Mechanika s Inventorem 2. Základní pojmy
FEM
CAD
výpočty
data
Petr SCHILLING, autor přednášky
Ing. Kateřina VLČKOVÁ, obsahová korekce
Tomáš MATOVIČ, Optimalizace
publikace
1
Obsah přednášky: Lagrangeův variační princip
3
Symetrie
8
Diskretizace
11
Okrajové podmínky
13
Singularita
19
Výpočtový model
23
Výstupy a závěrečná diskuse
24
2
Lagrangeův variační princip Definice: Mezi všemi funkcemi posuvů zachovávajících spojitost tělesa a splňujících geometrické okrajové podmínky, se realizují ty posuvy, které udílejí potenciální energii Π stacionární hodnotu. Π … celková potenciální energie tělesa W … energie napjatosti tělesa
Π = W −P
P … potenciál vnějšího zatížení Poznámka: stacionární hodnota Π představuje minimum
3
Lagrangeův variační princip Legenda: k … konstanta tuhosti pružiny [Nmm-1] m … hmotnost tělesa [kg] g ... gravitační zrychlení [ms-2] F … gravitační síla [N] u … deformace pružiny [mm]
4
Lagrangeův variační princip Platí:
Π = W −P 1 W = ⋅k ⋅u 2 P = F ⋅u = m ⋅ g ⋅u 2
1 Π = ⋅k ⋅u − m ⋅ g ⋅u 2 2
5
Lagrangeův variační princip Hledáme minimum funkce Π = Π(u), což odpovídá parciální derivaci Π(u) podle deformace (posuvu) u.
∂Π(u) = k ⋅u − m ⋅ g ∂u
∂Π(u) =0 ∂u
0 = k ⋅u − m ⋅ g m⋅g u= k
6
Lagrangeův variační princip Legenda: Πmin … minimum funkce celkové potenciální energie tělesa Π = Π(u)
7
Symetrie 3D geometrické modely (CAD data) mohou mít osy a roviny symetrie vlastnosti symetrie lze s výhodou využít výsledky MKP analýzy s využitím symetrických vlastností jsou totožné jako u MKP analýzy bez zahrnutí symetrie vede na výrazně menší výpočtový model (poloviční, čtvrtinový) → menší počet uzlů a elementů → menší počet rovnic → snížení času nutného pro výpočet vede při zachování velikosti modelu na mnohem jemnější síť výrazné zjednodušení definice okrajových podmínek
8
Symetrie
9
Symetrie
10
Diskretizace 3D geometrické modely (CAD data) jsou rozděleny na konečný počet částí (elementů) objem a tvar modelu je vyplněn elementy s dostatečnou přesností výsledkem procesu síť konečnoprvkového modelu výrazné ovlivnění získaných výsledků – hustota sítě (velikost elementu, počet elementů a tolerance vyplnění) výpočtová náročnost úlohy roste výrazně s hustotou sítě – větší počet algebraických rovnic kontinuální těleso je nahrazeno konečným prvkem elementů – diskretizováno jednotlivé elementy v matematických bodech se známými souřadnicemi v prostoru tzv. uzlech 11
Diskretizace síť elementů (prvků) lze v problematických místech zahušťovat obecně: Získané výsledky silně závisí na hustotě a kvalitě použité sítě použité pro výpočtovou studii!
12
Okrajové podmínky představují předepsané hodnoty posunutí a rotací (strukturální úlohy) či předepsané teploty (teplotní úlohy) představují: zatížení (síla, tlak, moment…) a vazby (vetknutí, podepření, kloub…) špatná definice okrajových podmínek → jiné napěťové stavy a zcela jiné deformace – řešíme jinou úlohu – znehodnocení výsledků výpočtové studie obtížně odhalitelné chyby i pro zkušené výpočtáře software pouze prostředkem řešení – nikoliv řešením problému bez znalostí výpočtáře silně ovlivňují výsledky FEM analýz
13
Okrajové podmínky Ukázka ovlivnění výsledku Studie: Určení ekvivalentního napětí u součásti uložené a zatížené dle obrázku. Čep je dokonale tuhý a není předmětem našeho zkoumání = idealizace. 1.Nevhodný přístup vetknutí → zabrání deformaci kruhového otvoru výrazně jiný průběh napětí než ve skutečnosti – jiná úloha 2. Vhodný přístup tlaková vazba → reálnější model předpoklad nulové vůle v uložení čepu – větší vůle již odchylka
14
Okrajové podmínky Nevhodný přístup
15
Okrajové podmínky Nevhodný přístup
16
Okrajové podmínky Vhodný přístup
17
Okrajové podmínky Vhodný přístup
18
Singularita takové místo v 3D geometrickém modelu, kde i při postupném zahušťování sítě roste napětí nad všechny meze, tj. diverguje (nekonverguje ke správným hodnotám) nevyskytuje se v reálných tělesech obsahují pouze výpočtové modely – důvodem idealizace a zjednodušení při modelování MKP studií Nejčastější singularity: bodová okrajová podmínka = bodové zatížení a vazba ostrá hrana na geometrii
19
Singularita singularita je vzdálena od řešené oblasti (oblast zájmu) → mizivé nebo žádné ovlivnění výsledku singularita je v blízkosti řešené oblasti (oblast zájmu) → výsledky znehodnoceny – nevěrohodné
20
Singularita N σ= S
N … vnitřní silový účinek (normálová vnitřní síla) [N] S … plocha průřezu (N je normálou plochy) [mm2] σ … normálové napětí [MPa]
S→0⇔σ→∞
21
Singularita odstranění – divergující výsledky po zahuštění sítě konvergují ke správným hodnotám – lze vyhodnocovat napětí odstranění – divergující výsledky po zahuštění sítě stále divergují k
vyšším a vyšším hodnotám – nelze vyhodnocovat napětí
22
Výpočtový model numerické simulace prováděny ve virtuálním světě – výpočtové studie vždy jen model s určitou mírou idealizace 3D geometrické modely (CAD data) → FEM mesh (síť konečných prvků) 3D CAD geometrie – model skutečné geometrie (výrobku) FEM mesh – matematická reprezentace CAD dat Přesnost výsledku ovlivňuje: numerická přesnost = kvalita MKP sítě (FEM mesh) správná definice výpočtové úlohy (geometrie, okrajové podmínky, materiálové parametry, zatížení atd.) – vždy jistá idealizace
23
Výstupy přednášky a závěrečná diskuse seznámení se základními pojmy: Lagranžův variační princip, symetrie, diskretizace, okrajové podmínky, singularita a výpočtový model vysvětlení významu singularit, hustoty sítě, okrajových podmínek a symetrie v rámci výpočtové studie
Závěrečná diskuse, dotazy
24