa
Acacia crassicarpa
Acacia crassicarpa
Acacia crassicarpa
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Mixed
Shorea parvifolia
Shorea parvifolia
Shorea parvifolia
Shorea parvifolia
Gonystylus bancanus
Gonystylus bancanus
Gonystylus bancanus
SUMSEL
Riau
Riau
Riau
Riau
Riau
Riau
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
KALTENG
KALTENG
KALTENG
KALTENG
Riau
Riau
Riau
AGB
TTB
Rt
Le
Tw
Br
St
Le
Tw
Br
St
AGB
AGB
Le
Tw
Br
St
AGB
AGB
AGB
AGB
Le
Tw
Br
Brk
St
Riau
AGB
Riau
AGB lnW = -2.47 + 2.44 lnD
lnW = -2.61 + 2.78 lnD +0.80 lnρ
lnW = -2.24 + 2.12 lnD +0.52 lnH
Model Form
2.0
20
5.3
5.3
5.3
30
30
30
W = 0.206284 D2.4511 2.44672
40
H
4.6 6.0
40 10
0.165
Hbc W = 0.0267 D2.8912
W = 0.398918 D
2.041
4.6
40
W = 0.433874 D0.158 H1.040
4.6
44.6 .6
40
40
W = 0.122947 D
44.6 .6
40
W = 0.211401 D1.965 H-0.454
1.793
W = 0.0018 D5.37H-2.299
W = 0.168976 D 0.133
4.6
5.3
30
2.322
5.3
30
W = 0.066973 D 1.9158
W = 0.066742 D1.7589
W = 0.00862 D2.6927
W = 0.158976 D
2.0
20
W = 0.153108 D2.40
30.2
30.2
30.2
30.2
40.0
40.0
40.0
40.0
75.1
75.1
75.1
75.1
75.1
40.0
40.0
Max
28.0
23.5
23.5
23.5
23.5
23.5
23.5
64.0
64.0
64.0
64.0
64.0
30.2
PY
2.0
20
1.65
W = 0.072444 D
2.0
20
W = 0.022387 D2.13
W = 0.007763 D2.51
2.0
20
5.0
20
lnW = -1.03 + 2.08 lnD - 0.51 lnρ ln
CO
5.0 5.0
20 20
5.0
10.0
10.0
10.0
10.0
10.0
5.0
5.0
Min
DBH (cm)
20
10
10
10
10
10
20
20
∑ Sample Trees
W = 0.060256 D2.62
lnW = -2.99 + 2.35 lnD + 0.44 lnH
W = 0.09 D
2.58
lnW = -2.36 + 2.58 lnD
lnW = -3.05 + 1.62 lnD
lnW = -3.01 + 2.04 lnD
lnW = -4.3 + 2.65 lnD
lnW = -5.33 + 2.27 lnD
AL
Component
KALTENG
KALTENG
Site
FIN
Gonystylus bancanus
Gonystylus bancanus
Dipterocarpus kerrii
Dipterocarpus kerrii
Species
nda
nda
nda
nda
nda
nda
nda
6.6
6.6
6.6
6.6
6.6
2.8
2.8
2.8
2.8
2.8
nda
nda
nda
nda
14.2
14.2
14.2
14.2
14.2
nda
nda
Min
nda
nda
nda
nda
nda
nda
nda
31.2
31.2
31.2
31.2
31.2
19.1
19.1
19.1
19.1
19.1
nda
nda
nda
nda
44.3
44.3
44.3
44.3
44.3
nda
nda
Max
H (m)
0.96
0.99
0.99
0.99
0.98
0.95
0.99
0.61
0.77
0.84
0.96
0.96
0.98
0.67
0.85
0.85
0.98
0.99
0.99
0.99
0.99
0.96
0.97
0.94
0.99
0.99
0.98
0.97
R2
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
0.33
0.35
0.42
0.31
0.19
nda
nda
Se
58
81
81
81
81
81
81
46
46
46
46
46
77
77
77
77
77
4
4
4
4
64
64
64
64
64
4
4
Ref
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
77
PF
PF
PF
PF
PF
280
281
282
283
PF
275
PF
PF
274
279
PF
273
278
PF
272
PF
PF
271
PF
PF
270
276
PF
269
277
PF
PF
264
PF
PF
263
268
PF
262
267
PF
261
PF
PF
260
PF
PF
259
265
PF
258
266
Ecosystem Type
No
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Species
KALTIM
KALBAR
KALBAR
KALBAR
KALBAR
KALBAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
AGB
Rt
Le
Br
St
TTB
AGB
AGB
Rt
St
AGB
TTB
Rt
Le
Br
St
Rt
AGB
TTB
TTB
Rt
Le
JABAR
JABAR
Tw
Br
JABAR
JABAR
St
Rt
<5
8
nda
15
2.8202
nda
1.4
15
22
W = 1.6106 (D2H)0.6173
W = 2.5121 (D H)
1.4
1.4
22
22
W = 0.071D2.715
W = -3.43 + 0.09 D2
9.9 9.0
27 6
nnda da
nda
27
W = 5.59 + 0.13 D2 - 1.11 H
nnda da
27
W = -6.21 + 0.44 D2 - 0.92 H W = -0.06 + 0.66 D + 0.01 D2 - 0.38 H
27
27
W = 0.12 + 0.70D - 2.56 H
nda
nda
2
nda
26
nda
logW = -0.727 + 1.131 logD W = 0.0824 D1.4448
W = 0.0066 D2.96
W = 0.1524 D
1.4
22
2.1227
21.0
20.0
nda
nda
nda
nda
nda
nda
18.9
18.9
18.9
18.9
nda
nda
nda
nda
nda
nda
nda
40.0
40.0
40.0
40.0
40.0
40.0
40.0
PY
nda
W = 0.1995 D2.1479
W = 0.1997 D2.2351
2
1.0193
15
W = 2.4877 (D H)
nda
15
1.0087
2
15
W = 1.7143 (D2H)0.9934
W = 0.0059 D
CO nda
15 nda
nda
15
W = 0.0528 D
2.7224
W = 0.0471 D2.706
W = 0.140928 D2.31
W = 0.012882 D2.49 <5
<5
8
1.89
8
<5
W = 0.060256 D
<5
8
<5
8 8
5.0
8
Max
DBH (cm) Min
∑ Sample Trees
W = 0.013182 D2.32
W = 0.0910201 D 1.36
W = 0.070794 D2.36
W = 0.00134896 D2.46
Model Form
AL
Component
FIN JABAR
JABAR
Site
nda
7.9
nda
nda
nda
nda
nda
nda
3.5
3.5
3.5
3.5
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Min
nda
13.7
nda
nda
nda
nda
nda
nda
13.9
13.9
13.9
13.9
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Max
H (m)
0.99
0.78
0.49
0.69
0.84
0.85
nda
0.95
0.96
0.99
0.99
0.99
0.97
0.65
0.86
0.97
0.99
0.99
0.99
0.99
0.98
0.97
0.99
0.38
0.96
0.98
R2
0.01
0.05
0.02
0.05
0.16
0.23
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Se
20
76
76
76
76
76
18
31
28
28
28
28
27
27
27
27
25
25
25
55
55
55
55
55
55
15
Ref
d
d
c
c
c
c
Note
78
Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
Ecosystem Type
284
No
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Species
FIN SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
Rt
Le
Br+Tw
St
TTB
Rt
Le
Br+Tw
St
TTB
Rt
Le
Br+Tw
St
TTB
Rt
Le
2.2 8.7 8.7 8.7
26 12 12 12
W = 124.51- 33.45D + 2.77D2 0.05D3
2.2
Min
9.5
12
9.5 9.5
12
12
W = 0.1022 D1.0499
7.0
2.1835
7.0
13.1
13.1
13.1
12
12
12
12
2.5425
W = 0.0014 D2.9264 1.4529
15 15
0.9542
W = 3.1325 (D H)
W = 3.1632 (D2H)1.2020
2
15
W = 3.2245 (D2H)1.1887
nda
nda
nda
nnda da
15
W = 1.415 (D H)
0.9512
13.1
12 2
13.1
12
W = 0.1255 D2.2981
W = 0.1923 D
W = 0.0617 D2.0527
W = 0.0343 D
7.0
12
W = 0.1033 D2.4718
W = 0.0177 D
9.9
9.9
15.2
15.2
15.2
15.2
15.2
11.2
11.2
11.2
11.2
11.2
nda
nda
nda
nda
20.1
20.1
20.1
20.1
20.1
9.9
9.9
9.9
PY
7.0
12
W = 0.0699 D
12
1.8436
W = 0.0126 D2.9027
7.0
12
W = 0.0455 D2.4533
W = 0.1628 D
9.5
12
1.7
9.5
12
W = 0.0005 D2.7389
W = 0.0635 D1.3842
W = 0.9305 D1.1238
CO
8.7
12
2.7470
W = 0.0226 D
8.7
12
W = 0.0005 D3.6486
W = 0.0044 D
2.5079
W = 0.0000025 D5.8210
W = 0.1121 D1.8049
38.5
38.5
Max
DBH (cm)
26
∑ Sample Trees
W = 179.81- 41.54D + 3.14D2 0.05D3
Model Form
AL
Br+Tw
St
TTB
Rt
SUMSEL
Le
SUMSEL
Br+Tw
SUMSEL
SUMSEL
St
St
Riau
SUMSEL
AGB
Component
Riau
Site
nda
nda
nda
nda
11.2
11.2
11.2
11.2
11.2
5.6
5.6
5.6
5.6
5.6
10.6
10.6
10.6
10.6
10.6
4.2
4.2
4.2
4.2
4.2
nda
nda
Min
nda
nda
nda
nda
12.8
12.8
12.8
12.8
12.8
7.0
7.0
7.0
7.0
7.0
13.6
13.6
13.6
13.6
13.6
5.5
5.5
5.5
5.5
5.5
nda
nda
Max
H (m)
0.91
0.77
0.63
0.91
0.97
0.85
0.98
0.92
0.96
0.76
0.78
0.69
0.83
0.72
0.90
0.94
0.66
0.94
0.87
0.93
0.79
0.80
0.91
0.86
0.97
0.99
R2
nda
nda
nda
nda
0.04
0.09
0.30
0.01
0.03
0.03
0.21
0.01
0.28
0.01
0.07
0.43
0.03
0.69
0.05
0.81
0.38
0.15
0.25
0.45
nda
nda
Se
27
27
27
27
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
48
48
Ref
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
79
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
324
325
326
327
328
329
330
331
332
333
334
335
336
337
PF
321
322
PF
320
323
PF
PF
318
319
PF
PF
314
317
PF
313
PF
PF
312
PF
PF
311
315
PF
310
316
Ecosystem Type
No
Gmelina arborea
Gmelina arborea
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Mixed
Mixed
Mixed
Mixed
Agathis loranthifolia
Agathis loranthifolia
Agathis loranthifolia
KALTIM
KALTIM
SUMUT
SUMUT
SUMUT
SUMUT
SUMUT
SUMUT
SUMUT
SUMUT
SUMUT
SUMUT
JABAR
JABAR
JABAR
JABAR
JATENG
JATENG
JATENG
St
AGB
AGB
Le
Br+Tw
St
AGB
Rt
Le
Br+Tw
St
AGB
TTB
Rt
AGB
TTB
Rt
Le
8.7 8.7
30 30
2.835
2
8.7
30
W = 0.070 D2.58
nda
2.2 2.2
2.2
2.4
2.4
12
12
12
12 18
18
2.0075
W = 0.0625 D1.9472 0.1297
CO 2.2
3
W = 0.2644 D
24 24
0.88
W = 0.06 (D H)
W = 0.03 (D2H)0.94
2
nda
nda
2.0
11.5
30
11.5
11.5
30
30
11.5
30
30
W = 0.0004 D
2.77
4.5
4.5
4.5
10.0
10.0
10.0
10.0
25.1
25.1
25.1
28.3
28.3
28.3
28.3
28.3
Max
nda
nda
21.0
23.9
23.9
23.9
23.9
16.8
27.2
27.2
27.2
27.2
4.5
PY
W = 0.288 D1.94
W = 0.002 D2.71
W = 0.38 D2.03
W = 0.36 D 2.06
3.7
2.4
W = -0.77 + 1.13D
18
18
0.6549
W = 0.5775 D
2.4
18
W = 0.0228 D2.0779
W = 0.0436 D2.6883
W = 0.0678 D2.5794
W = 0.7601 D
W = 0.1892 D2.0436
1.0
1.0
3
W = 0.0159 D
W = 0.0008 D3.865
1.0
2.684
1.0
3 3
W = 0.001 D
0.4
0.4
W = 0.2825 D3.684
4.195
nda
nda
lnW = -0.989 + 0.278 ln(D H)
lnW = -3.212 + 0.905 ln(D2H)
lnW = -5.464 + 0.942 ln(D2H)
8.7
30 0.4
8.7
30
W = 0.4601 D0.883
W = 0.01 D
1.999
W = 0.034 D1.982
W = 0.026 D
Min
DBH (cm)
∑ Sample Trees
Model Form
AL
Br+Tw
St
Br+Tw
SUMSEL
JATENG
St
SUMSEL
AGB
Le
SUMSEL
Tw
SUMSEL
Br
St
AGB
Component
SUMSEL
SUMSEL
SUMSEL
SUMSEL
Site
FIN
Agathis loranthifolia
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Species
nda
nda
3.2
17.5
17.5
17.5
17.5
6.7
2.6
2.6
2.6
2.6
2.5
2.5
2.5
2.5
nda
nda
nda
nda
0.7
0.7
0.7
8.4
8.4
8.4
8.4
8.4
Min
nda
nda
22.2
26.5
26.5
26.5
26.5
21.0
27.0
27.0
27.0
27.0
7.3
7.3
7.3
7.3
nda
nda
nda
nda
33.1
33.1
33.1
25.6
25.6
25.6
25.6
25.6
Max
H (m)
0.98
0.98
0.94
0.60
0.60
0.80
0.81
0.78
0.32
0.82
0.98
0.99
0.71
0.72
0.77
0.81
0.95
0.92
0.92
0.98
Nda
Nda
Nda
0.28
0.69
0.44
0.96
0.97
R2
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Se
3
3
62
52
52
52
52
63
50
50
50
50
68
68
68
68
10
10
10
10
32
32
32
75
75
75
75
75
Ref
a
a
a
a
e
e
e
e
Note
80
Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
Ecosystem Type
338
No
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
JATENG
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JATIM
JATIM
JATIM
JABAR
JABAR
JABAR
5.3
10
16.6 16.6 16.6
35
35
35
2.565
nda
15
2.815
1.9
23
1.924
logW = -1.18 + 1.72 logD W = 0.2825 D2.0542
Stp
logW= -1.47 + 1.66 logD
logW = -1.74 + 2.01 logD
logW = -2.07 + 2.47 logD
logW = -0.88 + 2.31 logD
logW = -0.686 + 2.26 logD
W = 0.02035 D2.129
W = 0.115 D
17.8 1.0
3
17.8
17.8
17.8
17.8
17.8
30
30
30
30
30
30
1.9
1.9
23
1.9
23
W = 0.197 D 2.061
23
nda
15
W = 0.177 D2.050
W = 0.0031 D3.023
nda
7.6
31.2
31.2
31.2
30.0
30.0
30.0
30.0
20.7
20.7
20.7
20.7
nda
nda
Max
10.0
57.0
57.0
57.0
57.0
57.0
57.0
11.0
11.0
11.0
11.0
nda
nda
PY
nda
15
W = 0.0315 D2.847 W = 0.0288 D
0.6
12
W = 0.0229 D2.84
W = 0.0069 D
.063
W = 0.2831 D2
W = 0.3196 D1.983
W = 0.129 D0.687
W = 0.028 D
CO
2.0
34
2.697
2.0
2.0
34 34
2.0
34
W = 0.148 D2.299
W = 0.113 D2.345
W = (0.1038 - 0.0071D)/(1-0.0688D)
St
Le
Tw
Br
5.3
10
W = 0.0264 + 0.0005 D3.2766
W = -0.367 + 0.0334 D1.916 5.3
5.3
10
10
nda
24
0.427
W = 0.0124 D2.444
2
W = 0.12 (D H)
nda
Min
DBH (cm)
24
∑ Sample Trees
W = 0.017 (D2H)0.765
Model Form
AL
St-stp
AGB
Rt
St
AGB
TTB
Rt
AGB
TTB
TTB
Rt
AGB
TTB
TTB
Rt
AGB
TTB
Le
Bengkulu
JABAR
Br+Tw
St
AGB
Le
Br+Tw
Component
Bengkulu
Bengkulu
Bengkulu
KALTIM
KALTIM
Site
FIN
Paraserianthes falcataria
Hevea brasiliensis
Hevea brasiliensis
Hevea brasiliensis
Hevea brasiliensis
Gmelina arborea
Gmelina arborea
Species
nda
14.0
14.0
14.0
14.0
14.0
14.0
2.4
2.4
2.4
2.4
nda
nda
nda
nda
nda
nda
nda
2.5
2.5
2.5
2.5
8.2
8.2
8.2
8.2
nda
nda
Min
nda
30.0
30.0
30.0
30.0
30.0
30.0
7.3
7.3
7.3
7.3
nda
nda
nda
nda
nda
nda
nda
7.3
7.3
7.3
7.3
18.3
18.3
18.3
18.3
nda
nda
Max
H (m)
0.88
0.44
0.68
0.81
0.71
0.90
0.94
0.92
0.96
0.95
0.95
0.98
0.99
0.99
0.97
0.94
0.87
0.91
0.62
0.93
0.94
0.95
0.18
0.98
0.99
0.99
0.65
0.85
R2
nda
0.01
0.08
0.03
0.02
0.05
0.01
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Se
10
23
23
23
23
23
23
29
29
29
29
25
25
25
14
65
65
65
68
68
68
68
80
80
80
80
3
3
Ref
e
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
81
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
378
379
380
381
382
383
384
385
386
387
388
389
390
391
PF
373
PF
PF
372
377
PF
371
PF
PF
370
376
PF
369
PF
PF
368
PF
PF
367
375
PF
366
374
Ecosystem Type
No
Shorea leprosula (2x2m)+ pinus
Shorea leprosula (2x2m)+ pinus
Shorea leprosula (2x2m)
Shorea leprosula (2x2m)
Shorea leprosula (2x2m)
Shorea leprosula (2x2m)
Shorea leprosula (2x2m)
Shorea leprosula (2x2m)
Shorea leprosula
Shorea leprosula
Shorea leprosula
Shorea leprosula
Shorea leprosula
Shorea leprosula
Shorea leprosula
Shorea leprosula
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
Rhizophora apiculata
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
KALTIM
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
KALBAR
KALBAR
KALBAR
KALBAR
KALBAR
AL 2.8
45
1.95
AGB
TTB
Rt
Le
Br+Tw
St
AGB
TTB
AGB
Br
St-fb
St
St+Br
Rt
AGB
2.8
45
nda nda 5.0
15
98
2.333
3.23
5.0
3.0
98 3
99.9 .9
3 3.1971
99.9 .9
9.9
9.9
3 3 3
3.4811
W = 0.06235 D2.5196
W = 0.08483 D2.4680
W = 0.00091 D
99.9 .9
3
W = 0.00644 D2.3782
W = 0.00229 D
9.9
9.9 3
3
9.9
5.0
98
3
5.0
98
W = 0.01497 D2.9353
W = 0.02005 D2.9542
W = 0.0195 D3.0285
W = 0.067 D2.859
W = 0.000039 D
W = 0.058 D2.58
W = 0.06 D2.61
W = 0.058 D2.62
W = 0.013 D
95.0
nda
nda
nda
8.9
8.9
8.9
8.9
8.9
8.9
70.5
10.0
10.0
10.0
Max
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
8.3
95.0
95.0
95.0
PY
nda
15
W = 0.0726 D2.378
15
CO
2.8
45
W = 0.059 D2.390
W = 0.02754 D3.22
TTB
W = 0.00794 D
AGB+Rtslt
3.25
W = 0.00741 D2.23
W = 0.02042 D 2.8
2.8
45
2.8
45
W = 0.00275 D4.01
45
5.2
35
W = 0.02138 D2.1
lnW = -3.566 + 2.122 lnD + 0.77 lnH
W = 1.6224 D1.1012
1.0
1.0
3
1.551
3
1.0
3
W = 0.0263 D2.2834 W = 0.1146 D
Min
DBH (cm)
∑ Sample Trees
Model Form
Rt-slt
Tw
Le
Br
St
St
SUMUT
KALBAR
Rt
Le
Br+Tw
Component
JATENG
JATENG
JATENG
Site
FIN
Rhizophora apiculata
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Species
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
nda
5.0
5.0
5.0
5.0
nda
nda
nda
1.6
1.6
1.6
1.6
1.6
1.6
4
nda
nda
nda
Min
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
nda
40.0
40.0
40.0
40.0
nda
nda
nda
10.5
10.5
10.5
10.5
10.5
10.5
44.8
nda
nda
nda
Max
H (m)
0.99
0.99
0.98
0.99
0.99
0.99
0.99
0.99
0.99
0.61
0.96
0.98
0.98
0.96
0.97
0.98
0.99
0.99
0.94
0.97
0.99
0.98
0.92
0.95
0.96
0.98
R2
nda
nda
nda
nda
nda
nda
nda
nda
0.11
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Se
26
26
26
26
26
26
26
26
21
19
19
19
19
25
25
25
51
51
51
51
51
51
72
10
10
10
Ref
e
e
e
e
e
e
e
e
e
b
b
b
b
b
e
e
e
Note
82
Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
Ecosystem Type
392
No
Shorea leprosula (all spacing)
Shorea leprosula (all spacing)
Shorea leprosula (semua jarak tanam)
Shorea leprosula (3x3m)+pinus
Shorea leprosula (3x3m)+pinus
Shorea leprosula (3x3m)+pinus
Shorea leprosula (3x3m)+pinus
Shorea leprosula (3x3m)+pinus
Shorea leprosula (3x3m)+pinus
Shorea leprosula (3x3m)
Shorea leprosula (3x3m)
Shorea leprosula (3x3m)
Shorea leprosula (3x3m)
Shorea leprosula (3x3m)
Shorea leprosula (3x3m)
Shorea leprosula (2x2m)+ pinus TTB
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
St
AGB
TTB
Rt
Le
Br+Tw
St
AGB
TTB
Rt
Le
W = 0.00995 D2.6703
W = 0.04432 D2.4987
Model Form
9.9 9.9
3 3
W = 0.02637 D2.7020
W = 0.03185 D2.7808
W = 0.03766 D2.7875
W = 0.00374 D3.0287
W = 0.00073 D3.3432
W = 0.00016 D4.3287
W = 0.00462 D3.3528
W = 0.00379 D3.6137
9.9
9.9
3
9.9
9.9
18
18
99.9 .9
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
Max
PY 9.9
9.9
9.9
9.9
9.9
18
3
3
3
3
3
W = 0.00612 D3.5056
9.9
9.9
CO 3
2.8375
W = 0.00549 D
3
W = 0.00141 D2.9344
W = 0.00129 D
3
9.9
3
3.3695
9.9
3
9.9
9.9
3
3
9.9
Min
DBH (cm)
3
∑ Sample Trees
W = 0.01066 D2.2063
W = 0.05933 D2.5433
W = 0.06261 D2.5930
W = 0.02603 D2.2143
W = 0.01007 D2.2883
AL
Br+Tw
St
AGB
Rt
JABAR
JABAR
Le
Br+Tw
JABAR
JABAR
St
Component
JABAR
Site
FIN
Shorea leprosula (2x2m)+ pinus
Shorea leprosula (2x2m)+ pinus
Shorea leprosula (2x2m)+ pinus
Species
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
Min
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7
Max
H (m)
0.98
0.98
0.98
0.99
0.89
0.94
0.99
0.98
0.99
0.96
0.99
0.99
0.98
0.99
0.99
0.99
0.94
0.99
0.99
R2
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Se
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
Ref
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
83
Ecosystem Type
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
E/A
E/A
E/A
E/A
E/A
E/A
No
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
Musa sp.
Hevea brasiliensis
Gigantochloa sp.
Elaeis guineensis
Elaeis guineensis
Coffea sp.
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Swietenia macrophylla
Swietenia macrophylla
Swietenia macrophylla
Swietenia macrophylla
Swietenia macrophylla
JATIM
Banten
JATIM
SUMUT
SUMUT
JATIM
JATIM
JATIM
JATIM
JATENG
JATENG
JATENG
JATENG
JATENG
JATENG
JABAR
JABAR
JABAR
JABAR
JABAR
AGB
TTB
AGB
AGB
AGB
AGB
St
Br+Tw
Le
Rt
Stp
Le
Tw
Br
W = 0.0058 D2.4762
W = 0.00338 D3.0852
Model Form
CO 4.8
W = 0.030 D2.13
W = 419 - 16.9D + 0.322D2
W = 0.131 D
2.278
W = 0.00238 D2.3385 H0.9411
W = 0.0002 D3.49
W = 0.2822 D
2.0636
W = 0.0287 (D2H)0.959
W = 0.0058 (D2H)1.038
W = 0.0660 DB 1, 752
W = 108 D1.7939
11.0 .0
30
7.0
3.0 26.1
nda nda
nda
11
nnda da
nda
34
nda
31
27.0
36.8
7.0
nda
nda
10.0
nda
nda
nda
74.8
74.8
74.8
74.8
74.8
nda
13.5
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
PY nda
9
nda
6.7
24
17
6.7
6.7
W = 503.38 D1.8476
24
24
1.0364
W = 19.775 D
6.7
24
6.7
W = 285.421 D2.261
24
nda
4.6
4.6
4.6
8.5
8.5
8.5
8.5
8.5
8.5
7.9
7.9
7.9
nda
26.2
26.2
26.2
36.9
36.9
36.9
36.9
36.9
36.9
20.0
20.0
20.0
Min
74.8
6.7
24
W = 1485.4 D2.8238
W = 5788 D
4.8
32
2.3375
4.8
9
32
14.3
14.3
14.3
14.3
14.3
14.3
9.9
9.9
9.9
Max
DBH (cm) Min
30
30
30
30
30
30
18
18
18
∑ Sample Trees
W = 0.093 D2.462
W = 0.054 D2.579
W = 0.006 D
2.702
logW = -1.65 + 1.96 logD
logW = -1.86 + 1.93 logD
logW = -2.57 + 2.42 logD
logW = -3.23 + 3.46 logD
logW = -1.36 + 2.61 logD
logW = -1.32 + 2.65 logD
W = 0.0053 D 2.8516
AL
St-stp
TTB
AGB
Rt
Stp
Le
Tw
Br
JABAR
JABAR
St-stp
AGB
Rt
Le
Br+Tw
Component
JABAR
JABAR
JABAR
JABAR
JABAR
Site
FIN
Swietenia macrophylla
Shorea leprosula (all spacing)
Shorea leprosula (all spacing)
Shorea leprosula (all spacing)
Species
nda
17.6
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
19.6
19.6
19.6
25.8
25.8
25.8
25.8
25.8
25.8
13.7
13.7
13.7
Max
H (m)
0.99
0.75
0.95
0.99
Nda
0.95
0.99
0.98
0.99
0.79
0.85
0.63
0.86
0.93
0.95
0.97
0.98
0.89
0.64
0.69
0.64
0.83
0.95
0.96
0.95
0.91
0.93
R2
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
0.15
0.13
0.18
0.16
0.06
0.06
nda
nda
nda
Se
9
13
53
42
79
9
54
54
54
24
24
24
24
24
24
67
67
67
1
1
1
1
1
1
26
26
26
Ref
Note
Notes for Appendix 1 Ecosystem Type:
Component:
Model Form:
HF
: Heath forest
Rt
: Root
D
: Diameter at breast height (cm)
DLF
: Dry land forest
Rt-slt
: Stilt Root
Db
: Diameter at the stem base (cm)
DLFs : Secondary dry land forest
Rt-(D < 0.5 cm) : Root with diameter < 0.5 cm H
: Tree height (m)
MF
: Mangrove forest
Rt-(D > 0.5 cm) : Root with diameter > 0.5 cm Ws
CF CF PSF PSF PSFs
: Community forest :: Community forest Peat land forest :: Peat land forest Secondary peat land forest
AGB AGB Fl Fl Fr
: Aboveground Biomass :: Aboveground Biomass Flower :: Flower Fruit
: Oven-dry weight of stem biomass (kg) (kg) biomass
PSFs PF PF E/A
:: Secondary peat land forest Plantation forest :: Plantation forest Estate/Agriculture
Fr TTB TTB St
:: Fruit Total tree biomass :: Total Stemtree biomass
E/A
: Estate/Agriculture
St St-fb St-fb St-stp
:: Stem Stem up to the first branch :: Stem to the first branch Stem up excluiding stump
St-smp Br Br Le
:: Stem Branchexcluiding stump :: Branch Leaf :: Leaf Bark
Tw Stp Stp
PY
:: Oven-dry Oven-dry weight weight of of biomass biomass (kg) (kg) 3 :: Wood density (kg/m Wood density (kg/m3))
CO
Le Brk Brk Tw
W W ρ ρ
:: Bark Twig :: Twig Stump : Stump
AL
Note: Note: a : Reccommended for estimating biomass of the trees with small diameters (< 10 cm) ab :: Reccommended for estimating biomassforofsmall the trees with class) small diameters (< 10 cm) Unrealistic estimates (negative values diameter bc :: Unrealistic estimates (negative values for small diameter class) Overestimate :: Overestimate Underestimate :: Underestimate The model is not advisable to use (the number of sample trees used is insufficient)
enda nda
:: The model is not advisable to use (the number of sample trees used is insufficient) no data available : no data available
FIN
cd de
84
Tree biomass allometric models that have been developed according to tree species and ecosystem type in Indonesia
Appendix 2.
No.
List of tree species included in the development of biomass allometric models for mixed-species
Ecosystem Type
Site
Species
Ref
HF
KALBAR
Combretocarpus rotundifolius., Dactylocadus stenostachys, Diospyros sp., Dryobalanops sp., Fragraea fragrans, Knema sp., Mesua hexapetalum, Shorea sp., Syzygium durifolium, Vatica cinerea, Xanthophyllum sp.
49
2
HF
KALTENG
Agathis bornensis, Calophyllum pulcherrimum, Calophyllum sp., sp., Canarium sp.,., Cotylelobium lanceolatum, Engeihardia serliata, Eugenia cf. klosii, Garcinia rostrata, Hopea griffithii, Palaquium leiocarpum, Sageraea elliptica, Shorea platycarpa, Shorea rugosa, Shorea teysmanniana, Sindora leiocarpa, Syzygium cf. klossii, Ternstroemia aneura, Tristania obovata, Vatica umbonata
45
3
DLF
JABAR
Alstonia scolaris, Antidesma montanum, Bridelia monoeca, Gliricidia sepium, Glochidion seiceum, Glumea balsamifera, Melastoma malabathricum, Oraxylum indicum, Piper aduneum, Vitex piñata, Wrightia calycina
68
4
DLF
KALTENG
Anthocephalus sinensis, Elaterospermum tapos, Macaranga hypoleuca, Quercus lineata, Shorea fallax, Shorea desiphylla, Shorea johorensis, Shorea laevifolia, Shorea leprosula, Shorea lineata, Shorea macrophylla, Shorea parvifolia, Shorea platyclados, Shorea sp.
8
5
DLF
KALTIM
Peronema canescens, Schima wallichii, Shorea sp., Vernonia arborea, Vitex pinnata
38
6
DLF
KALTIM
Allantospermum sp., Alseodaphne sp., Archidendron sp., Baccaurea sp., sp., Calophyllum sp., Canarium sp., Dacryodes sp., Dialium sp., Bouea sp., Diospyrus sp., Drypetes sp., Dyophyllum sp., Garcinia sp., Heretera sp., Knema sp., Koompassia sp., Lithocarpus sp., Lophopetalum sp., Madhuca sp., Mangifera sp., Mezzetia sp., Parishia sp., Scaphium sp., Shorea sp., sp., Stemonurus sp., Syzygium sp., Syzygium sp., Vatica sp., Xanthophyllum sp.
61
Aporosa elmeri, Aporosa sphaedophora, Arthocarpus anisophyllus, Bacacaurea sp., Baccaurea deflexa, Baccaurea kunstleri, Baccaurea pendula, Baccaurea sp., Barringtonia macrostachy, Beilschmiedia sp., Dacryodes rugosa, Dialium indum, Dialium platycephalum, Dialium sp., Dillenia excelsa, Dillenia excemia, Dipterocarpus crinitus, Dryobalanops sp., Drypetes sp., Elaeocarpus sp., Eugenia cuprea, Eugenia sp., Girroniera nervosa, Hopea mangerawan, Horsfieldia grandis, Litsea noronhae, Litsea sp., Mallotus echinatus, Milletia sericea, Myristica sp., Neoscortechinia kingii, Ochanostachys amentacea, Ochanostachys sp., Ostodes macrophylla, Oxymitra grandiflora, Polaquem dasyphyllum, Polyalthia glauca, Polyalthia rumphii, Pometia tomentosa, Santiria operculata, Santiria tomentosa, Shorea laevis, Shorea leprosula, Shorea ovalis, Sindora sp., Sterculia rubiginosa, Strombosia rotundifolia, Strombosia sp., Xanthophyllum heteropleurum
11
FIN
AL
CO
PY
1
7
DLF
KALTIM
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
85
No.
Ecosystem Type
Site
Species
Ref
DLF
KALTIM
Dipterocarpus convertus, Dipterocarpus crinitus, Dipterocarpus grandiflorus, Dipterocarpus humeratus, Dipterocarpus pacyphyllus, Dipterocarpus palmbanicus, Hopea cernua, Hopea dryobalanoides, Hopea mengarawan, Palaquium gutta, Palaquium rostratum, Palaquium sp., Shorea agamii, Shorea atrinervosa, Shorea macroptera, Shorea parvifolia, Shorea parvistipulata, Shorea retusa, Shorea smithiana, Shorea superba, Shorea sp.
78
9
DLFs
Jambi
Dactylocladus stenostachys, Eugenia sp,, Ginetroshesia soliaris, Macaranga maingayi, Mallotus paniculatus, Mastixia pentandra, Pentaspadon motleyi, Shorea sp.,., Strombosia javanica, Styrac benzoin, Jirak, Maribungan, Nilao, Patang buah
37
10
DLFs
Jambi
Dactylocladus stenostachys, Eugenia sp.,, Ginetroshesia soliaris, Macaranga maingayi, Mallotus paniculatus, Mastixia pentandra, Pentaspadon motleyi, Shorea sp.,., Strombosia javanica, Styrac benzoin, Jirak, Maribungan, Nilao, Patang buah
5
11
DLFs
KALTIM
Anthocepalus chinensis, Arthocarpus elasticus, Arthocarpus sp., Canarium commune, Cratoxylon sumatranume, Dimocarpus longan, Dyera costulata, ., Ficus variegata, Gmelina arborea, Koompassia excelsa, Eugenia sp., Macaranga gigantea, Macaranga triloba, Macaranga sp., Nauclea subdita, Nephelium lappaceum, Octomeles sumatrana, Paraserianthes falcataria, Piper aduncum, Pterospermum celebicum, Solenospermum sp., Garun, Huboq, Kanhop, Kayu lari-lari, Kayu tatak, Kelihidaq, Kelima, Lingau, Tudaq
57
12
DLFs
KALTIM
Aglaia sp sp., ., Anglauria malfinas, Anthocepalus chinensis, Artocarpus anisophyllus, Baccaurea sp sp., Calophyllum inophyllum, Campnosperma macrophylla, Canarium commune, Cratoxylon sumtaranume, Diallium sp., sp ., Dimocarpus longan, Diospyros celebica, Dipterocarpus gracilis, Dracontomelon mangiferum, Dryobalanops lanceolata, Durio oxleyanus, Ellmeleria dandells, Endospermum moluccanum, Eugenia sp., Eusyderoxylon zwageri, Ficus variegeta, Hopea ferrugenia, Knema latifolia, Koompassia excelsa, Litsea firma, Macaranga triloba, Myristica sp.,., Nephelium lappaceum, Octomeles sumatrana, Palaquium sp., Pentae sp sp., Piper anducum, Pterospermum celebicum, Quercus sp., Shorea acuminatissima, Shorea assamica, Shorea bracteolata, Shorea parvifolia, Shorea pinanga, Shorea seminis, Sindora wallichii, Vatica rassak, Beluhboq, Buan, Hubon, Jemelek, Jeruk Hutan, Kanhon, Kayu lapar, Kayu lari-lari, Kayu sabun, Kayu Tatak, Kopi-kopian, Langalung, Pangan, Porang, Sembukau, Tamha, Tanam Haloq, Taringdung
33
Actinodaphne glabra, Aglaia sp., Alseodaphne elmeri, Artocarpus lanceifolius, Artocarpus rigidus, Clerodendrum adenophysum, Cratoxylum sumatranum, Dillenia reticulata, Dimocarpus longan, Ficus grassularoides, Ficus obscura, Ficus sp., Fordia splendidissima, Glochidion sp., Litsea cf. angulata, Litsea cf. angulata, Litsea sp., Macaranga gigantea, Macaranga pearsonii, Mallotus paniculatus, Melastoma malabathricum, Melicope glabra, Piper aduncum, Semecarpus glaucus, Symplocos fasciculata, Syzygium sp., Trema tomentosa, Vernonia arborea
2
FIN
AL
CO
PY
8
13
86
DLFs
KALTIM
List of tree species included in the development of biomass allometric models for mixed-species
Species
Ref
DLFs
KALTIM
Artocarpus sp., Blumea sp., Bridelia sp., Cratoxylon arborescens, Dysoxlon sp., Eodia sp., Ficus spp, Fordia sp., Geunsia pentandra, Helisia sp., Leucosyke capitelata, Macaranga spp., Mallotus sp., Melastoma malabathricum, Nauclea sp., Piper aduncum, Poikilospermum sp., Pterospermum javanicum, Trema orientalis, Trema tomentosa, Vernonia arborea
22
15
DLFs (20 yrs)
Jambi
Endospermum diadenum, Gardenia anysophylla, Macaranga gigantea
73
16
DLFs (7 yrs)
Jambi
Endospermum diadenum, Hevea brasiliensis, Macaranga gigantea
73
17
DLFs (70 yrs)
Jambi
Arthocarpus nitidus, Gironniera hirta, Kompassia malaccensis, Litsea sp., Macaranga sp., Shorea leprosula, Shorea sp.
73
18
CF
JATENG & DIY
Acacia auriculiformis, Dalbergia latifolia, Paraserianthes falcataria, Swietenia mahagony, Tectona grandis
12
19
PSF
KALTENG
sp., Callophylum Aglaia rubiginosa, Blumeodendron tokbrai, Caladiifolia sp., hosei, Campnosperma corieaceum, Cantleya corniculata, Dactylocladus stenostachys, Diospyros cf. evena, Garcinia celebica, Garcinia sp., Litsea sp.,, Memecylon septicatum, Myristica iners, Nephelium maingayi, sp., Shorea uliginosa, Syzygium sp., sp Tectratomia tretrandra, Palaquium sp., sp., Syzygium sp. Tetrameristra glabra, Tristaniophsis sp.,
17
20
PSFs
SUMSEL
Antidesma montanum, Blumeodendron tokbrai, Cantleya corrniculata, Crytocarya crassinervia, Dacryodes bankense, Elaeocarpus palembanicus, Endospermum malaccensis, Eugenia sp., Horsfieldia crassifolia, Macaranga mainganyi, Palaquium burkii, Parastemon urophyllus, Paratocarpus venenosus, Pithecellobium lobatum, Shorea dasyphylla, bebangun
77
21
PSFs
Alseodaphne insignis, Crytocarya crassinervia, Dacryodes cf. rostrata, Dyera lowii, Elaeocarpus griffthii, Gonystylus bancanus, Horsfieldia sp., Lithocarpus sundaicus, Litsea noronhae, Palaquium ridleyi, Polyalthia sumatrana, Macaranga maingayi, Mezzetia parviflora, Shorea dasyphylla, Shorea uliginosa, Syzygium bankense, Syzygium sp.1, Syzygium sp.2, Tetramerista glabra
46
PY
14
Site
CO
Ecosystem Type
AL
No.
FIN
SUMSEL
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
87
AL
FIN PY
CO
Appendix 3.
References-Appendices 1 and 2
1.
Adinugroho, W.C. dan Sidiyasa, K. 2006. Model pendugaan biomasa pohon mahoni (Swietenia macrophylla King) di atas permukaan tanah. Jurnal Penelitian Hutan dan Konservasi Alam 3(1): 103– 117.
10. Basuki, T.M., Adi, R.N., dan Sukresno. 2004. Informasi teknis stok karbon organik dalam tegakan Pinus merkusii, Agathis loranthifolia dan tanah. Prosiding Ekspose BP2TPDAS-IBB Surakarta, Kebumen, 3 Agustus 2004. Pp. 84–94.
2.
Adinugroho, W.C. 2009. Persamaan alometrik biomassa dan faktor ekspansi biomassa vegetasi hutan sekunder bekas kebakaran di PT. Inhutani I Batu Ampar, Kalimantan Timur. Info Hutan 6 (2): 125–132.
3.
Agus, C. 2002. Production and consumption of carbon by fast growing species of Gmelina arborea Roxb. in tropical plantation forest. In: Sabarnurdin, M.S., Hardiwinoto, S., Rimbawanto, A. and Okimori, Y. (Eds.). Proceedings of the Seminar on Dipterocarp Reforestation to Restore Environment through Carbon Sequestration. Yogyakarta, 26-27 September 2001. Pp. 187–196.
11. Basuki, T.M., van Laake, P.E., Skidmore, A.K., and Hussin, Y.A. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257: 1684–1694.
PY
CO
Akbar, A. dan Priyanto, E. 2011. Perhitungan karbon untuk perbaikan faktor emisi dan serapan GRK kehutanan pada hutan alam gambut. Laporan Hasil Penelitian Pusat Penelitian Sosial Ekonomi dan Kebijakan Kehutanan, Bogor.
5.
Ambagau, Y. 1999. Pendugaan jumlah total biomassa tegakan hutan sekunder pada areal bekas lahan bakar (slash–and–burn)) dan pengaruhnya terhadap pH dan kerapatan isi tanah di Sepunggur, Jambi. Skripsi Departemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. Aminudin, S. 2008. Kajian potensi cadangan karbon pada pengusahaan hutan rakyat: (studi kasus Hutan Rakyat Desa Dengok, Kecamatan Playen, Kabupaten Gunung Kidul). Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.
FIN 7.
13. Cesylia, L. 2009. Cadangan karbon pada (Hevea brasiliensis) brasiliensis pertanaman karet (Hevea di Perkebunan Karet Bojong Datar PTP Nusantara VIII Kabupaten Pandeglang Banten. Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor. 14. Darussalam, D. 2011. Pendugaan potensi serapan karbon pada tegakan Pinus di KPH Cianjur Perum Perhutani Unit III Jawa Barat dan Banten. Skripsi Departemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
AL
4.
6.
12. BPKH Wilayah XI Jawa-Madura & MFP II. 2009. Alometrik berbagai jenis pohon untuk menaksir kandungan biomassa dan karbon di Hutan Rakyat. Laporan BPKH Wilayah XI Jawa-Madura & MFP II, Yogyakarta.
Amira, S. 2008. Pendugaan biomassa jenis Rhizophora apiculata Bl. di hutan mangrove, Batu Ampar, Kabupaten Kubu Raya, Kalimantan Barat. Skripsi Departemen Konservasi dan Sumberdaya Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
8.
Anggraeni, B.W. 2011. Model pendugaan cadangan biomassa dan karbon hutan tropis basah di PT. Sari Bumi Kusuma, Kalimantan Tengah. Thesis Program Pascasarjana Faskultas Kehutanan, Universitas Gadjah Mada, Yogyakarta.
9.
Arifin, J. 2001. Estimasi cadangan C pada berbagai sistem penggunaan lahan di Kecamatan Ngantang, Malang. Skripsi-S1. Universitas Brawijaya, Malang.
15. Dewi, M. 2011. Model persamaan alometrik massa karbon akar dan root to shoot ratio biomassa dan massa karbon pohon mangium (Acacia mangium Wild). Skripsi Departemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
16. Dharmawan, I.W.S. dan Siregar, C.A. 2008. Karbon tanah dan pendugaan karbon tegakan Avicenia marina (Forsk.) Vierh. di Ciasem, Purwakarta. Jurnal Penelitian Hutan dan Konservasi Alam 5 (4): 317–328. 17. Dharmawan, I.W.S., Darusman, T., Naito, R., Arifanti, V.B., Lugina, M. and Hartoyo, M.E. 2012. ITTO Project Technical Report PD 73/89 (F, M, I) Phase II: Development and testing of a carbon MRV methodology and monitoring plan: allometric equation development, forest biomass mapping (aboveground carbon stock), water level and peat anaysis (belowground carbon stock). Center for Research and Development of Climate Change and Policy-FORDA & Starling Resources. Bogor.
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
89
19. Handayani, K. 2003. Model pendugaan biomassa Shorea leprosula Miq di Kebun Percobaan Carita. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 20. Hardjana, A.K. 2011. Potensi biomassa dan karbon pada hutan tanaman Acacia mangium di HTI PT. Surya Hutani Jaya, Kalimantan Timur. Jurnal Penelitian Sosial dan Ekonomi Kehutanan 7 (4) Edisi Khusus: 275–284. 21. Hardjana, A.K. 2011. Membangun persamaan alometrik biomassa tanaman Shorea leprosula di areal IUPHHK-HA PT. ITCIKU Kalimantan Timur. Manuscript.
28. Heriyanto, N.M. dan Siregar, C.A. 2007. Biomassa dan kandungan karbon tanaman Acacia mangium Willd. di Parungpanjang, Bogor, Jawa Barat. Info Hutan 4 (1) : 65–73. 29. Heriyanto, N.M. and Siregar, C.A. 2007. Biomasa dan kandungan karbon pada hutan tanaman tusam (Pinus merkusii Jungh et de Vriese) umur lima tahun di Cianten, Bogor, Jawa Barat. Jurnal Penelitian Hutan dan Konservasi Alam 4(1): 75– 81. 30. Hilmi, E. 2003. Model penduga kandungan karbon pada pohon kelompok jenis Rhizophora spp. dan Bruguiera spp. dalam tegakan hutan mangrove: studi kasus di Indragiri Hilir Riau. Disertasi Program Pascasarjana, Institut Pertanian Bogor, Bogor. 31. Hiratsuka, M., Toma, T., Yamada, M., Heriansyah, I., and Morikawa, Y. 2003. Biomass of a man-made forest of timber tree species in the humid tropics of West Java, Indonesia. Journal of Forest Research 10:487–491.
CO
22. Hashimoto, T., Tange, T., Masumori, M., Yagi, H., Sasaki, S. and Kojima, K. 2004. Allometric equations for pioneer tree species and estimation of the aboveground biomass of a tropical secondary forest in East Kalimantan. Tropics 14(1): 123–130.
biomass accumulations of Acacia mangium under different management practices in Indonesia. Journal of Tropical Forest Science 19: 226–235.
PY
18. Djumakking, W. 2003. Potensi Acacia mangium dalam mengikat karbon (Studi Kasus di RPH Maribaya, BKPH Parung Panjang Jawa Barat). Skripsi Departemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
32. Indrihastuti, D. 2004. Kandungan Kalsium pada biomassa hutan tanaman Acacia mangium Willd dan pada Podsolik Merah Kuning di Hutan Tanaman Industri (Studi kasus di HPHTI PT. Musi Hutan Persada, Sumatera Selatan). Thesis Program Studi Silvikultur, Institut Pertanian Bogor, Bogor.
AL
23. Hendra, S. 2002. Model pendugaan biomasa pohon pinus (Pinus merkusii Jungh et. de Friese) di Kesatuan Pemnagkuan Hutan Cianjur, PT. Perhutani Unit III Jawa Barat. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
FIN
24. Hendri. 2001. Analisis emisi dan penyerapan Gas Rumah Kaca (baseline) dan aplikasi teknologi mitigasi karbon di Wilayah Perum Perhutani. Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.
25. Heriansyah, I., Siregar, C.A., Heriyanto, N.M., Miyakuni, K., and Kato, T. 2003. Carbon stock estimates for Acacia mangium, Pinus merkusii and Shorea leprosula plantations in West Java, Indonesia. Proceedings of the International Workshop of Biorefor, Yogyakarta, Indonesia. December 15-18, 2003: 173–176. 26. Heriansyah, I., Hamid, H.A., Subiakto, A., and Shamsuddin. 2009. Growth performance, production potential and biomass accumulation of 12-yr-old Shorea leprosula from stem cuttings in different silviculture treatments: case study in West Java, Indonesia. Paper presented at the International Seminar: Research on Forest Plantation Management, Opportunities and Challenges. Bogor, 5-6 November 2009. 27. Heriansyah, I., Miyakuni, K., Kato, T., Kiyono, Y. and Kanazawa, Y. 2007. Growth characteristics and
90
33. Indriyani, D. 2011. Pendugaan simpanan karbon di areal hutan bekas tebangan PT. Ratah Timber Kalimantan Timur. Skripsi Deapartemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 34. Ismail, A.Y. 2005. Dampak kebakaran hutan terhadap potensi kandungan karbon pada tanaman Acacia mangium Willd di Hutan Tanaman Industri. Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor. 35. Istomo. 2006. Kandungan Fosfor dan Kalsium pada tanah dan biomasa hutan rawa gambut (Studi kasus di Wilayah HPH PT. Diamond Raya Timber, Bagan Siapi-api, Provinsi Riau). Jurnal Manajemen Hutan Tropika 12 (3): 38–55. 36. Jaya, A., Siregar, U.J., Daryono, H., and Suhartana, S. 2007. Biomasa hutan rawa gambut tropika pada berbagai kondisi penutupan lahan. Jurnal Penelitian Hutan dan Konservasi Alam 4(4): 341– 352.
References-Appendices 1 and 2
38. Kiyono, Y. and Hastaniah. 2005. Patterns of slashand-burn land use and their effects on forest succession. Swidden-land forests in Borneo. Bulletin of the Forestry and Forest Products Research Institute 4: 259–282. 39. Krisnawati, H., Adinugroho, W.C., Dharmawan, I.W.S. and Imanuddin, R. 2012. Allometric models for estimating above ground biomass of Bruguiera gymnorrhiza L. (Lamk.) at Kubu Raya mangrove forest, Indonesia (Manuscript).
48. Nurwahyudi and Tarigan, M. 2003. Logging residue management and productivity in shortrotation Acacia mangium plantations in Riau Province, Sumatra, Indonesia. In: Nambiar, E.K.S., Ranger, J., Tiarks, A., and Toma, T. (Eds.). Proceedings of Workshop Site Management and Productivity in Tropical Plantation Forests. 49. Onrizal. 2004. Model penduga biomasa dan karbon tegakan hutan kerangas di Taman Nasional Danau Sentarum, Kalimantan Barat. Thesis Program Pascasarjana, Institut Pertanian Bogor, Bogor. 50. Onrizal, Kusmana, C., Mansor, M., and Hartono, R. 2009. Allometric biomass and carbon stock equations of planted Eucalyptus grandis in Toba Plateau, North Sumatra. Paper presented at the International Seminar: Research on Forest Plantation Management; Opportunities and Challenges. Bogor, 5-6 November 2009.
CO
40. Kusmana, C. Sabiham, S., Abe, K., and Watanabe, H. 1992. An estimation of above ground tree biomass of a mangrove forest in East Sumatra, Indonesia. Tropics 1(4): 243–257.
47. Nurhayati, E. 2005. Estimasi potensi simpanan karbon pada tegakan puspa (Schima wallichii (DC.) Korth.) di areal 1, 2, 3, dan 4 tahun setelah kebakaran, di hutan sekunder Jasinga, Kabupaten Bogor. Skripsi Departemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
PY
37. Ketterings, Q.M., Coe, R., Noordwijk, v.M., Ambagau, Y., and Palm, C.A. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management 146: 199–209.
41. Langi, Y.A.R. 2007. Model penduga biomasa dan karbon pada tegakan hutan rakyat cempaka (Elmerrillia ovalis) dan wasian (Elmerrillia celebica) di Kabupaten Minahasa Sulawesi Utara. Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.
51. Pambudi, G.P. 2011. Pendugaan biomassa beberapa kelas umur tanaman jenis Rhizophora apiculata Bl. pada areal PT. Bina Ovivipari Semesta Kabupaten Kubu Raya, Kalimantan Barat. Skripsi Departemen Konservasi Sumberdaya Hutan dan Ekowisata, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
AL
42. Lubis, AR. 2011. Pendugaan cadangan karbon kelapa sawit berdasarkan persamaan alometrik di lahan gambut Kebun Meranti Paham, PTPN IV, Kabupaten Labuhan Batu, Sumatera Utara. Skripsi Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, Institut Pertanian Bogor, Bogor.
FIN
43. Maulana, S.I dan Pandu, J. 2011. Persamaanpersamaan allometrik untuk pendugaan total biomassa atas tanah pada genera Pometia di kawasan hutan tropis Papua. Jurnal Penelitian Sosial dan Ekonomi Kehutanan 8 (4): 288–298. 44. Maulana, S.I dan Pandu, J. 2011. Persamaan allometrik genera Intsia sp. untuk pendugaan biomasa atas tanah pada hutan tropis Papua Barat. Jurnal Penelitian Sosial dan Ekonomi Kehutanan 7(4) Edisi Khusus: 275–284.
52. Pardosi, J. 2007. Model penduga biomassa di atas permukaaan tanah hutan tanaman jenis Ekaliptus (Eucalyptus grandis) umur 7 tahun pada HTI PT Toba Pulp Lestari, Tbk. Skripsi Departemen Kehutanan, Fakultas Pertanian, Universitas Sumatera Utara, Medan. 53. Priyadarsini, R. 1998. Studi cadangan C dan populasi cacing tanah pada berbagai macam system pola tanam berbasis pohon. Thesis S2, Universitas Brawijaya, Malang.
45. Miyamoto, K., Rahajoe, J.S., Kohyama, T., and Mirmanto, E. 2007. Forest structure and primary productivity in a Bornean Heath Forest. Biotropica 39(1): 35–42.
54. Purwanto, R.H., Simon, H., and Ohata, S. 2003. Estimation of net primary productivity of young teak plantations under the intensive Tumpangsari system in Madiun, East java. Tropics 13(1): 9–16.
46. Novita, N. 2010. Potensi karbon terikat di atas permukaan tanah pada hutan gambut bekas tebangan di Merang Sumatera Selatan. Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.
55. Purwitasari, H. 2011. Model persamaan alometrik biomassa dan massa karbon pohon Acacia mangium. Skripsi Departemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
91
57. Rahayuningsih, N. 2011.Pendugaan Simpanan karbon yang terikat di areal hutan bekas kebakaran PT.Ratah Timber, Kalimantan Timur. Skripsi Departemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor. 58. Rahmat, M. 2007. Pendugaan serapan karbon hutan tanaman Acacia crassicarpa pada lahan gambut. Laporan Hasil Penelitian BPK Palembang. 59. Rusolono, T. 2006. Model pendugaan persediaan karbon tegakan agroforestri untuk pengelolaan hutan milik melalui skema perdagangan karbon. Disertasi Sekolah Pascasarjana. Institut Pertanian Bogor, Bogor.
68. Siringoringo, H.H. dan Siregar, C.A. 2006. Model persamaan allometri biomassa total untuk estimasi akumulasi karbon pada tanaman sengon. Jurnal Penelitian Hutan dan Konservasi Alam. 3(5): 541– 553. 69. Sukardjo, S. and Yamada, I. 1992. Biomass and productivity of a Rhizophora mucronata Lamarck plantation in Tritih, Central Java, Indonesia. Forest Ecology and Management 49: 195–209. 70. Supratman, I. 1994. Model persamaan pendugaan biomassa bagian pohon berkayu jenis Rhizophora spp. dan Bruguiera spp. di hutan mangrove Kalimantan Timur: Studi kasus di kawasan HPH PT. Karyasa Kencana. Skripsi Departemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
CO
60. Salim. 2005. Profil kandungan karbon pada tegakan puspa (Schima wallichii Korth.). Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.
67. Siregar, C.A. 2011. RED-PD 007/09 Rev. 2 (F): Enhancing forest carbon stock to reduce emission from Deforestation and Degradation through Sustainable Forest Management (SFM) Initiatives in Indonesia. Project Technical Report. Indonesia’s Ministry of Forestry – International Tropical Timber Organization.
PY
56. Rachman, S. 2009. Pendugaan potensi kandungan karbon pada tegakan sengon di Hutan Rakyat. Skripsi Departemen Hasil Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
61. Samalca, I.K. 2007. Estimation of forest biomass and its error: a case in Kalimantan, Indonesia. Master Thesis, International Institute for Geoinformation Science and Earth Observation.
AL
62. Siahaan. 2009. Pendugaan simpanan karbon di atas permukaan lahan pada tegakan eukaliptus (Eucalyptus sp.) di sektor Habinsaran PT Toba Pulp Lestari, Tbk. Skripsi Departemen Manajamen Hutan, Fakultas Kehutanan, Institut Petanian Bogor, Bogor.
71. Talan, M.A. 2008. Persamaan penduga biomasa pohon jenis nyirih ((Xylocarpus granatum Koenig. 1784) dalam tegakan mangrove hutan alam di Batu Ampar, Kalimantan Barat. Skripsi Departemen Konservasi Sumberdaya Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
FIN
63. Sihombing, C.A. 2008. Validasi model alometrik biomassa di bawah permukaan Hutan Tanaman Eucalyptus grandis di IUPHHK PT. Toba Pulp Lestari, Tbk. Skripsi Departemen Kehutanan, Fakultas Kehutanan, Universitas Sumatera Utara, Medan. 64. Siregar, S.M.T.E. 1995. Penentuan biomassa di atas tanah jenis ramin (Gonystylus (Gonystylus bancanus (Miq.) Kurz) di MPH PT. Diamond Raya Timur, Propinsi Dati Riau. Skripsi Departemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 65. Siregar, C.A. 2007. Formulasi allometri biomas dan konservasi karbon tanah hutan tanaman sengon (Paraserianthes falcataria (L.) Nielsen di Kediri. Jurnal Penelitian Hutan dan Konservasi Alam 4(2): 169–181. 66. Siregar, C.A. 2007. Pendugaan biomasa pada hutan tanaman pinus (Pinus merkusii Jungh et de Vriese) dan konservasi karbon tanah di Cianten, Jawa Barat. Jurnal Penelitian Hutan dan Konservasi Alam 4(3): 251–266.
92
72. Tampubolon, A.P., Parthama, I.B.P., Sukmana, A., Kwatrina, R.T. 2000. Peluang peningkatan penerimaan daerah di Sumatera Bagian Utara dari Jasa Hutan Sebagai Penjerap Karbon. Dalam: Karyaatmaja, B., Parthama, I.B.P., Tampubolon, A.P. (Eds.). Prosiding Seminar “Peranan Kehutanan dalam Penyelenggaraan Otonomi Daerah di Sumatera Bagian Utara. Parapat, 25 November 2000. Pp. 145–163. 73. Thojib, A., Supriyadi, Hardiwinoto, S., and Okimori, Y. 2002. Estimation formulas of aboveground biomass in several land-use systems in tropical ecosystems of Jambi, Sumatra. In: Sabarnurdin, M.S., Hardiwinoto, S., Rimbawanto, A., and Okimori, Y. (Eds.). Proceedings of the Seminar on Dipterocarp Reforestation to Restore Environment through Carbon Sequestration. Yogyakarta, 26-27 September 2001. Pp. 109–115. 74. Toma, T., Ishida, I., and Matius, P. 2005. Longterm monitoring of post-fire aboveground biomass recovery in a lowland dipterocarp forest in East Kalimantan, Indonesia. Nutrient Cycling in Agroecosystems 71: 63–72.
References-Appendices 1 and 2
75. Wicaksono, D. 2004. Penaksiran potensi biomasa pada hutan tanaman mangium (Acacia mangium Willd.) (Kasus hutan tanaman PT. Musi Hutan Persada, Sumatera Selatan). Skripsi Departemen Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
77. Widyasari, N.A.E. 2010. Pendugaan biomassa dan potensi karbon terikat di atas permukaan tanah pada hutan gambut Merang bekas terbakar di Sumatera Selatan. Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.
CO
78. Yamakura, T., Hagihara, A., Sukardjo, S., and Ogawa, H. 1986. Tree size in a mature dipterocarp forest stand in Sebulu, East Kalimantan, Indonesia. Southeast Asian Studies 23(4): 452–478.
PY
76. Widhanarto, G.O. 2009. Biomass equation for 1-7 years-old Acacia mangium Willd. in West Kalimantan, Indonesia (Case study in Plantation Forest PT. Finantara Intiga). Paper presented at the International Seminar: Research on Forest Plantation Management; Opportunities and Challenges. Bogor, 5-6 November 2009.
79. Yulianti, N. 2009. Cadangan karbon lahan gambut dari agroekosistem kelapa sawit PTPN IV Ajamu, Kabupaten Labuhan Batu, Sumatera Utara. Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.
AL
80. Yulyana, R. 2005. Potensi kandungan karbon pada Hevea brasiliensis) brasiliensis) yang disadap pertamanan karet (Hevea (studi kasus di perkebunan inti rakyat kecamatan Pondok Kelapa Kabupaten Bengkulu Utara). Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.
FIN
81. Yuniawati. 2011. Pendugaan potensi massa karbon dalam Hutan Tanaman Kayu Serat di Lahan Gambut. Thesis Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor.
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
93
AL
FIN PY
CO
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
95
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
7
8
9
10
11
12
13
14
15
16
17
DLF
4
DLF
DLF
3
6
DLF
2
DLF
DLF
1
5
Ecosystem Type
No
FIN
Tree Species
SUMSEL SUMUT
Dipterocarpaceae (Non Shorea)
Dipterocarpaceae (Non Shorea)
Dipterocarpus cornutus
Dipterocarpus cornutus
Dipterocarpus cornutus
Dipterocarpus cornutus
Dipterocarpus cornutus
Dipterocarpus cornutus
Dipterocarpaceae
KALSEL
KALSEL
KALSEL
KALSEL
KALSEL
KALBAR
SULUT
Jambi
SUMBAR
Dipterocarpaceae (Non Shorea)
Dipterocarpaceae
Maluku
Dipterocarpaceae (Non Shorea)
Jambi
Dipterocarpaceae (Non Shorea) Lampung
Bengkulu
Dipterocarpaceae (Non Shorea)
Dipterocarpaceae (Non Shorea)
SULSEL
Mixed
PABAR
Location
AL 129
V10 = 0.0000476 D2.409 H0.507
Vbr = 0.000073 D (2.652/D)
2.647
nda
nda
20->100
129
V10 = 0.000106 D
20->100
129 2.619
20->100
Vtb = 0.000141 D2.514
+
129
Vcb = 0.000417 D Vtb = 0.0000503 D2.24 H0.65
20->100
nda
23-139
nda
2.21
268
V = 0.000209 D
nda
nda
nda
2.40
169
nda
nda
nda
nda
nda
nda
14-39
14-39 14-39
14-39 14-39
14-39
13.25-25.4
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Hm (m)
PY
CO
nda
nda
50
424
nda
nda
nda
nda 59
nda
DBH (cm)
nda
Sample ∑ Trees
V = 0.000174 D2.429
V = 0.000148 D2.510
V = 0.0000948 D2.577
V = 0.000668 D2.086
Vtb = 0.000213 D2.461
V = 0.000150 D2.458
V = 0.000174 D2.430
V = 0.000271 D2.299
V = 0.000128 D2.452
V = 0.0021 D1.644
Model Form
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
nda
0.17
nda 0.98
0.16
nda
0.15
0.12
nda nda
nda
nda
nda
0.17
0.12
nda
0.10
0.21
nda
0.27
0.17
nda
Se
0.98
nda
nda
0.96
nda
nda
0.99
0.94
nda
0.93
0.97
0.85
R2
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia
Callopyllum sp.
Appendix 4.
99
83
83
83
83
48
52
3
21
50
49
16
15
53
13
19
2
Ref
Note
96
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia
DLF
DLF
DLF
DLF
DLF
DLF
DLF
31
32
33
34
35
36
37
DLF
26
DLF
DLF
25
30
DLF
24
DLF
DLF
23
29
DLF
22
DLF
DLF
21
DLF
DLF
20
27
DLF
19
28
DLF
Ecosystem Type
18
No
Duabanga moluccana
Duabanga moluccana
Dryobalanops spp.
Dryobalanops spp.
Dryobalanops spp.
Dryobalanops spp.
Dryobalanops lanceolata
Dryobalanops lanceolata
Dryobalanops lanceolata
Dryobalanops lanceolata
Dipterocarpus spp.
Dipterocarpus spp.
Dipterocarpus spp.
Dipterocarpus cornutus
Dipterocarpus cornutus
Dipterocarpus cornutus
Dipterocarpus cornutus
NTB
NTB
KALTIM
KALTIM
KALTENG
KALBAR
KALBAR
KALBAR
KALBAR
KALBAR
nda
KALTENG
SUMUT
KALTIM
KALTIM
KALTIM
KALTIM
KALSEL
AL
V = 0.000163 D
12-140
nda
105
V10 = 0.000104 (D+1)2.21 H0.504
24-152
50 2.3
V = 0.000355 D
21-141
50
V = 0.000269 D2.35
V = 0.0103 D1.190 H0.883
80.2-150.6
80.2-150.6
60
V = 0.000252 D
60
Nda
nda
2.319
V = 0.000269 D
22.5-118
268
20-94
2.36
Vcb = 0.000661 D2.1
105
Vtb = 0.0000544 D2.274 H0.574 20-94
20-94
nda
125
105
nda
nda
V10 = 0.000174 D2.492
nda
nda
20-94
12-140
130
15-39
nda
nda
nda
15-37
15-37
nda
nda
nda
nda
nda
Hm (m)
nda
nda
19-30 19-30
19-30 19-30
nda
13.34-25.3
15-39
15-39
15-39
PY
CO
130
nda
nda
nda
nda nda
nda
nda
DBH (cm)
nda
nda
Sample ∑ Trees
105
Vtb = 0.0000893 D2.619
2.419
V = 0.000148 D 2.51
0.558
H
V = (0.828 D )/10000 2.51
Vtb = 0.000108 D 2.145
V = 0.000155 D2.495
V = (-0.0101 + (-0.0365 (D*H)) + (0.531 (D2H)))/10000
V = (0.117 + (-1.905 D) + (13.914 D2))/1000000
Vm = 0.000261 D
V = 0.000103 D2.626
KALSEL 2.254
V = 0.0000478 D2.78 + (3.191/D)
Model Form
KALSEL
Location
FIN
Dipterocarpus cornutus
Dipterocarpus cornutus
Dipterocarpus cornutus
Tree Species
23-37
18-26
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
0.99
0.99
nda
nda
nda
0.97
0.97
0.98
0.98
0.97
0.98
nda
0.96
nda
nda
nda
nda
0.98
0.98
0.98
R2
nda
nda
nda
nda
nda
nda
0.17
0.15
0.16
0.17
nda
nda
nda
0.14
0.17
nda
nda
nda
nda
nda
Se
63
63
111
111
107
48
73
73
73
73
109
107
21
112
112
25
25
99
99
99
Ref
D> 80cm
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
97
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
47
48
49
50
51
52
53
54
55
56
57
58
DLF
43
DLF
DLF
42
46
DLF
41
DLF
DLF
40
45
DLF
39
DLF
DLF
38
44
Ecosystem Type
No
PABAR PABAR nda
Commercial timbers
Commercial timbers
Commercial timbers
NTB
Other species (Non Duabanga dan Toona) PABAR
Lampung
Commercial timbers
SUMUT
Other species
SULUT
SULTRA
SULTENG
Maluku
Bengkulu
KALTIM
KALTIM
SULSEL
AL
Vtb = 0.0000766 D2.247 H0.569
SUMSEL
8-33 8-33
262 262
nda
8-33
nda
nda
nda
nda
nda nda nda 124
2.2690
2.373
nda nda nda nda
nda nda nda 2932
2.139 1.996 2.564
V = 0.000101 D
V = 0.000584 D
V = 0.000309 D
V = 0.0000129 D3.229
nda
204
Vtb = 0.0000515 D2.587
V = 0.0000998 D2.506
V = 0.000225 D
V = 0.000297 D
2.523
V = 0.00010249 D
V = 0.000124 D
nda
nda
55
2.491
Vtb = 0.000168 D
nda
nda
2.507
V = 0.000168 D2.420
102
nda
nda
nda
nda
nda
nda
nnda da
nda nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
4-17
4-17
4-17
4-17
nda
nda
Hm (m)
PY
CO
nda
262
8-33
nda
nda
262
nda
DBH (cm)
68
Sample ∑ Trees
nda
V = (-0.0075 + 0.528(D2H))/10000
V = (0.183 + (-2.536 D) + (14.738 D2))/10000
V = 0.000143 D2.481
2.121
Vtb = 0.0000750 D H0.691
V7 = 0.000101 D 2.619
2.573
Vtb = 0.000105 D
V = 0.000295 D 2.2
Vtb = 0.000107 D2.554
Model Form
SUMSEL
SUMSEL
Other species (Non Dipterocarpaceae)
Other species
Other species
Other species
Other species
Other species
Hopea bracteata
Hopea bracteata
Heritiera spp.
Eusideroxylon zwageri
Eusideroxylon zwageri
Eusideroxylon zwageri
SUMSEL
Jambi
NTB
Location
FIN
Eusideroxylon zwageri
Durio zibethinus
Duabanga sp.
Tree Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
0.97
0.82
0.93
0.62
0.95
0.94
0.93
nda
0.97
nda
0.99
0.95
nda
nda
0.95
nda
nda
nda
nda
0.99
0.99
R2
nda
nda
nda
nda
0.22
0.16
0.19
nda
0.17
nda
0.09
0.17
nda
nda
0.19
0.11
0.08
0.16
0.16
nda
0.18
Se
109
2
2
2
17
15
21
52
20
51
16
13
25
25
19
32
32
32
32
35
17
Ref
Note
98
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia
Ecosystem Type
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
No
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
Shorea leprosula
Shorea leprosula
Shorea leprosula
Shorea leprosula
Shorea hopeifolia
Shorea hopeifolia
Shorea bracteolata
Shorea bracteolata
KALSEL
KALSEL
KALSEL
KALSEL
KALTIM
KALTIM
nda
KALTIM
KALTIM
nda
Quercus, Castanopsis, Engelbardtia
Shorea bracteolata
KALTIM
SUMSEL )/1000 nda
nda nda nda nda nda nda
V = 0.000679 -5.53 D + 18.48 D2 V = (0.083 + (-0.165 DH) + (0.572 D2H))/10000 Vcb = 0.73 + 0.000045 D2H V = 0.992 + 0.000034 D2H V = 0.22 + 0.0000185 D2H Vcb = -0.223 + 0.0000611 D2H
nda
nda
nda
nda
nda
nda
nda
59
V = 0.00017 D2.4
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Hm (m)
nda
nnda da
nnda da
nda
nda
nda
nda
PY
CO
nda
nda
nda
nda
nda nda
nda
nda
nda
nda
nda
730 nda
nda
DBH (cm)
1175
Sample ∑ Trees
nda
V = 0.00068 - 0.86 DH + 0.74 D2H
V = 0.00101 + -6.356 D + 18.97 D2
V = 0.0000297 D2 H0.975
V = -0.379 + 0.0056 D + 0.0012 D2
V = (0.648 D
V = 0.000000777 D3.627
Jambi 2.373
V = 0.000164 D2.433
V = 0.000289 D2.291
AL
V = 0.0000777 D2.627
V = 0.0000963 D2.541
V = 0.0000995 D2.359
Model Form
SUMSEL
SUMBAR
Parashorea spp.
Non Dipterocarpaceae
Non Dipterocarpaceae
Non Dipterocarpaceae
Non Dipterocarpaceae
Jambi
nda
nda
Location
FIN
Non Dipterocarpaceae
Other Meranti group
Other commercial species
Tree Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
nda
nda
nda
nda
nda
nda
0.98
nda
nda
0.98
0.97
0.93
nda
nda
nda
nda
0.97
0.97
R2
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
0.49
nda
nda
0.17
nda
0.16
nda
nda
Se
106
106
106
106
25
25
109
25
25
110
1
50
3
50
49
53
109
109
Ref
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
99
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
83
84
85
86
87
88
89
90
91
92
93
94
95
DLF
80
DLF
DLF
79
82
DLF
78
DLF
DLF
77
81
Ecosystem Type
No
Jambi Jambi Jambi
Shorea parvifolia Shorea leprosula
Shorea parvifolia Shorea leprosula
Shorea parvifolia Shorea leprosula
Bengkulu Jambi Jambi Jambi Jambi Jambi KALBAR KALTENG KALTENG
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
SUMBAR
Shorea spp.
Shorea pauciflora
SUMBAR
Jambi
Shorea parvifolia; Shorea leprosula
Shorea pauciflora
KALTIM
KALTIM
KALSEL
AL 20-<100
nda
23-140 20->105 20->105
268 172 172
2.389 2.45
V10 = 0.000219 D
Vtb = 0.0002427 D
Vcb = 0.000372 D
20-100
134 2.25
0.376
V10 = 0.000133 D H 2.6
20-100
20-100
20-100
nda
nda
134
134
134
nda
60
nda
nda
nda nda
20-<100
20-<100
20-<100
133
133
133
13-38
13-38
13-38
13-38
nda
nda
nda
nda
Hm (m)
13-41
13-41
13.35-26
12-30 12-30
12-30 12-30
12-30
12-30
nda
nda
nda
nda
PY
CO
133
nda
nda
nda
nda
DBH (cm)
Vtb = 0.000091 D2.018 H0.751
V10 = 0.000254 D2.392
Vtb = 0.000305 D2.304
V = 0.00025 D2.35
V = 0.0000918 D2.575
2.368
V10 = 0.0000678 D H0.444
V10 = 0.000134 D2.549
V10 = 0.000119 D2.32 H0.356
Vtb = 0.000093 D2.136 H0.61
V10 = 0.00023 D2.244
Vtb = 0.00029 D2.345
V = (-0.0018 - 0.0494 DH + 0.541 D2H)/10000
V = (0.128 -2.359 D + 15.551 D2)/10000 nda
nda
V = 0.181 + 0.0000249 D2H
Sample ∑ Trees nda
Model Form
V = -0.53 + 0.0000469 D2H
FIN KALSEL
Location
Shorea leprosula
Shorea leprosula
Shorea leprosula
Shorea leprosula
Tree Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
0.98
0.97
0.97
nda
nda
nda
nda
nda
0.99
0.99
nda
0.99
0.99
0.99
0.98
nda
nda
nda
nda
R2
0.17
0.17
nda
0.16
0.11
0.19
0.18
nda
0.14
0.11
nda
0.14
0.12
0.15
0.16
nda
nda
nda
nda
Se
102
102
48
88
88
88
88
53
13
84
84
101
101
101
101
25
25
106
106
Ref
Note
100
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
Ecosystem Type
96
No
Lampung
Maluku
Riau
Riau Riau
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Riau
Shorea spp.
SULTENG SULTRA SUMBAR SUMSEL SUMSEL SUMUT Tad
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Riau
Riau
Shorea spp.
Shorea spp.
Riau
Shorea spp.
Riau
Lampung
Shorea spp.
Shorea spp.
Lampung
Model Form
AL 0.6
H
29-99 nda 20-104 20-104
20-104
275 50 140 140 140
20-84
100
nda nda nda nda nda
nda nda 72 1027
)/10000
2.619
2.525
nda
nda
nda
20-84
20-84
100
100
20-84
20-104
100
140
nda
V = 0.000109 D
V = 0.000106 D
2.912
V = 0.0000951 D 2.563
2.238
V = 0.000386 D
V = (0.976 D
29-99
275
nda
nda nda
nnda da
nnda da
nda
nda
nda
18-34
18-34
18-34
18-34
14-34
14-34
14-34
14-34
nda
15.5-35
15.5-35
nda
13-41
13-41
Hm (m)
PY
CO
nda
20->105
20->105
DBH (cm)
nda
172
172
Sample ∑ Trees
nda
V = 0.00003 D2.823
V = 0.000114D2.522
0.792
H
2.159
V10 = 0.000135 D H0.496
Vtb = 0.000106 D 1.943
2.313
Vtb = 0.000507 D2.189 V10 = 0.00036 D
0.48
2.202
V10 = 0.0000672 D H0.67
2.176
V = 0.000119 D
H
2.427
V10 = 0.000229 D
V = 0.000286 D 2.336
Vtb = 0.000239 D 2.433
Vtb = 0.000942 D 2.065
Vtb = 0.000194 D 1.971
V = 0.000364 D2.546
V10 = 0.0000841 D2.229 H0.565
Vtb = 0.0000617 D2.074 H0.808
FIN KALTENG
KALTENG
Location
Shorea spp.
Shorea spp.
Shorea spp.
Tree Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
0.97
0.99
0.99
nda
nda
0.97
nda
0.95
0.97
0.94
0.95
nda
nda
nda
nda
0.99
0.92
nda
0.98
0.98
0.98
R2
nda
0.16
nda
0.16
nda
0.19
nda
0.15
0.11
0.16
0.15
0.12
0.12
0.14
0.14
0.09
0.19
0.15
0.16
0.15
0.13
Se
109
21
50
50
49
20
51
67
67
67
67
7
7
7
7
16
77
77
15
102
102
Ref
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
101
DLF
DLF
DLF
DLF
DLF
DLF
DLF
DLF
125
126
127
128
129
130
131
132
DLF
DLF
124
133
DLF
123
DLF
120
DLF
DLF
119
122
DLF
118
DLF
DLF
117
121
Ecosystem Type
No
KALSEL
KALSEL
KALSEL
Shorea parvifolia, S. pauciflora, S. johoriensis, etc
Shorea parvifolia, S. pauciflora, S. johoriensis, etc
Shorea parvifolia, S. pauciflora, S. johoriensis, etc
KALTIM KALTIM
Shorea parvifolia, etc
Shorea parvifolia, etc
Shorea & Dipterocarpus
Shorea sumatrana Aceh
SUMBAR
SUMBAR
KALTIM
Shorea parvifolia, etc
Shorea sumatrana
KALTIM
KALTENG
Shorea parvifolia, etc
Shorea.& Dipterocarpus
KALTENG
Vtb = 0.0000676 D2.05 H0.793
KALSEL
Shorea parvifolia, S. pauciflora, S. johoriensis, etc
Shorea.& Dipterocarpus
V10 = 0.000172 D2.478
KALBAR
Shorea parvifolia, S. uliginosa, etc
V = 0.00017 D
2.446
2.24
Vtb = 0.0000664 D
Vtb = 0.000155 D
2.466
V10 = 0.000248 D
2.235
H
0.55
H
0.23
Vtb = 0.000207 D2.256 H0.23
V10 = 0.000343 D2.347
Vtb = 0.000331 D2.332
Vcb (ub) = 0.000212 D2.407
Vcb (ob) = 0.000261 D2.378
V10 = 0.0000849 D2.224 H0.551
V10 = 0.000163 D2.508
Vtb = 0.000162 D2.486
AL
Vtb = 0.000186 D2.426
KALBAR
Shorea parvifolia, S. uliginosa, etc
20-124
188
20->100 20->100
120 120
nda
20-124
188
nda
20-124
188
20-124
10->60
61
188
10->60
61
20-154
20-154
20-154
20-154
20-120
20-120
20-120
20-120
DBH (cm)
11-49
11-49
11-49
13-44
13-44
13-44
13-44
Hm (m)
nda
13-34
13-34
16-46 16-46
16-46 16-46
16-46
16-46
11->25
11->25
11-49
PY
CO
204
204
204
204
143
143
143
KALBAR
V10 = 0.0000624 D2.1980 H0.6687
FIN
Shorea parvifolia, S. uliginosa, etc
143
Sample ∑ Trees
Vtb = 0.0000488 D2.098 H0.834
Model Form
KALBAR
Location
Shorea parvifolia, S. uliginosa, etc
Tree Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
0.95
0.99
nda
nda
nda
nda
0.97
0.99
0.99
nda
nda
nda
nda
nda
nda
nda
nda
R2
0.05
0.09
nda
0.22
0.19
0.22
0.20
nda
nda
0.19
0.14
0.23
0.22
0.22
0.22
0.16
0.15
Se
33
84
84
89
89
89
89
100
100
98
98
98
98
82
82
82
82
Ref
Note
102
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia
Ecosystem Type
DLF
DLF
DLF
DLF
DLF
DLF
DLF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
MF
No
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
KALBAR
Bruguiera spp.
Rhizophora conjungata
KALTIM
KALTIM
Riau
Rhizophora apiculata & R. mucronata
Rhizophora conjungata
Riau
KALBAR
KALBAR
Rhizophora apiculata
Bruguiera spp.
Bruguiera spp.
KALBAR
KALBAR
Bruguiera spp.
Bruguiera spp.
KALBAR
Bruguiera spp.
Riau
KALTIM
2.568
1.947
Vtb = 0.0000675 D H0.714
V = 0.000124 D2.417
V5 = 0.000647 D1.727 H0.988
V = 0.000107 D2.4
V7 = 0.0000198 D2.741 H0.378
V10 = 0.0000209 D2.612 H0.473
Vtb = 0.0000709 D2.051 H0.698
V7 = 0.0000285 D2.927
V10 = 0.0000226 D2.969
Vtb = 0.000082 D
V = 0.0135 D1.61
V = 0.0367 -0.0716 DH + 0.533 D2H)/10000
V = (0.0149 -0.0737 D + 12.335 D2)/10000
V10 = 0.000116 D2.196 H0.456
SULSEL
KALTIM
Vtb = 0.0000827 D2.036 H0.725
AL
V10 = 0.000267 D2.343
Vtb = 0.000313 D2.266
Vtb = 0.00013 D2.502
Model Form
SULSEL
SULSEL
SULSEL
NTB
Location
FIN
Bruguiera gymnorrhiza
Vatica spp.
Vatica spp.
Vatica celebencis
Vatica celebencis
Vatica celebencis
Vatica celebencis
Toona sureni
Tree Species
nda
nda
nda nda
5-39
10-57.6
7-48
7-48
7-48
455
50
80
80
80
7-48
5-24
5-24
5-24
4-3
nda
nda
11-29
11-29
11-29
11-29
nda
Hm (m)
nda
nnda da
7-30 7-30
8.5-36
5-24
5-24
5-24
PY
CO
80
7-48
7-48
80
80
10-54.1
nda
nda
20-79
50
nda
nda
200
20-79
20-79
200 200
20-79
nda
DBH (cm)
200
68
Sample ∑ Trees
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
nda
nda
0.99
0.96
nda
nda
nda
nda
nda
nda
0.97
nda
nda
nda
nda
nda
nda
0.97
R2
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
0.15
0.14
0.17
0.18
0.22
Se
75
75
76
44
80
80
80
80
80
80
44
25
25
97
97
97
97
17
Ref
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
103
Dactylocladus stenostachys
Dipterocarpaceae (Non Shorea)
Gonystilus sp.
Gonystilus sp.
Gonystylus bancanus
Gonystylus bancanus
Gonystylus bancanus
Gonystylus bancanus
Gonystylus bancanus
Gonystylus bancanus
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
163
164
165
166
167
168
169
170
171
172
Gonystylus bancanus
Dactylocladus stenostachys
PSF
162
PSF
KALTENG
Dactylocladus stenostachys
PSF
161
173
KALTENG
Other mixed species
PSF
160
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
Riau
KALTENG
KALTENG
KALBAR
Papua
PABAR
Riau
Mixed (Campnosperma)
Riau
PABAR
PSF
Rhizophora spp.
Rhizophora spp.
PABAR
AL
H 0.445
V (ub) = 0.00465 D
1.781
nda
74
nda
nda
74 2.417
74
nda
74 2.512
nda
nda
nda
nda
nda
63
63
nda
nda
nda
29-79.5
233 nda
29-79.5
nda
nda
nda
nda
233
nda
nda
246
292
63
Vcb (ub) = 0.000128 D V (ub) = 0.000271 D
nda
nda
nda
12-28
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Hm (m)
nda
nda
nda
nda nda
nda nda
nda
nda
nda
nda
nda
12-28
PY
CO
nda
nda
nda
nda
nda
nda
DBH (cm)
2.385
Vcb (ob) = 0.000255 D
V (ob) = 0.0258 D1.366
V (ub) = 0.00236 D1.861
Vcb (ub) = 0.000287 D2.291
V = 0.000364 D2.256
Vtb = 0.000124 D2.538
Vtb = 0.000136 D2.504
Vtb = 0.000154 D 2.107
V = 0.000289 D2.291
V = 0.000205 D2.384
V = 0.000418 D2.208
V = 0.000148 D2.479
V = 0.00029 D2.311
V7 = 0.000184 D2.46
Vtb = 0.00029 D1.89 H0.462
V = 0.00013 D2.494
nda
V7 = 0.0000228 D2.324 H0.804
KALBAR
159
MF
156
Rhizophora spp.
Rhizophora spp.
nda
V10 = 0.0000135 D2.224 H1.086
KALBAR
Callopyllum sp.
MF
155
FIN
PSF
MF
154
Rhizophora spp.
Sample ∑ Trees 180
Model Form
Vtb = 0.0000534 D2.097 H0.74
KALBAR
158
MF
153
Rhizophora spp.
Location
MF
MF
152
Tree Species
157
Ecosystem Type
No
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
0.94
0.97
0.98
0.98
0.96
0.94
0.95
0.99
0.97
0.97
nda
nda
nda
nda
0.98
0.96
nda
nda
nda
nda
nda
nda
R2
0.02
0.02
0.01
0.01
0.02
0.01
0.02
0.17
0.13
0.14
0.13
nda
nda
nda
0.18
0.15
nda
nda
nda
nda
nda
nda
Se
28
28
28
28
28
28
28
22
23
23
78
78
108
59
14
22
11
60
60
79
79
79
Ref
Note
104
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia Riau
KALTENG
Hopea bracteata
Hopea spp.
Intsia sp.
Intsia sp.
Other species
Other species
Other species (Non Dipterocarpaceae &Gonystylus)
Melanorrhoea wallichii
Palaquium spp.
Palaquium spp.
Palaquium spp.
Podocarpus neriifolius
Podocarpus neriifolius
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
Shorea spp.
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
PSF
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
Riau
Riau
KALTENG
KALTENG
KALTENG
KALTENG
KALTENG
Jambi
Papua
Papua
nda
Riau
Maluku
Jambi
KALTENG
PABAR
Papua
KALTENG
KALTENG
Riau
Model Form
nda
nda
V = 0.000178 D2.24
V = 0.000154 D
27 - 78
nda
nda 2.464
V = 0.000331 D
80
nda nda
20-110 253
2.31
V = 0.0000446 D 1.913
H
nda nda
20-110 253
1.123
nda
20-110
253
)/1000
16.4 - 27.55
nda
nda
nda
2.312
V = 0.000321 D
V = (0.494 D
PY nda
nda
2.322
Vtb = 0.000101 D
nda
nda
nda
nda
nda
nda
nda
13.5-24.5
nda
nda
nda
nda
nda
nda
nda
nda
nda
18.3-33.85
nda
Hm (m)
2.584
V = 0.000316 D2.3
nda
nda
53
nda
19-78
80
nda
nda
nda
Vtb = (0.00018 + 2.102 D2 + 0.3734 D2H)/10000
nda
nda
CO
nda
nda nda
20-110
253
nda
nda
nda
nda
nda
24-74
nda
DBH (cm)
246
nda
nda
nda
80
63
Sample ∑ Trees
lnV = -8.037 + 2.23 lnD
2.718
V = 0.0000495 D
V = 0.000282 D 2.32
V = 0.000513 D 2.23
V = 0.000295 D2.3
Vtb = 0.000166 D2.438
V = 0.000061 D 2.712
V = 0.000267 D 2.359
Vtb = 0.000141 D2.477
V = 0.0000762 D2.579
V = 0.000145 D2.52
AL
V = 0.000245 D2.38
V = 0.000191 D2.48
Vcb (ob) = 0.000712 D2.115
FIN
Gonystylus bancanus
PSF
175
KALTENG
Gonystylus bancanus
PSF
Location
174
Tree Species
Ecosystem Type
No
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
0.91
0.96
nda
nda
nda
nda
0.98
0.99
nda
nda
0.95
0.98
0.98
0.99
0.97
0.96
nda
0.97
nda
nda
nda
0.96
0.95
R2
nda
0.16
nda
nda
nda
nda
0.13
nda
nda
nda
nda
nda
nda
nda
0.14
0.17
nda
0.16
nda
nda
nda
nda
0.01
Se
62
22
107
87
87
87
23
35
54
54
109
62
36
35
23
22
87
14
59
107
107
62
28
Ref
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
105
PSF
PF
PF
PF
PF
PF
208
209
210
211
212
213
PF
Callopyllum sp.
PSF
207
214
Callopyllum sp.
PSF
206
Acacia mangium
Acacia mangium
Acacia auriculiformis
Acacia auriculiformis
Acacia auriculiformis
Acacia auriculiformis
Callopyllum sp.
Callopyllum sp.
JABAR
JABAR
JATENG
JATENG
JATENG
JATENG
KALBAR
KALBAR
KALBAR
KALBAR
KALTENG
Vatica spp., Dipterocarpus spp., Hopea spp.
PSF
PABAR
Papua
Papua
nda nda
logV7 = -3.836 + 2.208 logD + 0.297 logHbc
Vfw = 0.00191 D
1.91
nda
nda
nda
logV7 = -3.882 + 2.461 logD
Vtb = 0.0000478 D2.76
nda
nda
logVm = -4.044 + 2.003 logD + 0.709 logHcb
nda
nda
nda
nda
nda
logVm = -4.155 + 2.605 logD
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Hm (m)
PY
CO nda
20 - 110
nda
nda
nda
nda
nda
nda
nda
DBH (cm)
nda
253
246
nda
nda
nda
nda
nda
nda
Sample ∑ Trees
V7 = 0.000133 D2.218 H0.389
Vtb = 0.0000577 D2.176 H0.669
V7 = 0.000191 D 2.426
Vtb = 0.0000989 D2.556
V = 0.000226 D2.423
Vtb = 0.000295 D2.27
lnV = 8.32 + 1.88 lnD + 1.38 lnD2H
lnV = 8.252 + 1.889 lnD + 0.48 lnH
V = 0.0311 (D+1) + 0.00083 D2 + 0.0000115 D2H + 0.0014 H2
Papua
H
0.000033
V = 0.0275D 0.00018
AL
lnV = -7.776 + 2.155 lnD
Papua
Papua
Model Form
V = 0.000224 D2.417
FIN KALBAR
Location
Vatica spp.
205
Timonius nitens
Timonius nitens
PSF
PSF
201
Timonius nitens
204
PSF
200
Syzygium spp.
PSF
PSF
199
Syzygium spp.
203
PSF
198
Shorea sp. & Gonystylus bancanus
PSF
PSF
197
Tree Species
202
Ecosystem Type
No
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
0.65
0.95
0.96
0.95
0.98
0.95
nda
nda
nda
nda
nda
0.78
0.99
0.99
nda
nda
nda
nda
R2
nda
nda
0.10
0.11
0.10
0.12
nda
nda
nda
nda
nda
0.18
nda
nda
nda
nda
nda
nda
Se
64
64
68
68
68
68
39
39
39
39
87
14
74
74
54
54
54
108
Ref
*
*
Note
106
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia
Ecosystem Type
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
No
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
KALSEL
KALSEL
KALSEL
KALSEL
KALSEL
KALSEL
KALSEL
KALSEL
KALSEL
KALSEL
KALBAR
KALBAR
JABAR
JABAR
JABAR
AL 5->30
5->30
nda
V (ob) = 0.000135 D H0.613552
V (ub) = 0.000272 D2.317
V (ob) = 0.000243 D2.089 Hbc0.334
1.955862
nda nda
nda
nda nda
nda
nda
nda
Vcb (ub) = 0.000149 D2.145 Hbc0.389 V (ob) = 0.000367 D2.2559
nda
nda
nda
nda
nda
nda
nda
nda
10-35
10-35
Vcb (ub) = 0.000116 D2.118 H0.452
nda
nda
nda
51
51
nda
nda
12-24
12-23
7-17
7-17
7-17
7-17
nda
nda
Hm (m)
nda
nda
nnda da
nnda da
nda
nda
nda
nda
PY
CO
46
46
5->30
5->30
Vcb (ub) = 0.000242 D2.339
Vcb (ob) = 0.000191 D2.059 H0.435
1.992
Vcb (ob) = 0.000126 D H0.583
V cb (ob) = 0.000328 D2.276
1.773
Vtb = 0.0000788 D H0.879
Vtb = 0.000253 D2.292
logV7 = 3.72 + 1.98 logD + 0.44 logH
logV7 = -3.396 + 2.077 logD
logVm = -3.78 + 1.851 logD + 0.62 logH 46
46
logVm = -3.321 + 1.99 logD
JABAR
nda
nda
nda
DBH (cm)
nda
Sample ∑ Trees
Vfw = 0.0000039 D2.48 H1.42
Vtb = 0.000014 D2.3 H0.99
Model Form
JABAR
JABAR
Location
FIN
Tree Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
12-20
12-20
12-20
12-20
nda
nda
H (m)
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.96
0.94
0.99
0.97
0.99
0.98
0.91
0.94
R2
0.14
0.13
0.13
0.13
0.13
0.13
0.13
0.12
0.12
0.13
0.10
0.13
0.05
0.06
0.03
0.05
nda
nda
Se
38
38
38
38
38
38
38
38
38
38
66
66
42
42
42
42
64
64
Ref
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
107
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
241
242
243
244
245
246
247
248
249
250
PF
237
240
PF
236
PF
PF
235
239
PF
234
PF
PF
233
238
Ecosystem Type
No
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
Acacia mangium
SUMUT
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
KALTIM
KALTIM
KALSEL
KALSEL
KALSEL
KALSEL
nda
V = -0.128 + 0.006H + 0.012 D + 0.006
H
logV4 = -2.933 + 1.792 logD
V4 = 0.000122 D
2.035
10.6-26.1
nda
103 105
nda
nda
nda
103
103
Vtb = 0.0000918 D1.993 H0.71 V4 = 0.000154 D2.425
103
Vtb = 0.000122 D2.47
0.582
10-30
131
V7 = 0.00396 D1.654 H1.243
nda
10-30
131
V7 = 0.000793 D1.887
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Hm (m)
nda
nda
nda nda
nda nda
nda
131
nda
nda
nda
PY
CO
nda
nda
nda
nda
nda
nda
nda
nda
nda
DBH (cm)
nda
Vm = -0.074 + 0.0000314 D2H
Vcb = 0.0162 + 0.0000312 D2H
V5 (ub) = 0.00019 D2.22 Hbc0.239
1.132
V5 (ub) = 0.0128 D H0.425
V5 (ub) = 0.000256 D2.34
V5 (ob) = 0.000243 D2.139 Hbc0.281
KALSEL
KALSEL
V5 (ob) = 0.000141 D2.012 H0.547
V5 (ob) = 0.000348 D2.279
AL
nda
V (ub) = 0.00019 D2.172 Hbc0.29 nda
nda
Sample ∑ Trees
V (ub) = 0.000122 D2.077 H0.49
Model Form
KALSEL
KALSEL
KALSEL
KALSEL
Location
FIN
Tree Species
16-25
nda
nda
nda
nda
10-30
16-22
16-22
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
0.96
0.98
nda
nda
nda
nda
0.87
0.82
nda
nda
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
R2
0.047
0.10
nda
nda
nda
16-22
0.14
0.17
0.07
0.08
0.13
0.13
0.13
0.13
0.12
0.13
0.14
0.13
Se
104
81
81
81
81
61
4
4
55
55
38
38
38
38
38
38
38
38
Ref
*
Note
108
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
Ecosystem Type
251
No
Alstonia scholaris
Alstonia scholaris
Alstonia scholaris
Alstonia scholaris
Alstonia scholaris
Agathis sp.
Agathis sp.
Agathis sp.
Agathis sp.
Agathis loranthifolia
Agathis loranthifolia
Agathis loranthifolia
Agathis loranthifolia
Agathis loranthifolia
Agathis labillardieri
SUMSEL
SUMSEL
SUMSEL
SUMSEL
SUMSEL
Tad
SULUT
SULTRA
SULTENG
JATENG
JATENG
JATENG
JABAR
JABAR
Papua
Papua
SUMUT
SUMUT
SUMUT
Location
AL 20-70 20-70 nda nda
110 110 nda nda
nda
nda
nda
nda 55
nda
2.643
2.471
nda nda
V = 0.011 + 0.0000302 D2H
nda
V = 0.0329 - 0.00686 D + 0.000592 D2 V = 0.000077 D2.304 H0.241
nda
V = -0.0332 + 0.000431D2
V = 0.0000801 D
V = 0.0000659 D
V = 0.00025 D
nda
nda
nda
nda
nda
95
2.353
V = 0.00018 D
nda
nda
nda
nda
55
nda
nda
nda
nda
nnda da
nnda da
nda
nda
nda
nda
nda
nda
nda
nda
nda
PY nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
14-33
14-33
16-25
16-25
16-25
H (m)
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Hm (m)
nda
CO
10.6-26.1
2.347
V = 0.000157 D2.444
logVm = -4.095 + 2.212 logD + 0.5207 logH
logVm = -3.824 + 2.447 logD
V = 0.000142 D2.455
V = 0.000092 D2.541
V = 0.000086 D2.556
V = 0.0014 D1.762 H 0.111
V = 0.00072 D2.078
logV7 = -3.764 + 1.531 logD + 0.862 logH
10.6-26.1
10.6-26.1
DBH (cm)
105
105
logV4 = -3.638 + 1.492 logD+ 0.814 logH
Sample ∑ Trees 105
Model Form
logV7 = -3.017 + 1.848 logD
FIN
Agathis labillardieri
Acacia mangium
Acacia mangium
Acacia mangium
Tree Species
0.94
0.97
0.96
0.96
0.96
0.99
nda
0.98
nda
0.98
0.96
nda
0.99
0.99
0.86
0.91
0.97
0.95
0.97
R2
0.04
0.04
0.05
0.05
0.05
nda
nda
0.20
nda
0.06
0.08
nda
nda
nda
0.13
0.20
0.043
0.05
0.041
Se
93
93
93
93
93
109
52
20
51
70
70
41
29
29
58
58
104
104
104
Ref
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
109
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
279
280
281
282
283
284
285
286
287
288
PF
PF
278
289
PF
PF
274
277
PF
273
PF
PF
272
276
PF
271
PF
PF
270
275
Ecosystem Type
No
Dalbergia sisoides
Dalbergia latifolia
Dalbergia latifolia
Dalbergia latifolia
Dalbergia latifolia
Dalbergia latifolia
Bischoffia javanica
Altingia exelsa
Altingia exelsa
Altingia exelsa
Altingia exelsa
Altingia exelsa
Altingia exelsa
Altingia exelsa
Altingia exelsa
Alstonia sp.
Alstonia sp.
Alstonia sp.
Alstonia sp.
Alstonia scholaris
Vcb = 0.000081 D2.06 H0.662
SUMSEL
SUMSEL
NTT
JATIM
JATIM
JATIM
JATIM
Bali
Bali
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
JABAR
nda
logV7 = -3.5 + 2.11 logD + 0.042 logH7
125
nda
logV7 = -3.48 + 2.12 logD
nda
logVm= -3.79 + 1.98 logD + 0.45 logHm
nda
59
nda
nda
nda
nda
nda
nda
nda
nda 36
nda
nda
nda nda
nda
nda
10-33
10-33
116 116
10-33
116
nda
Vtb = 0.0000723 D2.465
10-33
nda
4-16
4-16
4-16
4-16
nda
nda
nda
nda
nda
Hm (m)
nda
nda
nda nda
nnda da
nda
nda
nda
nda
nda
nda
PY
CO
116
nda
nda
61 61
nda
nda
61 61
nda
DBH (cm)
nda
Sample ∑ Trees
logVm= -3.568 + 2.115 logD
Vtb = 0.000476 D 2.045
Vtb = 0.00326 D2.195
V7 = 0.000224 D2.232 H0.118
Vtb = 0.000191 D2.193 H0.19
V7 = 0.000270 D2712
Vtb = 0.000257 D2.256
0.741
H
2.088
Vtb = 0.0000402 D H0.982
Vtb = 0.000124 D 1.874
Vtb = 0.000108 D2.174 H0.527
Vtb = 0.000202 D2.402
Vbr = 0.000032 D2.15 H0.65
AL
V = 0.000089 D2 H0.917
SUMSEL
SUMSEL
Vbr = 0.00000426 (D3)
SUMSEL
Model Form
V = 0.111 - 0.0136 H 0.0146 D + 0.000650 D2 - 0.000024 D2H + 0.00144 DH
Location
FIN
Tree Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
0.98
0.83
0.83
0.89
0.83
0.91
0.74
nda
nda
nda
nda
nda
nda
nda
nda
0.83
0.92
0.94
0.74
0.92
R2
0.16
0.12
0.12
0.09
0.12
0.17
0.22
nda
nda
nda
nda
0.15
0.11
0.08
0.11
nda
nda
nda
nda
0.05
Se
18
71
71
71
71
12
12
72
72
72
72
9
9
9
9
26
26
26
26
93
Ref
*
Note
110
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia
Ecosystem Type
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
No
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
Gmelina arborea
Gmelina arborea
Gmelina arborea
Gmelina arborea
Eucalyptus urophylla
Eucalyptus urophylla
Eucalyptus spp.
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus grandis
Eucalyptus deglupta
Eucalyptus deglupta
Eucalyptus deglupta
Eucalyptus deglupta
KALSEL
KALSEL
KALSEL
KALSEL
SUMSEL
SUMSEL
NTT
SUMUT
SUMUT
SUMUT
SUMUT
SUMUT
SUMUT
SULSEL
SULSEL
KALTIM
AL nda
nda
H
Vub =0.000241 D
1.666
1.85
Vub = 0.000746 D
Vob= 0.000391 D 1.553
Vob = 0.00114 D1.711
0.597
H
H
0.522
V = -0.128 + 0.006 H + 0.012 D
V = 0.000026 D 0.833
nda nda nda nda
nda nda nda nda
nda
nda
130
2.229
nda
10-24
110
2.506
VKP = 0.000066 D
V5 = 0.000446 D H
10-24
110
1.915
V5 = 0.000399 D 0.67
10-24
nda
nda
nnda da
nnda da
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
PY nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Hm (m)
nda
CO
110
2.228
1.916
V7 = 0.00144 D
10-24
10-24
nda
nda
10-24
110
110
nda
nda
nda
110
V7 = 0.000396 D2.219
2.181
V10 = 0.000697 D H0.591
V10 = 0.000175 D2.457
logV7 = -1.37 + 2.62 logD + 0.289 logH
logV7 = -1.23 + 2.788 logD
V = 0.102 D - 0.126 (ln(D)2.436) + 0.000014 D2H
V = 0.00004 D3.139 (0.975D) nda
nda
nda
KALTIM
nda
nda
V = 0.0000451 D 2.027 H 0.874
KALTIM
nda
nda
DBH (cm)
nda
100
Sample ∑ Trees
V = 0.000103 D2.317 H0.239
V = 0.000245 D2.543
Model Form
Bengkulu
SULTENG
Location
FIN
Eucalyptus deglupta
Disoxylum Molliscimim
Diospyros celebica
Tree Species
0.98
0.94
0.97
0.93
nda
nda
0.98
0.96
0.94
0.96
0.94
0.95
0.93
0.98
0.98
0.99
0.99
nda
0.96
0.98
R2
0.02
0.02
0.02
0.03
nda
nda
0.18
0.12
0.14
0.12
0.15
0.15
0.17
0.11
0.12
nda
nda
0.16
0.04
nda
Se
56
56
56
56
30
30
18
10
10
10
10
10
10
65
65
37
37
30
92
34
Ref
*
*
*
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
111
PF
PF
PF
PF
PF
PF
PF
PF
PF
319
320
321
322
323
324
325
326
327
PF
315
PF
PF
314
318
PF
313
PF
PF
312
317
PF
311
PF
PF
310
316
Ecosystem Type
No
Model Form
1.1617
Pinus merkusii
Pinus merkusii
Pinus merkusii
Peronema canesnes
Peronema canesnes
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Paraserianthes falcataria
Aceh
Aceh
Aceh
Banten
Banten
SUMSEL
JATIM
JATIM
JATIM
JATIM
JABAR
JABAR
JABAR
logVtb = -3.859 + 2.48 logD
JABAR
Paraserianthes falcataria nda
nda
nda nda
nda nda
V = 0.0001 D H
207 207 207
logV5 (ub) = - 0.677 + 2.42 logD logV10 (ub) = - 0.714 + 2.439 logD logVm (ub) = - 0.801 + 2.471 logD
1.01
V = 0.00024 D2.08 1.7
nda
nda
V = -0.128 + 0.006 H + 0.012 D + 0.022
18.3-83
18.3-83
18.3-83
nda
nda
logV7 = -3.617 + 2.169 logD + 0.266 logH
nda
nda
nda
nda
nda
nda
nda nda
nda
nda
Nda
nda
nda
nda
nda
nda
nda
nda
nda
5-13
Hm (m)
19.3-52.8
19.3-52.8
19.3-52.8
nda
nda
nda
Nda
Nda
PY
CO
nda
nda
nda
nda
nda nda
nda
5->30
DBH (cm)
90
103
Sample ∑ Trees
logV7 = -3.497 + 2.315 logD
logVm = -3.991 + 2.071 logD + 0.636 logH
logVm = -3.702 + 2.423 logD
V5 = 0.00016 D2.078 H0.503
Vtb = 0.0000768 D H0.627 2.137
logV5= -3.59 + 2.353 logD
H
Vm = 0.00087 D
Banten
Paraserianthes falcataria 1.66
Vtb = 0.00011 D
Banten 2.541
AL
Vtb = 0.00122 D1.744
Vtb = 0.0000669 D1.952 H0.794
FIN Bali
SUMSEL
Location
Paraserianthes falcataria
Manilkara kauki
Gmelina arborea
Tree Species
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
H (m)
nda
nda
nda
0.96
0.95
nda
0.99
0.99
0.98
0.98
nda
nda
nda
nda
0.97
0.94
0.84
0.99
R2
0.20
0.21
0.20
0.07
0.08
nda
0.09
0.09
0.13
0.15
0.54
0.41
0.58
0.49
0.20
0.28
0.25
0.08
Se
5
5
5
40
40
31
69
69
69
69
8
8
8
8
6
6
12
103
Ref
*
*
*
*
*
Note
112
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
Ecosystem Type
328
No
Pometia acuminate
Podocarpus neriifolius
Vtb = 0.0000305 D1.642 H1.356
JABAR JATIM
PABAR
Papua
Papua
JATIM
JATIM
JATIM
JATIM
JATENG
JATENG
JATENG
JATENG
JATENG
JATENG nda
nda
nda
nda
nda
100 100 100 100 100
nda
58
2.702
nda
nda nda
V = 0.000179 ((D + 1)2.1023) (H0.373) Vtb = 0.000002 D2.394 H1.511
nda
nda
V = -8.037 + 2.23 lnD
V = 0.0000383 D
nda
16-52
559
V = 0.0000847 D
12-50
240
nda
nda
100
81
12-32
136
nda
nda
nda nda
nda nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
98-33.6
nda
19.3-52.8
19.3-52.8
19.3-52.8
Hm (m)
PY
CO 18-52
750
18-52
nda
298 750
nda
16.4-48.6
50 298
nda
92
18.3-83
18.3-83
18.3-83
DBH (cm)
2.577
V = 0.0000875 D 2.564
V = 0.00141 D2.186
Vfw = 0.000362 D2.434
Vtb = 0.00000831 D3.254
Vfw = 0.0000504 D2.089
Vtb = 0.0000202 D3.016
Vfw = 0.0000505 D 2.065
Vtb = 0.00000424 D 3.409
V = 0.0000997 D2.512
V7 = 0.0000758 D2.606
JATENG
V = 0.0000556 D
JABAR JATIM
2.691
V = 0.0000231 D2.971
V = 0.0000933 D 2.64
V = 0.000169 D2.317
logVm (ob) = - 0.65 + 2.428 logD
AL
207
logV10 (ob) = - 0.574 + 2.399 logD 207
207
Sample ∑ Trees
logV5 (ob) = - 0.559 + 2.392 logD
Model Form
JABAR
JABAR
JABAR
JABAR
Aceh
Aceh
Aceh
Location
FIN
Podocarpus neriifolius
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Pinus merkusii
Tree Species
nda
nda
nda
nda
12-32
10-30
nda
nda
nda
nda
nda
nda
nda
10-24
12-32
12-32
nda
nda
nda
nda
nda
nda
nda
H (m)
nda
0.99
0.98
0.95
0.97
0.97
0.81
0.72
0.97
0.66
0.92
0.81
0.94
0.86
Nda
nda
0.94
0.96
0.95
0.92
nda
nda
nda
R2
nda
nda
nda
0.12
0.16
0.12
nda
nda
nda
nda
nda
nda
nda
nda
0.13
0.21
nda
nda
nda
nda
0.17
0.17
0.17
Se
57
46
46
90
90
90
27
94
94
94
94
94
94
91
85
85
45
45
36
27
5
5
5
Ref
*
*
*
*
*
*
Note
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
113
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
PF
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
PF
PF
351
370
Ecosystem Type
No
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Tectona grandis
Swietenia macrophylla
Swietenia macrophylla
Swietenia macrophylla
Swietenia macrophylla
Swietenia macrophylla
Swietenia macrophylla
Swietenia macrophylla
Swietenia macrophylla
Schima wallichii
Schima wallichii
Pterospermum javanicum
Pterospermum javanicum
Pterospermum javanicum
Pterocarpus indicus
JATIM
JATENG
JATENG
JATENG
JATENG
SUMSEL
JATIM
JATIM
JATIM
JATIM
JATENG
JATENG
JATENG
JABAR
JABAR
JATIM
JATIM
JATIM
NTT
PABAR
Location
Vtb = 0.986 D
H
16-65 nda
nda
44 nda nda
nda nda
nda 147
V = -0.1276 + 0.006 H + 0.012 D + 0.0015
147 nda
V = 0.000838 D1.9386 V = 0.0000000000577 D6.33
nda
32-110
25-62.5
147 2.2568
V = 0.000195 D
30-103.7
147
V = 0.000673 D1.934
V = 0.000224 D2.397
nda
nda
V7 = 0.000127 D2.328 H0.17
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda nda
nda nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Hm (m)
PY
CO
16-65
16-65
44
44
nda
nda
nda nda
DBH (cm)
Sample ∑ Trees
nda
Vtb = 0.0000984 D2.009 H0.616
V7 = 0.000173 D 2.37
Vtb = 0.000305 D2.162
V = -4.54 + 2.211 D + 0.865 H
V = -3.452 + 1.983 D + 0.175 H
V = -4.439 + 2.213 D + 0.777 H
2.672
V = 0.0000577 D
V = 0.000093 D 2.505
V7 = 0.0000167 D2.18 H1.354
V7 = (-0.323 D + 4.32 D2)/10000
logV7 = -0.000952 + 2.497 logD
0.309
AL
0.845
Model Form
V = 0.00002 D2.989
FIN
Pometia acuminate
Tree Species
nda
12.1-20.5
7.8-16.6
9.7-14.6
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
16-32
16-32
16-32
nda
nda
H (m)
0.62
0.95
0.94
0.92
0.93
nda
nda
nda
nda
nda
0.98
0.89
0.96
nda
nda
nda
nda
nda
nda
nda
R2
nda
0.07
0.25
0.20
0.12
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
nda
Se
96
47
47
47
47
61
105
105
105
105
43
43
43
24
24
86
86
86
95
57
Ref
*
*
*
*
*
Note
NOTES: : Dryland Forest : Peat Swamp Forest : Mangrove Forest : Plantation Forest : Diameter at breast height (cm) : Tree height (m) : Total tree volume (m3) : Merchantable volume (m3) : Clear bole volume (kg) : Stem volume up to 4 cm top diameter limit (m3)
V5 V7 V10 Vtb Vfw Vbr Vcr ob ub *
: Stem volume up to 5 cm top diameter limit (m3) : Stem volume up to 7 cm top diameter limit (m3) : Stem volume up to 10 cm top diameter limit (m3) : Timber volume (m3) : Fuelwood volume (m3) : Branch volume (m3) : Crown volume (m3) : over bark : under bark : It is advisable not to use this model
FIN
AL
CO
PY
DLF PSF MF PF D H V Vm Vcb V4
114
Tree volume allometric models that have been developed according to tree species and ecosystem type in Indonesia
1.
2.
3.
References-Appendix 4
Abdurachman dan Purwaningsih, S. 2007. Tabel volume batang di bawah pangkal tajuk jenis Parashorea spp. di Labanan, Berau Kalimantan Timur. Prosiding Balai Besar Penelitian Dipterokarpa Samarinda. 61p. Asmoro, P.J.P. dan Kuswanda, R. 2007. Penyusunan model pendugaan volume pohon jenis-jenis komersial di hutan alam pada dua areal IUPHHK di Papua Barat. Info Hutan 4(5): 429435. Broadhead, J.S. 1995. Analysis of data from Biotrop logged and unlogged forest permanent sample plot in Jambi province, Sumatra. Report Number: RES/PSP/95/4. Research Project, IndonesiaUK Tropical Forest Management Programme, Palangkaraya. Bustomi, S. 1988. Tabel isi pohon Acacia mangium Willd. untuk daerah Balikpapan, Kalimantan Timur. Buletin Penelitian Hutan 495: 31-38.
5.
Bustomi, S. 2002. Pendugaan isi pohon jenis Pinus merkusii untuk daerah Takengon, Aceh. Buletin Penelitian Hutan 632: 59-71.
6.
Bustomi, S. dan Imanuddin, R. 2004. Pendugaan isi pohon sengon (Paraserianthes Paraserianthes falcataria Backer) di KPH Banten. Buletin Penelitian Hutan 645: 101109.
14. Direktorat Inventarisasi Hutan. 1990. Tabel volume pohon beberapa jenis kayu untuk Propinsi Irian Jaya. Laporan No. 15/Inhut-III/90. 15. Direktorat Inventarisasi Hutan. 1990. Tabel volume pohon beberapa jenis kayu untuk Propinsi Lampung. Laporan No. 07/Inhut-III/90. 16. Direktorat Inventarisasi Hutan. 1990. Tabel volume pohon beberapa jenis kayu untuk Propinsi Maluku. Laporan No. 14/Inhut-III/90. 17. Direktorat Inventarisasi Hutan. 1990. Tabel volume pohon beberapa jenis kayu untuk Propinsi Nusa Tenggara Barat. Laporan No. 10/Inhut-III/90. 18. Direktorat Inventarisasi Hutan. 1990. Tabel volume pohon beberapa jenis kayu untuk Propinsi Nusa Tenggara Timur. Laporan No. 11/Inhut-III/90. 19. Direktorat Inventarisasi Hutan. 1990. Tabel volume pohon beberapa jenis kayu untuk Propinsi Sulawesi Selatan. Laporan No. 12/Inhut-III/90. 20. Direktorat Inventarisasi Hutan. 1990. Tabel volume pohon beberapa jenis kayu untuk Propinsi Sulawesi Tenggara. Laporan No. 13/Inhut-III/90.
AL
7.
13. Direktorat Inventarisasi Hutan. 1990. Tabel volume pohon beberapa jenis kayu untuk Propinsi Bengkulu. Laporan No. 08/Inhut-III/90.
CO
4.
12. Direktorat Inventarisasi Hutan. 1990. Tabel volume pohon beberapa jenis kayu untuk Propinsi Bali. Laporan No. 09/Inhut-III/90.
PY
Appendix 5.
Bustomi, S. dan Soemarna, K. 1986. Tabel isi pohon sementara jenis meranti (Shorea (Shorea spp.) untuk KPH Bangkinang Riau. Buletin Penelitian Hutan 480: 1-126.
Bustomi, S., Harbagung, dan Krisnawati, H. 1995. Tabel isi pohon lokal jenis sengon (Paraserianthes (Paraserianthes falcataria)) di KPH Bogor, Jawa Barat. Buletin falcataria Penelitian Hutan 588: 37-57.
9.
Bustomi, S., Riyadi, D. dan Suharlan, A. 1978. Tabel volume pohon bebas cabang jenis rasamala (Altingia Altingia exelsa Noronhoe) untuk Daerah Garut, Sumedang dan Sukabumi. Laporan Lembaga Penelitian Hutan No. 283.
FIN
8.
10. Darwo. 1996. Tabel volume Eucalyptus grandis di HPHTI PT. Inti Indorayon Utama di Kesatuan Pemangkuan Hutan Samosir, Sumatera Utara. Prosiding diskusi hasil-hasil penelitian Puslitbang Hutan dan Konservasi Alam: 268 – 283. 11. Darwo. 1996. Tabel volume pohon untuk hutan payau di areal HPH PT Bina Lestari I, KPH Indragiri Hilir, Riau. Buletin Balai Penelitian Kehutanan Pematang Siantar 12 (2): 97-111.
21. Direktorat Inventarisasi Hutan. 1990. Tabel volume pohon beberapa jenis kayu untuk Propinsi Sumatra Utara. Laporan No. 06/Inhut-III/90. 22. Direktorat Inventarisasi Hutan. 1991. Tabel volume lokal (tarif) beberapa jenis kayu untuk hutan rawa Propinsi Riau. Laporan No. 01/Inhut-I/91. 23. Direktorat Inventarisasi Hutan. 1991. Tabel volume lokal (tarif) beberapa jenis kayu untuk hutan rawa Propinsi Kalimantan Tengah. Laporan No 02/ Inhut-III/91. 24. Disastra, S.M. 1982. Studi penyusunan tabel volume lokal tegakan puspa (Schima wallichii) di Hutan Pendidikan Gunung Walat. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 25. Enggelina, A. 1996. Dalam: Bertault, J-G dan K. Kadir (Eds). Silvicultural Research in a Lowland Mixed Dipterocarp Forest of East Kalimantan, the Contribution of STREK Project, CIRAD-Forêt, FORDA, and PT. INHUTANI I. CIRAD-Forêt Publication: 127-137.
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
115
27. Fakultas Kehutanan IPB. 1996. Penyusunan tabel volume lokal jenis Pinus merkusii di Jawa Barat. 28. Fanani, Z. 1995. Penyusunan tabel volume total dan bebas cabang ramin di Areal HPH PT. Inhutani III, Sampit, Kalimantan Tengah. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Insitut Pertanian Bogor, Bogor. 29. Farid, A. 1985. Studi penyusunan tabel volume lokal tegakan damar (Agathis loranthifolia Salisb.) di RPH Kabandungan Sukabumi. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Insitut Pertanian Bogor, Bogor.
CO
30. Harbagung. 1991. Penyusunan model penduga volume pohon jenis Eucalyptus deglupta. Laporan hasil penelitian DPL tahun 1990/1991. Pusat Litbang Hutan dan Konservasi Alam, Bogor.
37. Imanuddin, R. dan Bustomi, S. 2004. Model pendugaan isi pohon jenis Eucalyptus deglupta Blume di PT. ITCI Kalimantan Timur. Jurnal Penelitian Hutan dan Konservasi Alam 1 (2): 214225. 38. Imanuddin, R. dan Bustomi, S. 2004. Model pendugaan volume pohon Acacia mangium Willd. di PT.INHUTANI II Kalimantan Selatan. Buletin Penelitian Hutan 644: 85-116. 39. Krisnawati, H. dan Bustomi, S. 2002. Tabel isi pohon jenis Bintangur (Calophyllum Calophyllum spp) di KPH Sanggau, Kalimantan Barat. Buletin Penelitian Hutan 630: 1-15. 40. Krisnawati, H. dan Bustomi, S. 2004. Model penduga isi pohon bebas cabang jenis sungkai (Peronema Peronema canescens) canescens) di KPH Banten. Buletin Penelitian Hutan 644: 39-50. 41. Krisnawati, H. dan Siswanto, B.E. 1998. Tarif isi pohon untuk jenis Agathis loranthifolia Salisb. di Kesatuan Pemangkuan Hutan Banyumas Barat, Jawa Tengah. Buletin Penelitian Hutan 615: 1-8. 42. Krisnawati, H., Wahjono, D. dan Iriantono, J. 1997. Tabel isi pohon dan taper batang Acacia mangium Willd. di Kebun Benih Parungpanjang, Bogor, Jawa Barat. Buletin Teknologi Perbenihan 4: 12-27. 43. Maksud, D.S. 1985. Studi penyusunan tarif isi tegakan mahoni ((Swietenia machrophylla) di KPH Mantingan Perhutani I Jawa Tengah. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 44. Marlia, R. 1999. Studi penyusunan tabel volume lokal jenis-jenis komersial ekspor di Hutan Mangrove HPH PT. Bina Lestari I Riau. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 45. Pangaribuan, M. 1990. Studi penyusunan tabel volume lokal Pinus merkusi Jungh et de Vriese di BKPH Lembang KPH Bandung Utara. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 46. Parthama, I.B.P. dan Suratman, E. 2000. Model dan tabel volume pohon kayu cina/berasan (Podocarpus neriifolius D.Don). Prosiding Seminar Hasil Penelitian Pematang Siantar. 43p. 47. Pramugari, W. 1982. Studi penyusunan tabel volume lokal tegakan jati miskin riap untuk KPH Pati. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 48. Priyanto. 1997. Penyusunan tabel volume lokal jenis-jenis komersial hutan alam di HPH PT Harjohn Timber LTD Kalimantan Barat. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
PY
26. Ermawati. T. 1995. Studi penyusunan tabel volume total, volume bebas cabang, dan volume cabang pada jenis Pulau (Alstonia spp.) di HPH SBA Wood Industries Palembang. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
31. Harbagung. 1994. Penyusunan model penduga volume pohon jenis sengon. Laporan Hasil Penelitian DPL Tahun 1993/1994. Pusat Litbang Hutan dan Konservasi Alam, Bogor.
AL
32. Harbagung dan Suharlan, A. 1984. Tabel isi pohon tanaman ulin di Sumatera Selatan. Laporan Pusat Penelitian dan Pengembangan Hutan No. 456.
FIN
33. Hargyono. 1985. Studi penyusunan tabel volume lokal jenis-jenis komersial hutan hujan tropis di Langsa Daerah Istimewa Aceh. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 34. Helmi, B. 1985. Studi penyusunan tabel volume lokal pohon eboni (Dyospyros (Dyospyros celebica) celebica di Hutan Parigi Selatan KPH Benggala. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
35. Herwirawan, F.X. 1994. Penyusunan tabel volume bebas cabang lokal untuk beberapa jenis komersial pada Areal HPH PT. Betara Agung Timber di Propinsi Dati I Jambi. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 36. Imanuddin, R. 1999. Penentuan panjang seksi batang optimal dalam pengukuran volume pohon model untuk penyusunan tabel volume jenis-jenis pohon daun jarum (pinus) dan pohon daun lebar (nyatoh). Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
116
References-Appendix 4
50. Pusat Inventarisasi Hutan. 1986. Tabel volume lokal (tariff) tegakan hutan tanah basah Propinsi Dati I Sumatra Selatan. Laporan No. 59/Inhut-I/86. 51. Pusat Inventarisasi Hutan. 1986. Tabel volume pohon beberapa jenis kayu untuk Propinsi Sulawesi Tengah. Laporan No. 61/Inhut-I/86. 52. Pusat Inventarisasi Hutan. 1986. Tabel volume pohon beberapa jenis kayu untuk Propinsi Sulawesi Utara. Laporan No. 71/Inhut-I/86. 53. Pusat Inventarisasi Hutan. 1988. Tabel volume pohon beberapa jenis kayu untuk Propinsi Jambi. Laporan No. 04/Inhut-I/88.
63. Santoso, S.B. 1995. Studi penyusunan tabel volume lokal duabanga (Duabanga moluccana B.L.) di HPH PT. Veneer Product Indonesia, Kelompok Hutan Gunung Tambora-Sumbawa Propinsi NTB. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 64. Setiawan, W. 1995. Penyusunan tabel volume lokal kayu pertukangan dan tabel volume kayu bakar Acacia mangium Willd. di KPH Majalengka Perum Perhutani Unit III Jawa Barat. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 65. Siswanto B.E. dan Suyat. 2004. Model pendugaan isi pohon jenis Eucalyptus deglupta Blume di Barisalo, Sulawesi Selatan. Jurnal Penelitian Hutan dan Konservasi Alam 1 (2): 139-146.
CO
54. Pusat Litbang Hutan dan Konservasi Alam. 1997. Penyusunan tabel volume jenis-jenis hutan alam di HPH PT Digul Daya Sakti. Laporan Kerjasama Pusat Litbang Hutan dan Konservasi Alam dengan PT. Digul Daya Sakti.
62. Rudyana, H. 1994. Studi penyusunan tabel volume lokal jenis-jenis komersial hutan alam di PT. Diamod Raya Timber Propinsi Riau. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
PY
49. Pusat Inventarisasi Hutan. 1985. Tabel volume pohon beberapa jenis kayu untuk Propinsi Sumatra Barat. Laporan No. 67/Inhut-I/85.
55. Qirom, A.M. dan Lazuardi, D. 2007. Model persamaan linier untuk pendugaan volume pohon hutan tanaman jenis mangium di Kalimantan Selatan. Jurnal Penelitian Hutan Tanaman 4 (3): 119-134.
67. Siswanto, B.E. 1988. Tabel isi pohon meranti (Shorea spp.) di KPH Rokan, Riau, Sumatera. Buletin Penelitian Hutan 500: 1-14.
AL
56. Qirom, A.M., Lazuardi, D., Eriyanto, L.J. dan Mukhlisin. 2007. Tabel volume pohon jenis gmelina di Kalimantan Selatan. Prosiding BPK Banjarbaru. 131p.
66. Siswanto, B.E dan Harbagung. 2004. Persamaan regresi volume pohon jenis Acacia mangium Willd. di daerah Sanggau, Kalimantan Barat. Jurnal Penelitian Hutan dan Konservasi Alam 1 (2): 129138.
57. Rachman, E. dan Abdurrochim, S. 1989. Tabel volume bebas cabang Pometia acuminata Raldk. di KPH Warbiadi CDK Manokwari. Matoa 2 (1): 2839.
FIN
58. Rachman, E. dan Abdurrochim, S. 1990. Tabel volume Agatis labilladieri Warb. di kelompok hutan parieri lokasi Biak Numfor. Matoa 3 (1): 3041. 59. Rachman, E. dan Abdurrochim, S. 2000. Tabel volume jenis merbau dan jenis lainnya di daerah Jayawijaya. Matoa Laporan Teknis Balai Penelitian Kehutanan 4 (1). 60. Rachman, E., dan Abdurrochim, S. 1989. Tabel volume bebas cabang Bakau (Rhyzophora mucronata BL.) pada kelompok hutan Wimro CDK Babo Manokwari. Matoa Laporan Teknis Balai Penelitian Kehutanan Manokwari 2 (2). 61. Riyanto, H.D., Sutejo, E.B., Abdullah, H.R. dan Wibowo, W. 1992. Penyusunan tabel volume beberapa jenis tanaman reboisasi dengan menggunakan metode peubah boneka (dummy variable). Info Teknis BTR-01/1992. Balai Teknologi Reboisasi Benakat, Palembang.
68. Siswanto, B.E. 2008. Model pendugaan isi pohon Acacia auriculiformis A. Cunn di Kesatuan Pemangkuan Hutan Gundih, Jawa Tengah. Jurnal Penelitian Hutan Tanaman 5 (2): 279-290. 69. Siswanto, B.E. 2008. Model pendugaan volume pohon sengon (Paraserianthes falcataria) di Kesatuan Pemangkuan Hutan Kediri, Jawa Timur. Jurnal Penelitian Hutan Tanaman 5 (2): 301-315. 70. Siswanto, B.E. dan Imanuddin, R. 2008. Model pendugaan isi pohon Agathis loranthifolia Salisb. di KPH Kedu Selatan, Jawa Tengah. Jurnal Penelitian Hutan dan Konservasi Alam 5 (5): 845-496. 71. Siswanto, B.E. dan Imanuddin, R. 2008. Persamaan regresi penaksiran volume pohon sonokeling (Dalbergia latifolia Roxb.) di Kediri, Jawa Timur. Info Hutan 5 (4): 281-298. 72. Siswanto, B.E. dan Wahjono, D. 1996. Tabel isi pohon jenis rasamala (Altingia exelsa) di Kesatuan Pemangkuan Hutan Cianjur, Jawa Barat. Buletin Penelitian Hutan 602: 25-36.
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
117
86. Soemarna, K. dan Sudiono, J. 1973. Tabel volume per pohon sementara untuk Bayur (Pterospermum javanicum Jungh.). Laporan Lembaga Penelitian Hutan No. 160. 87. Soemarna, K. dan Suprapto. 1971. Tabel volume per pohon Shorea spp., Vatica spp., Hopea spp., dan lain-lain di Kalimantan Tengah. Laporan Lembaga Penelitian Hutan No. 133. 88. Soemarna, K. dan Suyana, A. 1980. Tabel isi sementara tiap pohon jenis-jenis meranti ((Shorea spp.) di KPH Merangin, Jambi. Laporan Lembaga Penelitian Hutan No. 352. 89. Soemarna, K. dan Suyana, A. 1981. Tabel isi pohon sementara jenis-jenis meranti ((Shorea spp.) di KPH Mahakam Tengah, Kalimantan Timur. Laporan Balai Penelitian Hutan No. 367.
CO
74. Siswanto, B.E., Wahjono, D., Harbagung dan Imanuddin, R. 2007. Ketepatgunaan berbagai model pendugaan volume pohon jenis kayu sibu (Timonius nitens M.e.P) di wilayah Kecamatan Mandobo, Kabupaten Marauke Papua. Jurnal Penelitian Hutan dan Konservasi Alam 4 (3): 291299. 75. Sjafe’i, M. 1972. Tabel volume Rhizophora conjungata Linn. berdasarkan data dari Pulau Segita Kalimantan Timur. Laporan Khusus Direktorat Perencanaan No. 5. 76. Soemarna, K. 1974. Tabel volume bakau-bakau (Rhizophora spp.) di daerah Bengkalis, Riau. Pengumuman Lembaga Penelitian Hutan No. 101. 77. Soemarna, K. 1977. Tabel isi batang di bawah pangkal tajuk untuk meranti (Shorea spp.) di Lampung. Laporan Lembaga Penelitian Hutan No. 263. 78. Soemarna, K. 1978. Tabel isi batang di bawah pangkal tajuk untuk mentibu (Dactylocladus Dactylocladus stenostachys)) di Kalimantan Tengah. Laporan Lembaga Penelitian Hutan No. 266.
85. Soemarna, K. dan Sudiono, J. 1972. Volume kayu tebal per pohon Pinus merkusii di daerah Bandung Utara, Djember dan Banyuwangi. Laporan Lembaga Penelitian Hutan No. 146.
PY
73. Siswanto, B.E., Bustomi, S. dan Sulaeman, E. 1996. Tabel isi pohon untuk jenis kapur (Dryobalanops lanceolata Burck) di Kesatuan Pemangkuan Hutan Sanggau, Kalimantan Barat. Buletin Penelitian Hutan 601: 15-40.
AL
79. Soemarna, K. 1980. Tabel isi pohon bakaubakau (Rhizophora spp.) di Kelompok Hutan Padang Tikar dan Pulau Panjang Propinsi Dati I Kalimantan Barat. Laporan Khusus Direktorat Bina Program No. 31.
90. Suharlan, A., Bustomi, S. dan Soemarna, K. 1976. Tabel volume pohon untuk Pinus merkusii Jungh. Et de Vries. Laporan Lembaga Penelitian Hutan No. 234. 91. Sukmana, M.T., Suharlan, A. dan Soemarna, K. 1976. Tabel volume pohon Pinus merkusii Jungh. Et de Vries di Pekalongan Barat, Pekalongan Timur dan Banyumas Barat. Laporan Lembaga Penelitian Hutan No. 222. 92. Sumadi, A. dan Siahaan, H. 2010. Model penduga volume pohon kayu bawang (Disoxylum molliscimum Burm F.) di Provinsi Bengkulu. Jurnal Penelitian Hutan Tanaman 7 (5): 227-231. 93. Sumadi, A., Nugroho, A.W. dan Rahman, T. 2010. Model pendugaan volume pohon pulai gading di Kabupaten Musi Rawas – Sumatera Selatan. Jurnal Penelitian Hutan Tanaman 7 (2): 107-112. 94. Suparno, J. 1994. Penyusunan table volume lokal kayu pertukangan dan kayu bakar tegakan pinus (Pinus merkusii Jung et De Vriese) dengan sadapan system quarre di BKPH Ambarawa KPH Kedu Utara. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 95. Susila, I.W.W. 1988. Tabel isi pohon kayu merah (Pterocarpus indicus Willd.). AISULI Kupang: 1-11. 96. Susilo, M.A. 1993. Penyusunan tabel volume hasil penjarangan tegakan jati (Tectona grandis L. F.) per hektar pada Bonita 2,5 di KPH Tuban, Perum Perhutani Unit II Jawa Timur. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
FIN
80. Soemarna, K. 1980. Tabel isi pohon tumu (Bruguiera spp.) di Kelompok Hutan Padang Tikar dan Pulau Panjang, Propinsi Kalimantan Barat. Laporan Khusus Direktorat Bina Program No. 30. 81. Soemarna, K. dan Bustomi, S. 1986. Tabel isi pohon lokal Acacia mangium Wild. untuk daerah Subanjeriji, Sumatera Selatan. Buletin Penelitian Hutan 487: 41-49. 82. Soemarna, K. dan Setyadi, A. 1981. Tabel isi pohon sementara jenis-jenis meranti ((Shorea spp.) di KPH Sintang, Kalimantan Barat. Laporan Balai Penelitian Hutan No. 378.
83. Soemarna, K. dan Siswanto, B.E. 1986. Tabel isi pohon sementara untuk jenis keruing (Dipterocarpus cornutus Dyer) di KPH Kotabaru, Kalimantan Selatan. Buletin Penelitian Hutan 474: 22-52. 84. Soemarna, K. dan Siswanto, B.E.1986. Tabel isi pohon jenis-jenis meranti (Shorea spp.) di KPH Solok, Sumatera Barat. Buletin Penelitian Hutan 483: 31-49.
118
References-Appendix 4
97. Suyana, A. dan Soemarna, K. 1981. Tabel isi pohon sementara jenis damar dere (Vatica celebensis Brandis) di KPH Luwu, Sulawesi Selatan. Laporan Balai Penelitian Hutan No. 383. 98. Suyana, A. dan Soemarna, K. 1984. Tabel isi sementara tiap pohon jenis-jenis meranti (Shorea spp.) di KPH Pulau Laut, Kalimantan Selatan. Laporan Pusat penelitian dan Pengembangan Hutan No. 427.
108. Wijayanto, P. 1982. Studi penyusunan tabel volume kayu pertukangan jenis-jenis komersial di hutan tropika basah Kalimantan Barat. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 109. Wiroatmodjo, P. 1995. Evaluation of Tree Volume Equation. Directorate General of Forest Inventory and Land Use Planning and Food and Agriculture Organization of the United Nations, Rome. 111. Yudjar, E. dan Suyana, A. 1988. Tabel isi batang di bawah pangkal tajuk jenis kapur ((Dryobalanops spp.) di Kesatuan Pemangkuan Hutan Mahakam Tengah, Kalimantan Timur. Wanatrop 3 (2): 117127.
100. Wahjono, D. dan Imanuddin, R. 2007. Model pendugaan volume gabungan jenis meranti (Shorea spp.) dan keruing (Dipterocarpus spp.) di Kabupaten Kota Waringin Timur, Kalimantan Tengah. Info Hutan 4 (4): 335-346.
112. Yudjar, E. dan Budi, S.A. 1991. Tabel isi pohon sementara jenis-jenis keruing (Dipterocarpus (Dipterocarpus spp.) di Muara Wahau, KPH Mahakam Tengah, Kalimantan Timur. Wanatrop 5 (2): 15-23.
CO
101. Wahjono, D. dan Soemarna, K. 1984. Tabel isi pohon sementara jenis meranti merah (Shorea parvofolia Dyer. Dan Shorea leprosula Miq.) di KPH Batanghari, Jambi, Sumatera. Laporan Pusat Penelitian dan Pengembangan Hutan No. 424.
PY
99. Utama, A.P. 1991. Tabel volume lokal jenis keruing (Dipterocarpus cornutus Dyer) di Pulau Laut Kalimantan Selatan. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor.
AL
102. Wahjono, D. dan Soemarna, K. 1985. Model Shorea spp.) di pendugaan isi pohon meranti (Shorea KPH Barito Utara, Propinsi Kalimantan Tengah. Buletin Penelitian Hutan 466: 12-45. 103. Wahjono, D., Krisnawati, H. Dan Harbagung. 1995. Tabel isi pohon sementara jenis Gmelina arborea di Daerah Subanjeriji, Sumatera Selatan. Buletin Penelitian Hutan 587: 31-44.
FIN
104. Wahjono, D., Krisnawati, H., dan Bustomi, S. 1995. Tabel isi pohon lokal jenis Acacia mangium di KPH Labuhan Batu, Sumatera Utara. Buletin Penelitian Hutan 589: 39-54. 105. Wahjono, D. dan Soemarna, K. 1987. Tabel isi pohon dan dolok jenis mahoni ((Swietenia macrophylla King) di KPH Jember, Jawa Timur. Buletin Penelitian Hutan 493: 1-13. 106. Wardaya, W. 1990. Studi penyunan tabel volume lokal untuk tabel volume bebas cabang, tabel volume total dan tabel volume tajuk meranti di Hutan Gunung Tinggi Kalimantan Selatan. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor, Bogor. 107. Widodo, R.M.W. 1998. Studi penyusunan tabel volume lokal jenis-jenis kayu komersial hutan alam: studi kasus di Areal Kerja HPH PT. Austral Byna Kalimantan Tengah. Skripsi Jurusan Manajemen Hutan, Fakultas Kehutanan Institut Pertanian Bogor, Bogor.
MONOGRAPH Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia
119
AL
FIN PY
CO
AL
FIN PY
CO
PY CO AL FIN
Monograph
Models for Estimating Tree Biomass
at Various Forest Ecosystem Types in Indonesia
MINISTRY OF FORESTRY FORESTRY RESEARCH AND DEVELOPMENT AGENCY
RESEARCH AND DEVELOPMENT CENTER FOR CONSERVATION AND REHABILITATION
ISBN 978-979-3145-93-8
9 789 793 14 593 8