Magyar Felhasználói kézikönyv Felvonó Vezérlő kártya VEG2000
Version 4.3.065
Revision 2
07/09/2011
i
LAYOUT Rev 1.0
i
Tartalom 1.
Hiba üzenetek Hiba! A könyvjelző nem létezik.
2.
BOARD PROGRAMMING Hiba! A könyvjelző nem létezik.
1.1 1.2 1.3 1.4 1.5 1.6 2.1 2.2 2.3 2.4
Leírás ......................................... Hiba! A könyvjelző nem létezik. Hiba besorolás ............................ Hiba! A könyvjelző nem létezik. Hiba olvasás ............................... Hiba! A könyvjelző nem létezik. Hibalista törlése .......................... Hiba! A könyvjelző nem létezik. Hibalista ..................................... Hiba! A könyvjelző nem létezik. Azonnali információk ................... Hiba! A könyvjelző nem létezik. “Programozható programok” Táblázat ............................................. 5 “Programozható idők” Táblázat ....................................................... 7 “Programozható paraméterek” Táblázat......................................... 10 Alapértelmezett Táblázat ............ Hiba! A könyvjelző nem létezik.
2.4.1Alapértelmezett “Funkciók Táblázat” ......................................................................... 14 2.4.2Alapértelmezett “Idők Táblázat”................................................................................ 14 2.4.3Alapértelmezett “Parameter Táblázat” ....................................................................... 15
2.5
Programozható Inputs/Outputs (0/23) ........................................... 16
2.5.1Programozás I/O (0-23) ........................................................................................... 16
3.
3.1
Többfunkciós Keypad DISP900
18
MTöbbfunkciós Keypad Részei ..... Hiba! A könyvjelző nem létezik.
3.1.1PRESET kapcsoló ..................................................................................................... 19 3.1.2DATA nyomógomb .................................................................................................. 19 3.1.3SPEEDY nyomógomb ............................................................................................... 19 3.1.4Fel nyomógomb ...................................................... Hiba! A könyvjelző nem létezik. 3.1.5Le nyomógomb ....................................................... Hiba! A könyvjelző nem létezik.
3.2
System’s Operative áttekintése ..................................................... 20
3.3
Programozás pc-vel ..................................................................... 24
3.2.1Kezdés ................................................................... Hiba! A könyvjelző nem létezik. 3.2.2Futás Mode ............................................................. Hiba! A könyvjelző nem létezik. 3.2.3Programozás Mode .................................................................................................. 22 3.2.4Karbantartás Mode .................................................. Hiba! A könyvjelző nem létezik. 3.2.5Alarm Mode ............................................................ Hiba! A könyvjelző nem létezik. 3.2.6Bemeneti státuszok ellenőrzés .................................................................................. 23
4.
4.1 4.2
CA vezérlő kártya jellemzői
26
GÁltalános jellemzők ................... Hiba! A könyvjelző nem létezik. Elektromos jellemzők Áram ellátás ............................... Hiba! A könyvjelző nem létezik.
4.2.2Bemenetek ............................................................. Hiba! A könyvjelző nem létezik. 4.2.3Kimenetek .............................................................. Hiba! A könyvjelző nem létezik. i
4.3
5.
Elektromos rajz ........................... Hiba! A könyvjelző nem létezik.
Áramköri leírás
28
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14
0 – 23 ......................................................................................... 28 A/B/C/D....................................................................................... 28 AL-/ AL+/ AR/ RES/ SA/ SAR ........................................................ 28 ALT ............................................................................................. 28 AP/CP/CRP .................................................................................. 28 AP2 ............................................................................................. 28 APA ............................................................................................. 29 APG............................................................................................. 29 AUX1/AUX2/AUX3 ........................................................................ 29 BAT ............................................................................................. 29 CCO /CCC/ CCS ............................................................................ 29 CL ............................................................................................... 30 KE/ KI/ DEX/DIN .......................................................................... 30 CM1/CM2..................................................................................... 30
5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.34 5.35 5.36 5.37
CPF ............................................................................................. 30 CPP ............................................................................................. 30 CS ............................................................................................... 31 CS1 ............................................................................................. 31 CT ............................................................................................... 31 EM .............................................................................................. 31 EXC ............................................................................................. 31 FD/FS .......................................................................................... 32 FS3 ............................................................................................. 32 GND ............................................................................................ 32 GN .............................................................................................. 32 ICV/IF ......................................................................................... 32 INT ............................................................................................. 33 MAN ............................................................................................ 33 OCC ............................................................................................ 33 OM .............................................................................................. 33 PAP ............................................................................................. 33 PAT ............................................................................................. 34 PCP ............................................................................................. 34 PDM/PSM .................................................................................... 34 RD/RS ......................................................................................... 34 RU .............................................................................................. 34 SCP ............................................................................................. 35
5.14.1.................................................................................................................................................... CM1 ..................................................................................................................................... 30
ii
5.38 SNR ............................................................................................ 35 5.39 TD/TS ......................................................................................... 35 5.40 TG .............................................................................................. 35 5.40.1.......................................................................................................................................... TG Delay ..................................................................................................................................... 35
5.41 TM .............................................................................................. 35 5.42 TO .............................................................................................. 35 5.43 TP ............................................................................................... 36 5.43.1............................................................................................................................................ TP Delay ..................................................................................................................................... 36
5.44 TSD............................................................................................. 36 5.45 VIM ............................................................................................. 36 5.46 LED Signalling .............................................................................. 36
5.46.1............................................................................................................................................ Led PWR ..................................................................................................................................... 36 5.46.2........................................................................................................................................... Led Fault ..................................................................................................................................... 36 5.46.3............................................................................................................................................... Led Err ..................................................................................................................................... 37 5.46.4......................................................................................................................................... Led Ready ..................................................................................................................................... 37
6.
ARCHITECT System’S SPECIFICATION 38
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13
Door Pre-Opening ........................................................................ 38 Starting y/ ................................................................................. 38 Battery ........................................................................................ 38 Serial or Parallel Wiring ................................................................ 39 Landing and Slowing Down Zone ’s Magnetic Sensors Layout ........ 39 Delayed Stopping ......................................................................... 46 Photocells and Safety Reopening System ....................................... 46 Gong ........................................................................................... 46 Law ‘13’ Operation ....................................................................... 46 Immediate Starting ...................................................................... 46 Retiring Cam ................................................................................ 47 Enlarged Slowing Down Zone and Non-Regular Floor Distances ...... 41 Doors .......................................................................................... 46
6.13.1Door Checking....................................................................................................... 47 6.13.2Door Opening Exclusion During Testing Operation .................................................... 47 6.13.3Manual Doors ........................................................................................................ 48 6.13.4Automatic Doors.................................................................................................... 48 6.13.5Semi-Automatic Doors ........................................................................................... 48 6.13.6Multi-Entrances ..................................................................................................... 48 6.13.7OPERATOR ON During Run ................................................................................... 49
6.14 Limit Switch Test.......................................................................... 49 6.15 Parking ........................................................................................ 49 6.15.1Parking Operation.................................................................................................. 49
iii
6.15.2Parking With Open or Close Doors .......................................................................... 49
6.16 Timers ......................................................................................... 49 6.17 Plant Types: Single Automatic Push Button (Single Call), Collective or Duplex Plant ......................................................................................... 50 6.17.1Single Automatic Push Button Plant (Single Call) ...................................................... 50 6.17.2Down Collective Plant ............................................................................................ 50 6.17.3Up / Down Collective ............................................................................................. 50 6.17.4Duplex Plant ......................................................................................................... 50 6.17.5Duplo ................................................................................................................... 51 6.17.6Multiplex Plant....................................................................................................... 51
6.18 Inverter / Electronic Unit Management .......................................... 51 6.19 Speed.......................................................................................... 51 6.19.1One Speed ............................................................................................................ 51 6.19.2Two Speeds .......................................................................................................... 51 6.19.3Three Speeds ........................................................................................................ 51
7.
CONTROLS
53
8.
SIGNALLING
56
7.1 7.2 7.3 7.4 7.5 7.6 7.7 8.1
Safety Circuit ............................................................................... 53 Re-Opening Devices ..................................................................... 53 Maximum Travel .......................................................................... 53 Run Direction ............................................................................... 54 Movable Platform ......................................................................... 54 Engine Temperature ..................................................................... 55 Doors Zone .................................................................................. 55 Position /Arrival /Reservation ........................................................ 56
8.1.1Position Signalling ................................................................................................... 56 8.1.2Underground Floors ................................................................................................. 57 8.1.3Arrival Signalling ..................................................................................................... 57 8.1.4Reservation Signalling.............................................................................................. 58
8.2 8.3 8.4 8.5 8.6
9.
9.1 9.2
Direction...................................................................................... 58 Car Lighting ................................................................................. 60 Lights .......................................................................................... 60 Reserved Signal ........................................................................... 60 Skipping The Floor Indication on Serial Display .............................. 60
SIGNALLING
61
Automatic Relevelling ................................................................... 61 Emergency Service Mode .............................................................. 61
9.2.1Emergency Service Mode in Hydraulic Plant ............................................................... 61 9.2.2Emergency Service Mode in Rope Plant ..................................................................... 62
9.3
Platform Management .................................................................. 62
9.4 9.5
Priority Call .................................................................................. 63 Internal Mode .............................................................................. 64
9.3.1Electric Platforms .................................................................................................... 63
iv
9.6 9.7
Mounting Operation ..................................................................... 64 Inspection Service Mode ............................................................... 64
9.8 9.9
Syncronizing/Phasing ................................................................... 65 Fire Service.................................................................................. 65
9.7.1Hand operation ....................................................................................................... 65
9.9.1Fire Service Mode .................................................................................................... 65 9.9.2Firefighters Service Mode (EN 81-70) ........................................................................ 66
10. SERIAL Expansions 68
10.1 Wirings ........................................................................................ 68 Serial Display.................................................................................................................. 69
10.2 Car’s Serials (VEG400, SERCAR_LCD) ............................................ 69 10.2.1Serial Board VEG400 .............................................................................................. 71 10.2.2SERCAR_LCD ........................................................................................................ 74 10.2.3Using Two Car’s Serial Board .................................................................................. 76
10.3 Serial Board for External Calls ....................................................... 79 10.3.1.... Floors’ Serial boards (VEG602, VEG701, FLOORDIS, VEG800, ITF800,LCD600,LCD601) ..................................................................................................................................... 79 10.3.2Collecting external calls with VEG400 ...................................................................... 84
v
1.
Hiba üzenetek
1.1 LEÍRÁS A rendszer hibák a kijelzőn jelennek meg hibakódként. Ha legalább 2 másodpercig áll fenn a hiba, akkor elmentődik a memóriában. A memória 32 hibaüzenetet tud tárrolni, ezt meghaladva a régieket felülírja. Mikrokontroller foglalatába hibás illesztése esetén a kártya kikapcsolt állapotot mutat, a belső kijelzőn LED-ek aktívak. Rövidzárlat esetén a tranzisztor kijelzőn a LED-ek a belső kijelzőn villognak. 1.2 Hibák osztályozása A hibák három kategóriába vannak sorlova (A,B,C) ahhoz mérten milyen a hatásuk van a rendszerre. Az egyes kategóriák leírása lentebb található:
HIBA KATEGÓRIAA LEÍRÁS A A rendszer tartósan megáll a villogó hiba üzenetnél. Míg az üzenet villog a hívásokat a rendszer elutasítja. Ha a rendszer hidraulikus, akkor a fülke a 0 emeletre megy ( ha erre előzőleg be van programozva) A A hiba bekövetkezik áramlekapcsolás után is. Tartsa a SPEEDY gombot lenyomva 2 mp-ig, ezzel újra indítsa a rendszert vagy aktiválja a programozási módot. Állítsa az értéket 0-ra a 41 es hibakódnál vagy állítsa karbantartási módba.
B
Biztonsági vonal meghibásodása. A hívások aktívak a hiba üzenet alatt is. A hibaüzenet addig áll fenn míg a következő kérés teljesítve nem lesz vagy a rendszer áramtalanítódig, esetleg a manuálisan a hiba üzenetet törlőjük vagy a SPEEDY gombot lenyomva tartjuk.
C
Programozási hibák. A program nem tárolódott el a memóriában. Rossz értékek lettek megadva programozás alatt. A program 2 másodperces szünetet tart, hogy megtalálja a program hiba kódot. A korábban megadott értéket mentette el vagy a hibás program kódot nem menti el.
Az A és B típusú hibák megállítják a normál szolgáltatást és a hiba elhárításáig nem működik a rendszer. 1.3 HIBA ÜZENET MEGJELENÍTÉS A memóriában tárolt utolsó 32 hiba üzenetek kijelzéshez a SPEEDY és DATO gombokat kell legalább 1 másodpercig lenyomva tartani. A kód kijelzése után a gombokat felengedve a hibaüzenet törlődik (a hibaüzenet törléséhez a gombok elengedése után legalább 1 mp-et várni kell). A hibaüzenetek olvasása befejeződik, ha 99-es szám jelenik meg. A hibákat a legutóbbival kezdi megjeleníteni. 1.4 HIBA LISTA TÖRLÉSE A hibaüzenetek letörléséhet tartsa lenyomva a SPEEDY gombot és 3-szor nyomja meg a DATO gombot. Várjon 30 másodpercet a DATO gombok megnyomása között és a harmadiknál tartsa addig lenyomva SPEEDY és DATO gombokat amíg a 99 megjelenik a kijelzőn.
1
2
Hiba kód
Hiba Kategori a
0 – 31
B
37
B
PML,PMF hiba, vagy PMZ nincs szinkronban
38
B
Az emeletek rossz számolása fel irányban,nem valós emeletszám
39
B
Az emeletek rossz számolása le irányban, nem valós emeletszám,
40
B
Ajtó zóna nem található vagy rossz érzékelő elhelyezés
41
B
A GL, vagy GF mindig nyitott, vagy vezetékezési hiba
42
B
A megállási zóna túl rövid vagy a késleltetés hosszú ( cím=26)
43
B
PML hiba, megállás a PMF-nél le irányban
5.7 APA 5.26 ICV/IF 5.26 ICV/IF 5.26 ICV/IF 5.26 ICV/IF 5.35 RD/RS 6.6 Delayed Stopping 5.26 ICV/IF
44
B
Gyors kontaktor ,vagy ajtónyit relé ragad
5.8 APG
45
B
Összehangolási hiba
5.17 CS
46
B
Lassú kontaktor vagy a az ajtózár relé ragad
5.16 CPP
47
B
Fel vagy a le irányú kontaktor ragad
5.44 TSD
48
B
hiba ajtónyitás közben az ajtó félig nyitott
49
B
Ajtónyit relé hiba ,ajtó zárva maradt
50
B
Ajtózár relé hiba,ajtó nyitva maradt
51
B
Le irányú kontaktor nem húz
52
B
Fel irányú kontaktor nem húz
53
B
‘Lassú kontaktor nem húz
54
B/A
GF mindig zárt, hiba a fel irányú biztonsági átkapcsolónál
55
B/A
GL mindig zárt, hiba a lel irányú biztonsági átkapcsolónál
56
B/A
Motor thermal védelem
57
A
FS3 input nem kapcsol lent (GL) fent (GF)
58
C
A programozott érték nem érvényes
59
C
Az emeleti szintek száma hibás.
61
B
Hiba az ajtó müködése közben (CPP open, CS open)
62
B
Fülke komunikációs hiba
…
63
B
Aknai komunikációs hiba
…
Hiba leírás
A biztonsági áramkörben lévő hiba (ajtó nem csukódik)
Ref. paragraph 5.17 CS
6.12 Doors 5.8 APG, 6.12 Doors 5.16 CPP 5.17 CS 6.12 Doors 5.19 CT 5.44 TSD 5.19 CT 5.44 TSD 5.16 CPP 5.35 RD/RS 5.35 RD/RS 7.6 Engine Temperatu re 5.23 FS3 3.2.3 Programmi ng Mode 3.2.3 Programmi ng Mode 6.12 Doors
64
B
Sebesség váltási hiba ( gyors kontaktor ragad )
5.8 APG
65
B
Gyors kontaktor nem húz
5.16 CPP
67 68
B
…
…
70
B
76
77
78
79
80
81
82 83 84
85(*)
86(*)
87(*) 88 … 90 (*) 91 (*) 92 (*) 3
Ajtó visszanyitás aktív (CM or PAP) időt túllépte
7.2 Reopening Devices
Kimeneti zárlat
… Termosztát , vagy olaj hőmérséklet ellenőrzés működik
TO
7.3 Maximum B Utazási idő fel irányban túl hosszú (TMC) első alkalommal. A lift is not blocked and próbál még Travel egyszer Time 7.3 Maximum B Utazási idő le irányban túl hosszú. (TMC )első alkalommal. The lift is not blocked and próbál még Travel egyszer Time 7.3 Maximum BUtazási idő túl hosszú fel irányban gyors sebességgel. (TMC) expires for the first time . The lift is not Travel blocked próbál még egyszer Time 7.3 Utazási idő túl hosszú fel irányban. Maximum B It occurs when the maximun travel time (TMC) expires for the first time . The Travel lift is not blocked and you can try again. Time Utazási idő túl hosszú ( több alkalommal ) (2) 7.3 It occurs after two consecutive times that the maximum travel time expires. Maximum A The first time the maximum travel time expires one of the fault 76, 77, 78 or 79 Travel occurs, according to the state the lift was, when the time TMC has expired.. Time 5.10 BAT 5.20 EM A Vezérlés tápellátásának hibája ( B1 biztosíték 5.21 EXC 5.35 RD/RS 9.1 A Szintkorrekciós hiba ( idő túl hosszú ) Relevellin g A Biztonsági vonal hiba. (control on CS1) 5.18 CS1 5.35 Ellentétes irányú üzem. (opening RD in ascent, opening RS in descent) Gf vagy RD/RS A GL 7.4 Run Direction 3.2.3 C Memory faulty (only during programming). Cannot store new settings. Programmi ng Mode Fault during programmable functions’reading. Values out of ranges. Memory 3.2.3 A faulty. Put the Control Board in ‘PRESET mode’ and program again Programmi programmable functions’ table. ng Mode. Fault during programmable times’reading. Values out of ranges. Memory faulty. 3.2.3 A Put the Control Board in ‘PRESET mode’ and program again programmable Programmi times’ table. ng Mode Fault during programmable parameters’reading. Values out of ranges. Memory 3.2.3 A faulty. Put the Control Board in ‘PRESET mode’ and program again Programmi programmable parameters’ table. ng Mode A Shaft access attempt (Valid for systems without heading). … … … … B System Reset – WDT Timeout B System Reset – Brownout B System Reset – MCLR from run
93 (*) 94 (*) 95 (*) … 98 (*) …
B B B … B …
System Reset – MCLR from sleep System Reset – WDT from sleep System Reset – RST Instruction … System Reset …
(*)The alarms 85, 86, 87, 90, 91, 92, 93, 94, 95 and 98 ezek a kódok diagnosztikai hibák.
1.1AZONNALI INFORMÁCIÓK A rendszertöl müködés közben azzonali információk kérhetök a DATA gomb megnyomásával.
4
CODE
DESCRIPTION
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
ALT megszakitva. Photoelectric sensor takarásban (CM). Ajtó nyit gomb nyomva (PAP). Ajtó zár gomb nyomva (PCP). Túlterhelt (CCS). Megtelt (CCC). fülke foglalt (CCO). Alarm push button (AA) Emergency (EM) Fel irányú karbantartás aktív (PSM). Le irányú karbantartás aktív (PDM). Karbantartás (MAN). Tűzoltó mód Fülkei kulcsos aktív Duplex mode
2.
A KÁRTYA PROGRAMOZÁS
2.1 “PROGRAM FUNKCIÓK” TÁBLÁZAT CÍM
ADA T Nincs hangjelzés fülkei nyomógomb
0
0 1 2 3 0
Nyitott ajtó parking
4
Nyitott ajtó parking
1
LEÍRÁS
Van hangjelzés fülkei nyomógomb Van hangjelzés fülkei nyomógomb
Zárt ajtó parking
12
Zárt ajtó parking
5.38 SNR, 5.6 AP2 AP2 második ajtó aktiválása vizsgálati módban 6.12.6 MultiAP2 =második bejárati ajtó activation AP2 második bejárat activation vizsgálati módban Entrances AP2 =második bejárati ajtó activation
Nincs hangjelzés fülkei nyomógomb
8
REF.
Két sebességes Egy sebességes Két sebességes
6.14 Parking 6.18 Speed
Egy sebességes
Kézi ajtó (CP= zárnyitó használat) (AP= Gong activation)
0
Automata ajtó
16 2 32 48
Normál mágnesezés (ICV)
(CP=ajtó zár parancs)
Normál mágnesezés (ICV)
(AP=ajtó nyit parancs (1 ajtó )
Hosszú mágnesezés (ICV)
Kézi ájtó
Hosszú mágnesezés (ICV)
(CP= zárnyitó használat)
6.11 Near Landing and Slowing Down 6.12 Doors
(AP= Gong activation) Automata ajtó (CP= Ajtó zár parancs) (AP= ajtó nyit parancs)
0
Internal mode (INT = Internal mode activation)
3
(SCP = IF sensors for INVERTER control)
64
5
Három bejárat (INT = photodetector harmadik ajtóhoz) (SCP = nyit vezérlés a harmadik bejárathoz
5.27 INT 5.37 SCP 6.12.6 Multi Entrances 6.17 Inverter Management 9.8 Fire Service Mode
0 Megállás a a GF, GL kapcsolókon karbantartás
4
üzemben
Karbantartás gyors sebességgel
1 Megállás a a GF, GL kapcsolókon karbantartás
Karbantartás lassú sebességgel
üzemben
2
Megállás rövid szintnél inspection service mode
3 Megállás rövid szintnél inspection service mode
5
6
7
0 4 8 12
0 16 32 48
Karbantartás gyors sebességgel, lassítás GF, GL elérésekor Karbantartás lassú sebességgel
Érkezés fix jelzéssel
Plant in halt after return at P0
Érkezés fix jelzéssel
Plant immediately in Halt (look at the Note)
Érkezés villogó jelzéssel
Plant in halt after return at P0
Érkezés villogó jelzéssel
Plant immediately in Halt (look at the Note)
Nincs megtelt érzékelés (CCC)
Köteles berendezés
Nincs megtelt érzékelés (CCC)
Hydraulic berendezés
Van megtelt érzékelés (CCC)
Köteles berendezés
Van megtelt érzékelés (CCC)
Hidraulikus berendezés
Normal lassítás mágnesezés Fordított lassítási mágnes elhelyezés
0 64
9.6 Inspection Mode
8.1.3 Arrival Signalling, 8.5 ‘Reserved’ Signal
7.5 Movable platform
6.5 Landing and Slowing Down Zone’s Magnetic Sensor Layout
Irányjelzés + Position (serial outputs type A)
0
(ref. Serial board User Manual) 1 GONG le és fel irányban
8
Irányjelzés and Position elválasztva (serial outputs type B) (ref. Serial board User Manual)
1
1 GONG le és fel irányban
2
1 gong le és 2 fel
Irány jelzés + Position (serial outputs type A)
1 gong le és 2 fel
(ref. Serial board User Manual)
3
6.8 Gong
Irány jelzésl and Position elválasztva (serial outputs type B) (ref. Serial board User Manual)
9
0 4 8 12
Gong sebesség váltáskor
Pozíció felvétel/phasing legalsó szinten
Gong sebesség váltáskor
Pozíció felvétel/phasing legfelső szinten
Gong fülke megállásakor
Pozíció felvétel/phasing legalsó szinten
Gong fülke megállásakor
Pozíció felvétel/phasing legfelső szinten
6.8 Gong 9.7 Synchronizi ng
Ajtó ellenőrzés nem engedélyezett (control panel nincs ajtó relé záráshoz,nyitáshoz AP and CP, )
0
10
Sent alarm signalling on landing serial board (ref. Ajtó ellenőrzés engedélyezett (control panel van ajtó Serial board user manual) müködtető relé.AP and CP, direct command door Sent alarm signalling on landing serial board (ref. 16 motor) Serial board user manual)
32Without Sent alarm signalling on landing serial Ajtó ellenőrzés nem engedélyezett (control panel nincs ajtó board (ref. Serial board user manual)
müködtető relé AP and CP, board doors operator)
Without Sent alarm signalling on landing serial 48 board (ref. Serial board user manual) Ajtó ellenőzés engedélyezett (control panel van ajttó müködtető relé AP and CP, direct command door motor)
6
5.12.1 Doors Controls
11
6.4 Serial and Parallel Wiring
0 Soros kommunikáció nem ngedélyezett 64 Soros kommunikáció engedélyezett visszatérés 14 minutes után alsó szintre (hydraulic plants only)
0 12
1 2
Ajtó zárás menetközben nincs Ajtó zárás menetközben nincs
Nincs visszatérés (hydraulic plants only)
Ajtó zárás menetközben van
Van visszatérés 0 after 14 minutes ENABLED (hydraulic plants only)
ajtó zárás menetközben van
3
13
0 4 8 12
Nincs visszatérés 0 after 14 minutes DISABLED (hydraulic plants only)
Automatic pozíció felvétel
Egyparancsos
Automatic pozíció felvétel
Gyűjtős
Pozíció felvétel gomb nyomása után
Egy parancsos
Pozíció felvétel gomb nyomása után
Gyűjtős
Gyűjtős normál kezelés
0
DA-DB (ref. Picture No.1)
16
DA-DB (ref. Picture No.1)
32
ICV-IF (ref. Picture No.1)
Gyűjtős normál kezelés
48
ICV-IF (ref. Picture No.1)
Gyűjtős könnyű kezelés
0
IF/DB e ICV/DA open at landing
Gyűjtős könnyű kezelés
14
15
64
6.12 Doors 6.14.1 Parking Operation
IF/DB e ICV/DA close at landing
2.5 Programmab le input/output 9.7 Synchronizi ng 5.26 ICV/IF 6.5 Landing and Slowing Down Zone’s Magnetic Sensor Layout 6.16 Plant type 8.2 Direction 5.26 ICV/IF, 6.5 Landing and Slowing Down Zone’s Magnetic Sensor Layout
NOTE: azonnal megáll ha a ‘4’ or ‘12’ at address 5, ha a kártya igy van programozva : Engedélyezi a szintkorrekciót ha a felvonó megáll; Köteles lift, fault ‘81’ hiba van enable check on run direction (fault ‘84’) enable phasing with stop or maintenance out of floor in high speed plants Halt after return to floor 0 (programming ‘0’ or ‘1’ at the address 5) happens only in the following conditions: elevator is hydraulic elevator is halted but without code fault ‘44’ and ‘62’ not in inspection operation not in ‘PRESET mode’
2.2 “PROGRAMOZHATÓ IDŐ” TÁBLÁZAT 7
CÍM
ADAT
LABEL
LEÍRÁS
REF. 5.33 PCP 6.9 Immediate Starting 6.12 Doors 6.12 Doors 6.12 Doors
16
2 – 45 sec.
TAP
Ajtó nyitva várakozási idő
17 18
2 – 45 sec. 2 – 45 sec. 2 – 99 tenths of sec. 0 – 99 tenths of sec
TOP THC
Maximum idő mig az ajtó nyitás active. Maximum idő mig az ajtó zárás aktiv.
TRA
Ajtó nyítás késleltetés megérkezéskor és ajtó előre nyitás az APA jel érkezésekor (TRA>=70, delay=TRA-70).
6.12 Doors
TIG
Gong hangzás ideje (0 → disabled)
6.8 Goong
TMP
Maximális idő ajtó bezárás után mig a rendszer nemjelzi a hibát
5.17 CS 7.2 Reopening Devices
19 20
21
10 – 99 sec.
22
10 – 99 sec
23
1 – 99 RCPV tenths of sec
24
0 – 99 TOC tenths of sec
25
0 – 99 TST tenths of sec
26 27
0 – 99 tenths of sec. 1 – 99 x 10 sec.
TMC
TRIF TSN
28
1 – 99 min.
29
0 – 99 CHF tenths of sec
30
0 – 99 sec.
8
SBA
RIP
Maximum utazási idő. Maximum idő túllépés müködés közben activated szintek között (ezek törlödnek lassítási és megállási 7.3 zónában Maximum (Ha <10 TMC=typical; Ha >=80 time = 80 + (tmcTravel 80)*10). Ha = 99 control nem engedélyezett. 6.11 Enlarged Slowing Down Zone and Lassítás késleltetés NonRegular Floor Distances 6.18 Speed 6.12 doors 8.6 Foglalt kijelzése ajtó zárása után. Reserved Signal Hidraulikus berendezés: - 1-69 →TP Y/Delta; 5.16 CPP - 70-99 →TP mindig ON and TG késleltetés of TST-70 5.40 TG * Ha TST <70 and it is an odd value, the board check the 5.43 TP activation of the CPP input before activating the TS signal. 6.2 Köteles lift: Delta/Star - 0-69 →TP lassú sebesség; Starting - 70-99 →TP késleltetve of TST – 70; Megállás késleltetés szintbe érkezéskor
5.17 CS
Várakozási idő miután a foglalt elalszik és a fülke elindula 6.14 várakozási szintre.cím ‘34’. Parking Battery detachment time after Emergency procedure activation (EM input) and no further A (alarm) button press. 6.3 Battery (99 → No detachment) 5.15 CPF 5.23 FS3 6.15 TMR3 között FS3 bemenet CPF kimenet Timers 9.8 Fire Fervice Mode Szintkorrekciós idő ( 0→ nem engedélyezett) 9.1 ReSAP function activation on PCP input programming an even levelling value 5.33 PCP
31
9
0 99 tenths of sec.
L13
TMR1 között CS1 és RU
6.12.2 Door Opening Exclusion During Testing Operation 5.18 CS1 5.36 RU 6.15 timers
2.3“PROGRAMOZHATÓ PARAMÉTER” TÁBLÁZAT CÍM
Érték
LABEL
32
2 – 32
NF
33
0 – 78
NS
34
0 – 32
NST
35
0 – 99
PB1
LEÍRÁS
REF.
Szintek száma
6.12.6 Multientrances 8.1.2 Undergrou nd Floors 6.14 Parking 6.11 Enlarged Slowing Down Zone and NonRegular Floor Distances 6.14.2 Parking With Open or Close Doors 6.14.2 Parking With Open or Close Doors 7.5 Movable Platform 10.2.1 Wiring to the VEG0400 Car Serial Board 9.8 Fire Service 6.11 Enlarged Slowing Down Zone and NonRegular Floor Distances
(- ) szint ( 0 szin alatt ) Alapállomás (Ide megy visszaha cím a (27 ) van állítva Első rövíd szint (kevesebb a szinttávolság mint a normál) a szintszámhoz hozzáadni 50 -et ( Non - regular distance from the floor above ).
. Az első parkoló szint fordított parkoló állapotban az ajtó 36
0 - 32
SPA1 . A második parkoló szint fordított parkoló állapotban az ajtó
37
0 - 32
SPA2 Érzékelők csatolása a fülkei soros kártyahoz (Ref. soros kártyák használati utasítás) (0 = nincs, 1 = RS, 2 = RD, 4 = ICV, 8 = HA, 16 = CCC, Sum = több érzékelőt egyidejűleg).
38
0 – 31
EIS
39
0 – 32
NPM
Tűzeseti szint (ref.‘Fire service mode’) ). Második rövíd szint (kevesebb a szinttávolság mint a normál) a szintszámhoz hozzáadni 50 -et ( Non - regular distance from the floor above ).
40
0 – 99
PB2
41
0
SBL
10
Kód ( Ha 0 blokkolva )
). Harmadik rövíd szint (kevesebb a szinttávolság mint a normál) a szintszámhoz hozzáadni 50 -et ( Non - regular distance from the floor above 42
0 – 99
PB3
43
0 – 32
PPE
44
0 - 99
RITUS C
Emergency landing called (automatic call) but only in down direction Tenths of sec. – késleltetési idő a kontaktor kontrolhoz TS, TD, TP, TG, RCP, RAP Tenths of sec. – Késleltetési idő a bemenetekhez EXC, ALT, CS, RD, RS, TSD, APG, CPP, EM, CS1. delay reverse direction driving
45
0 - 99
RITING
46
0 - 99
LETT
47
0 - 99
DU
centes of sec – Reagálási idő a parancsokhoz egység a maximális munkaórák száma, illetve az eltelt idő, a féléves ellenőrzés
48
0 – 99
MC
egység a maximális munkaórák száma, illetve az eltelt idő, a féléves ellenőrzés
49
0 – 99
CDM
50 51 52 53 54 55 56 57 58 59
1–7 1–7 1–7 1–7 1–7 1–7 1–7 1–7 1–7 1–7
POR0 POR1 POR2 POR3 POR4 POR5 POR6 POR7 POR8 POR9
60
11
0 - 99
NUMC H
6.11 Enlarged Slowing Down Zone and NonRegular Floor Distances 9.2 Emergency 6.12 Doors 7.1 Safety Circuit 6.12.1 doors controls 9.6 Inspection Mode 5.31 PAP
Maxmunkaórák. Ha CDM <90 engedélyezve van a visszaszámlálás max munkaórák Ha CDM = 90 ez lehetővé tette az üzemóra számláló a féléves ellenőrzés. Ha CDM> 90 engedélyezve van az óra számláló a féléves ellenőrzés az aktivációs a SAR kimenet jelzi, hogy az idő (4300h) lejárt . Car entrances at landing 0 1 = 1 ajtó 2 = 2 ajtó Car entrances at landing 1 4 = 3 ajtó Car entrances at landing 2 Sum = more entrances at the same Car entrances at landing 3 6.12.6 landing. For the simultaneous Car entrances at landing 4 opening of the first and second car MultiCar entrances at landing 5 Entrance entrances disable the third car Car entrances at landing 6 entrance and program ‘4’ at Car entrances at landing 7 address 3 Car entrances at landing 8 Car entrances at landing 9 Biztonsági vonal hibesetén hányszor próbálja a renszer ‘+16’ = fixed mapping of serial output
6.12.1 Doors’Con trol 10 Serial Expansion
Soros panelek a hívások kezelésére (ref. Serial boards user manual) 1 = Soros külső hívás engedélyezés (VEG0400) és az aknai soros egységek kizárása (VEG800, ITF800, LCD600, VEG0700, FLOORDIS…) 2 = fülkei serial board kizárása (VEG400, SERCAR...) 4 = Fülkei vezetékelés (parallel) 8 = up reservation activation 16 = position coded on 0-23 32 = fordított A,B,C,D kódólás (ref. Table) 64 = Multiplexing nyomógomb inputs. sum = az összes funkció egyidőben 61
62
0 -63
0 – 99
CESER
NSEC
63
0 - 63
MISC
…
…
…
90
0-99
97
0-99
98
0-1
99
0-99
…
…
12
LANG
…
1 = Gépházi input MAN n.c. 2 = ptc probe (TM n.o.) and oil temperature (TO) kikapcsolása 4 = CS1 biztonsági vonal kontrol engedélyezés 8 = Input APA→ szintkorrekció és ajtó visszanyitás 16 = zárt ajtóval szintkorrekció 32 = Gépházi CCS n.c.bemenet ( túlterhelt) 64 = késleltetett indulás Sum = az összes funkció egyidőben.
1 = Movable platform disabled 2 = MAN PRESENT mode 4 = duplex felvonó 8 = lassú sebesség mód nem normál szintek között 16 = Master duplex mode 32 = Nincs aknafej ill sülyeszték Sum = az összes funkció egyidőben.
… Multiplex index for connection with MCU Control board (RS232). Note: put +16 if the version of the supervision software for PC is previous version V4.3.0 99= normal müködés 0-98=monitoring I/O Language of programming Keypad: 0 = Italian; 1 = English; 98=Visszaállítás a PC által beállítot beállításokra) 99= alapértelmezett beállítás …
2.5 Programm able Inputs/Out puts 5.2 A/B//C/D 8.1 Position /Arrival/ Reservatio n 6.4 Serial or Parallel Wiring 10.1.3 Landing Calls Manageme nt 9.3 Platform Manageme nt 7.1 Safety Circuit, 6.1 Door’s Pre Opening, 7.6 Engine Temperatu re 9.1 Relevelling 9.3 Platform Manageme nt 6.11 Enlarged Slowing Down Zone and NonRegular Floor Distances 6.16.4 Duplex 7.5 Movable Platform …
…
13
2.4 ALAPÉRTELMEZETT BEÁLLÍTÁSOK A vezérlő kártyát az alábbi paraméterekel programozzák.
2.4.1 Alapértelmezett funkciók” ADD.
DATA
DESCRIPTION
0 1 2 3
1 8 16 0
4
2
5 6 7 8 9 10 11 12 13
08 16 0 0 8 0 64 0 0
14
0
15
0
Hangjelzés (fülkei nyomógomb ) engedélyezés Zárt ajtó parkolás – 2 sebességes Normal selector (ICV) – Automatic ajtó Internal mode Karbantartásban gyors sebesség, lassú sebességre váltás (RS, GF )RD , GL) Megállás vizsgálati módban a legtávolabbi szintnél Irányjelzés villog – Visszatérés a legalsó szintre Megtelt érzékelés nincs (CCC) – Hydraulic plant Normal lassításhoz mágnesezés 1 GONG fel and 1 in leirányba - Irányjelzés + Position (serial outputs type A) Gong on fülke megállásakor– Pozició felvétel 0 szinten/Phasing at floor 0 Sent alarm signalling on landing serial board - ajtó control nem engedélyezett Serial vezetékelés engedélyezés Ajtó menetközbeni rátartás nincs – visszatérés a legalsó szintre 14 minutes engedélyezve Automata pozició felvétel - egyparancsos DA/DB – DIF = Signal system failure legyűjtős könnyü kezelése IF /DB and ICV/DA (ref. Fig. 1) aknában nyítva
2.4.2 Alapértelmezett idő táblázat” ADD.
DATA
LABEL
DESCRIPTION
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
12 s 5s 8s 3 t. 20 t. 30 s 80 s 30 t. 30 t. 0 t. 0 t. 99x10s 10min 0 12s
TAP TOP TCH TRA TIG TMP TMC RCPV TOC TST TRIF TSN SBA CHF RIP
Foglaltsági jel = 12s Maximum idő ajtó nyitás parancs = 5s Maximum idő ajtó zárási parancs= 8s Ajtó nyitva idő szintben = 0.3s Gong megszólalási időtartam = 2s Maximum idő ajtó zárás után ‘fülke nem indul’ hiba jelzése = 30s Maximum utazási idő = 80s lassítási késés = 3s Foglaltság ajtó zárása után. = 3s TP=Y/DELTA Megállás késleltetés = 0s várakozási idő mielőtt a fülke visszatér a kijelőlt emeletre = 990s Battery detachment time after Emergency procedure activation = 10min TMR3 között FS3 bemenet and CPF kimenet Szintkorrekciós idő = 12s
14
2.4.3 Default “Parameters Table” IND.
DATO
LABEL
DESCRIPTION
32 33 34 35 36 37
4 10 32 32 32 32
NP NS NST PB1 SPA1 SPA2
8 szint Nincs (-) szint Nincs kijelölve parkoló szint Nincs egymáshoz közeli szint
38
12
EIS
39 40 41 42 43 44
32 32 0 32 0 15
NPM PB2 SBL PB3 PPE RITUSC
6
RITING
5 0 0 98 1 1 1 1 1 1 1 1 1 1 4 2
LETT DU MC CDM POR0 POR1 POR2 POR3 POR4 POR5 POR6 POR7 POR8 POR9 NUMCH CESER
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
62
29
NSEC
63
1
MISC
…
…
15
…
nincs kijelölt szint a nyitott ajtós parkoláshoz ICV and IF magnetic sensors kizárva a soros kezelésből (See serial Boards user Manual) Tűzoltó mód nem engedélyezett Nincs egymáshoz közeli szint Feloldási kód Nincs egymáshoz közeli szint Return at landing 0 during emergency with open doors Késési idő kimeneti relék (S, D, P, G, CP, AP) = 1.5s Késési idő bemeneti relék (EXC, ALT, CS, RD, RS, TSD, APG, CPP, EM, CS1) = 0.6s Késési idő (Delay) on calls = 0.05s Aktiválva az idő 6 hónap. utána SAR kimenet jelzi az időt.
Megállás után ajtó nyítás side is ‘1’ First entrance managed from AP output
4 próbálkozás hiba esetén Fülkei soros kártya kizárás Local input MAN n.c. Ptc probe kizárás (TM n.o.) CS1 biztonsági vonal control engedélyezve Input APA→ szintkorrekció és visszanyitás engedélyezés Szintkorrekció zárt ajtónál Gépházban a bemenet CCS n.o. Nincs késleltetés az indulásnál Movable platform (CCO) not connected. MAN PRESENT mode not enabled DUPLEX plant not enabled Low speed mode between not regular floors not enabled …
2.5PROGRAMOZHATÓ INPUTS/OUTPUTS (0/23) A vezérlő kártyán van 24 I/O. Ezek a bemenetek/kimenetek multiplexed csatlakoznak a 0-23a sorkapcsokra. Ezek I/O használjuk a parancsok és a jelzések kezelésére.
2.5.1 Programozható I/O (0-23) . Az alábbi táblázatban képviseltetik magukat a legfontosabb I / O hozzárendelés. A táblázatban megadott programozási lehetőség A vezérlőpanel (a cím 13 és cím 61), kívánt I / O beállítás
PARALLEL Vezérlő kártya Parallel PIN (*) (Egy vezetékes szint jelzés)
Fel/Le gyűjtő
Egypar Le gyűjtő/ (csak Egypar fülke) S/L0 C/L0 D/L1 C/L1 D/L2 C/L2 D/L3 C/L3 D/L4 C/L4 D/L5 C/L5 D/L6 C/L6 D/L7 C/L7 C//L0 C/L8 C/L1 C/L9 C/L2 C/L10 C/L3 C/L11 C/L4 P0 C/L5 P1 C/L6 P2 C/L7 P3 P0 P4 P1 P5 P2 P6 P3 P7 P4 P8 P5 P9 P6 P10 P7 P11
SERIAL
Parallel + Position kódváltóval vagy bináry Fülke Serial kód használatával Fel/Le gyűjtő
Egypar. Le gyűjtő/ (csak Egypar. fülke) D/L0 C/L0 D/L1 C/L1 D/L2 C/L2 D/L3 C/L3 D/L4 C/L4 D/L5 C/L5 D/L6 C/L6 D/L7 C/L7 D/L8 C/L8 D/L9 C/L9 D/L10 C/L10 D/L11 C/L11 C/L0 C/L12 C/L1 C/L13 C/L2 C/L14 C/L3 C/L15 C/L4 C/L16 C/L5 C/L17 C/L6 C/L18 C/L7 C/L19 C/L8 C/L20 C/L9 C/L21 C/L10 C/L22 C/L11 C/L23
Fel/Le gyűjtő
Fülkei Serial + Position kódváltóval vagy binary kód haszn.
Le gyűjtőt/ Fel/Le Egypar. gyűjtő
Dw gyűjtő/ egypar.
0 ------S/L0 --D/L0 1 S/L0 S/L0 S/L0 D/L1 S/L0 D/L1 2 D/L1 D/L1 D/L1 D/L2 D/L1 D/L2 3 S/L1 S/L1 S/L1 D/L3 S/L1 D/L3 4 D/L2 D/L2 D/L2 D/L4 D/L2 D/L4 5 S/l2 S/L2 S/L2 D/L5 S/L2 D/L5 6 D/L3 D/L3 D/L3 D/L6 D/L3 D/L6 7 S/L3 S/L3 S/L3 D/L7 S/L3 D/L7 8 D/L4 D/L4 D/L4 D/L8 D/L4 D/L8 9 S/L4 S/L4 S/L4 D/L9 S/L4 D/L9 10 D/L5 D/L5 D/L5 D/L10 D/L5 D/L10 11 --S/L5 S/L5 D/L11 S/L5 D/L11 12 C/L0 D/L6 D/L6 P0 D/L6 D/L12 13 C/L1 S/L6 S/L6 P1 S/L6 D/L13 14 C/L2 D/L7 D/L7 P2 D/L7 D/L14 15 C/L3 ----P3 S/L7 D/L15 16 C/L4 C0/L0 P0 P4 D/L8 D/L16 17 C/L5 C1/L1 P1 P5 S/L8 D/L17 18 P0 C2/L2 P2 P6 D/L9 D/L18 19 P1 C3/L3 P3 P7 S/L9 D/L19 20 P2 C4/L4 P4 P8 D/L10 D/L20 21 P3 C5/L5 P5 P9 S/L10 D/L21 22 P4 C6/L6 P6 P10 D/L11 D/L22 23 P5 C7/L7 P7 P11 --D/L23 Max. N° 6 8 12 8 12 24 8 12 12 24 STOPS LEGEND C/Ln = aknai nyomógombok ‘n’ nyugta a fülkében is D/Ln =Aknai le nyomógomb ‘n’ placed at landing S/Ln =Aknai fel nyomógomb at landing ‘n’ placed at landing Pn = Fülkei nyomógomb (n) position light 0 - 23 = I/O connectors a vezérlő kártyán NOTE Pn lámpák a villogó érkezés programozási értékek 0 "vagy 2" (érkezés + pozíció), a cím 8 és programozási '8 'vagy '12' címen 5 (villog érkezés). Az alábbi táblázat mutatja az értékeket be kell beállítani, a 61, 13 és 63, címeken a táblázatnak megfelelően. 16
Address 13 +4 +4 +0 +0
Address 63 ------+2
+18
+0
---
+12
+4 +4 +0
-------
+2
+0
---
Fel-le gyűjtő
+24
+4
---
Le gyűjtő/egypar.
+16
+4 +0
-----
Fel-Le gyűjtő
+8
+4
---
Le gyűjtő /egyparancsos
+0
+4 +0
-----
Fel-le gyűjtő Parallel Parallel Parallel + Kódv.
Car serial Serial
17
Car Serial + Kódv.
Dw reserved/ Single call Egyparancsos (csak fülke) Fel-le gyűjtő Le gyűjtő/ Egyparancsos Egyparancsos (csak fülke)
Address 61 +28 +20
+4
3.
MULTIFUNKCIÓS BILLENTYÜZET DISP900
A többfunkciós billentyűzet DISP900 lehetővé teszi, hogy konfigurálja a paramétereket és a kontroll tábla lehetővé teszi, hogy dysplay mutassa az információkat, lehetővé teszi, hogy figyelemmel kísérjük az (aktív vagy nem aktív) ki és bemeneteket I / O jel A címen 98 lehetőség van, hogy kiválassza a nyelvet, a programozáshoz DISP900: program érték '0 'az olasz vagy érték '1' az angol
LCD Display 16x2
Push-Button
Speedy
Data
Up
Down
MAN NORM PROG
Switch Programming Keypad DISP900
Control Board Micro Programming Keypad in Vertical Position
Control Board Micro Programming Keypad in Horizontal Position
18
3.1TÖBBFUNKCIÓS BILLENTYÜZET A többfünkciós billenytyüzet a következőből áll: A 16x2 LCD display az információk megjelenítésére; Három pozicióba állítható amivel a kártya külömböző funkciói érhetők el. Négy többfunkciós nyomógomb (SPEEDY, DATA, UP e DOWN) melyek segítségével külömböző müveletek érhetők el a rendszerben
3.1.1 PRESET kapcsoló Ezzel lehet kiválasztani “futás mode” (NORM position), vagy “Programozási mode” (PROG position) és a “karbantartás mód” (MAN position). Ref paragraph 3.2.3
3.1.2 DATA nyomógomb ezzel anyomógombal az alábbi müveleteket lehet elvégezni.: A normál müködés alatt használatával display Azonnali információkat, mutatja ). Ref paragraph 1.6 SPEEDY nyomógomb,együtt nyomásával lehetővé teszi a kártya memoriájában tárolt hibák előhívását. Ref. paragraph 1.3 In PRESET mód, ami programozás közben (Programozási mód), megjeleníti az aktuális adatokat a memóriában tárolt, egy speciális címre beirt értékeket.. Ref. 3.2.3 SPEEDY nyomógomb Ez a nyomógomb végrehajtja a következőket:, lehetővé teszi a rendszerben rögzitett hibák feloldását (miután meg oldja a hiba okát). Ref. 1.2 Nyomásaval együtt DATA nyomógomb lehetővé teszi, hogy panel utolsó tárolt hibáit kiértékelje. Ref. 1.3 Nyomás alatt GYORSBILLENTYŰ módban, memória programozás (programozás mód), ha nyomva az UP vagy a DOWN nyomógomb, lehetővé teszi, hogy gyorsítsa fel az áramlás a paraméter lista eléréséhez . Ref. bekezdés
3.2.3
3.1.3 Fel nyomógomb Ez a nyomógomb végrehajtja az alábbi funkciókat: Nyomás alatt GYORSBILLENTYŰ módban, azaz memória programozás során (programozás mód), növeli az értékét a kijelzőn . Ref paragraph 3.2.3. Inspekciós módban fel irányú mozgász végez. Ref paragraph 9.6 Normál mód esetén fel irányú mozgást végez a legfelső szintre MAN módban lassú sebességel( ha a program igy van beállítva) addig megy mig nyomjuk a gombot
3.1.4 Le nyomógomb This push button performs the following functions: Nyomás alatt GYORSBILLENTYŰ módban, azaz memória programozás során (programozás mód),csökkenti az értékét a kijelzőn . Ref paragraph 3.2.3 Inspekciós módban le irányú mozgász végez . Ref paragraph 9.6 . Normál mód esetén le irányú mozgást végez a legalsó szintre MAN módban lassú sebességel( ha a program igy van beállítva) addig megy mig nyomjuk a gombot
19
3.2SYSTEM’S OPERATIV MÓD ÁTTEKINTÉS The multifunction Keypad DISP900 permits to manage the operative mode of the control board and to display useful informations: Bekapcsoláskor: ebben az üzemmódban lehet ellenőrizni a firmware verzió van telepítve a mikrokontrollerbe .Running Mode: figyelemmel kísérhetjük valós időben státuszokat (aktív vagy nem aktív) a bemenetek RS, RD, IF és ICV, beállított gyűjtési módot (), a jelenlegi poziciót, ill a fülke úticélját. Programming Mode: ebben az üzemmódban programozható a kártya Inspection Mode: ebben az üzem módban vezérelhetők nyomógombok segitségével Keypad DISP900. Alarm Check Mode: kiolvasható hibák. Input Status Check: lehet figyelni az bemeneteket. Az alábbi ábra azt mutatja, státuszokat és milyen információ jelenik meg a többfunkciós billentyűzet kijelzőjén.
Control board Power on
Start Up
Firmware version installed in the microcontroller of the control board
MAN NORM PROG
Inspection Mode
MAN NORM PROG
Running Mode System Serial Number Magnetic Sensors Monitoring System Status Monitoring
System in Inspection Mode Inspection Mode Managment MAN NORM PROG
+ or Occurrence of an Alarm
Releasing SPEEDY e DATO
Releasing DATA Push-Button
Keep Pressed DATA Push-Button
Alarm Visualization
Status Visualization
Visualization of Active Alarm
Monitoring Signals Status of the System
3.2.1 Indulás Bekapcsoláskor mutatja a telepített software verzió számát 20
Control Board’s Functions Programming MAN NORM PROG
SPEEDY + DATA
Programming Mode
V4. 3. XXX Firmware Version
3.2.2 Futás mód Ebben a helyzetben a valós idejű információkat mutatja RS, RD, IF e ICV (0 = inactive and 1 = active), Ön is tudja ellenőrizni az aktuális pozíció és a következő célállomást az fülkei (villogó jelzés). Ha azfülke üres, és nincs egyéb hívás a hely üres marad
Status of System Serial Number inputs (max 8 characters) RS RD IF ICV
0 = Inactive 1 = Active
MATr XXXX1011 Uni 10 Status Code Destination Floor (Blinking)
Current Floor
Az alábbi táblázatban vannak felsorolva a bemenetek, aktív állapotban a kódok CODE DESCRIPTION ALT ALT bemenet megszakítva. FCM CM megszakítva. Photodetector megszakítva. PAP PAP bemenet aktív. Ajtó nyit gomb aktiv PCP PCP bemenez aktív. Ajtó zár nyomógomb aktív CCS CCS input aktív. Túlterhelt aktív. CCC bemenet aktív. Megtelt érzékelő aktív. Megjegyzés: ezt a a kódot csak mutatja ha a function CCC engedélyezve van programozás során CÍM= 6 érték ‘32’ or ‘48’. CCO bemenet aktív. Movable Platform active. Note: ezt a kódot csak mutatjaha a function engedélyezve CCO van nincs a program CÍM 63 érték ‘+1’ SOS Vészjelző nyomógomb aktív-button pressed. EMP EM input signal active. System in Emergency mode. PSM PSM bemenet aktív. Fel irányú irányítás (in inspection mode ) nyomógomb nyomva. PDM PDM bemenet aktív. Le irányú mozgás (in inspection mode) nyomógomb nyomva. MAN MAN bemenet aktív. System in Inspection mode. CEP CEP (FS3) active. Displayed ha tűzeset vagy a tűzoltó mód aktív INT INT bemenet aktív Duplex System. Megjegyzés: ez a kód csak akkor jelenik meg Duplex funcion engedélyezve van DUP (programozás címen 63 az értéke "+4'), és ha a rendszer valóban kommunikál a többi rendszerrel találó duplex kábel. BVS Lassú sebesség fel irányban AVS Gyors sebesség fel irányban BVD Lassú sebesség le irányban AVD Gyors sebesség le irányban COL Collective gyűjtő system. UNI Egyparancsos rendszer UOM ‘Man Present’müködtetés A prioritást a kódok követik sorrendben a fenti táblázatot.. Például, ha mind a CM bemeneti jel és a PCP bemenő jel aktív, a kód FCM jelenik meg 21
3.2.3 Programming Mode A programozási módba lehet állítani a vezérlő panel . Belépés a programozási módba, a rendszer le kell állítani, és a nyomógomb a billentyűzet DISP900 (SPEEDY, DATA, a FEL és LE) kell inaktív legyen. A programozási üzemmód aktiválása: a PRESET kapcsolót állítsuk PROG helyzetbe. Programozási üzemmódban a rendszer továbbra is blokkolja a felvonó müködését.. A programozási módban a kijelzőn láthatóvá teszi a string PAR (paraméter), majd az utolsó cím "számot ellenőrizni és az utolsó programozást. Ha időközben egy áramkimaradás történtakkor a szám az első cím (00). Most, hogy elérjük a paramétert, amelyet meg kell jeleníteni,akkor használja a FEL és LE Nyomógombokat. SPEEDY nyomógombal együtt UP vagy a DOWN nyomógombok használata gyors, a görgetés eredményez,vagyis a paraméter lista görgetését fel lehet gyorsítani. Amikor a kívánt címet érte el, , hogy megjelenítse a beállítot értéket nyomja a DATA nyomógombot: a kijelzőn a beállított státuszokat teszi láthatóvá VAL (érték) és a következő numerikus mező mutatja azt az értéket ami jelenleg kiválasztott paraméter. Ez érték módosítható ha megnyomja a DATA gombot, és nyomja meg az UP vagy a DOWN gombot addig mig az megjelenik az új érték. Amikor a kívánt értéket elérte, szükséges, hogyelengedje a DATA gombot, a kiválasztott érték villog háromszor, és az új értéket memóriában tárolja Ha az új érték hibás, az utolsó tárolt érték marad, és meg jelenik a hibakód '58 "(a funkció) és kód '59" (a megálló száma <2 vagy> 16). Módosítás során "Programozható Times" ha az érték a tartományon kívül van, akkoraz alapértelmezett érték (a képen az előző táblázat) beállítása automatikusan történik. A programozás végén kilépés: programot módban kapcsolni a kapcsolót DISP900 a NORM helyzetben, a berendezés az új beállítások szerint müködik (nincs áramellátás kikapcsolására szükség). Minden vezérlőkártya előre programozott alapértelmezett értékekkel (alapértelmezett beállítás), látható a korábbi táblák. Az alábbi ábrán bemutatjuk státuszokat a programozási eljárásokat, és néhány példa kijelzőn a különböző programozási szakaszokban.
MATr XXXX1011 Uni 0 MAN NORM PROG
New Value programmed in the selected parameter. It will blink 3 times to confirm that the new value had been accepted
Current Floor
Switch = PROG Enter in Programming Mode
MATr XXXX1011 PAr 00
MATr XXXX1011 VAL 00
Pressing DATA
PAR = Parameter
VAL = Value
Releasing DATA
MATr XXXX1011 VAL 02
Value programmed in the selected parameter
Current Selected Parameter
MATr XXXX1011 PAr 00
+
Press UP or DOWN pushbutton to select the desired parameter
+ SPEEDY Keep pressed the SPEEDY push-button to quickly go to desired value
+ +
Press UP or DOWN + DATA Push-button to select the new value that must be programmed
+ SPEEDY Keep pressed the SPEEDY pushbutton to quickly go to desired value
Switch = NORM Esc from Programming mode
MAN NORM PROG
MATr XXXX1011 Uni 0
3.2.4 Inspekciós mód A többfunkciós billentyüzettel kezelhető a inspekciós üzem. Ref Paragraph 9.6. Ahhoz, hogy karbantartás módban tudja használni szükséges kapcsolni a kapcsolót DISP900 a MAN pozícióba. Az ellenőrzés módja, a kijelzőn a fenntartott helyen láthatóvá teszi a kódot "MAN". Most a SPEEDY + UP és gyors + LE nyomógombokal lehet mozgatni a fülkét, illetve a fel-és lefelé irányban. Nyomjuk a Speedy + FEL nyomógomb az fülke mozog fel irányba a kijelző fenntartott helyen mutatja kódját PSM (fel Irány a vizsgálati mód aktív). Nyomjuk a Speedy + DOWN nyomógomb az fülke haladnak le irányban, a kijelző fenntartotthelyen mutatja kódot PDM (Le Irány a vizsgálati mód aktív). Az alábbi ábra mutatja a vizsgálati módot menedzsment keresztül a DISP900 billentyűzettel és néhány példa kijelző státuszáról különböző vizsgálati mód fázisában 22
MATr XXXX1011 Uni 0 Switch = MAN System in INSPECTION Mode
MAN NORM PROG
Current Floor
Switch = NORM System in RUNNING Mode
MAN NORM PROG
+
+
Keep pressed SPEEDY+ UP Push-Button
Keep pressed SPEEDY+ DOWN Push-Button
MATr XXXX1011 PDM 0 DOWN Direction Command in Inspection mode active
MATr XXXX1011 MAn 0 Release DOWN Push-Button
Plant stopped in INSPECTION mode
MATr XXXX1011 PSM 2 Release UP Push-Button
UP Direction Command in Inspection mode active
3.2.5 Hiba mód . Ha hiba történik, a kijelzőn fenntartott helyen a hiba kódját láthatóvá teszi a "ERR" (ERROR), és a következő szám mutatja a hiba kódja. A teljes leírást a Riasztás üzemmód kezelésére és a riasztási kódok "jelentése utal chapter 1 Nyomja meg a DATA és SPEEDY nyomógombokat egyszerre, tudja olvasni a hibát. , a második oldalon látható egy kétjegyű szám, ami az eltelt időt (órában )mutatja ( Az alábbi ábra mutat, néhány példát kijelző képétre.
MATr XXXX1011 Uni 0 Occurrence of an Alarm
Current Floor
SPEEDY + DATA Visualization of Alarm Code and Alarm Description
+
A81- al ar m descr i pt i on
MATr XXXX1011 er r 81 ERR = Error Alarm Code
Alarm Code
+
Releasing SPEEDY + DATA
00
Time (hours) elapsed since the previous Alarm
Keep pressed SPEEDY for 3 seconds
MATr XXXX1011 uni 0
3.2.6 Input State Check . Ez megjeleníteni a kijelzőn az kódot, rövid leírását, annak jelentését. Ez a kód azt mutatja, ha egy adott jel, vagy a funkció aktív. Ref Paragraph 1.6
.
23
MATr XXXX1011 Uni 0
Keep Pressed DATA Push-button
Release DATA Push-button
S41- ALT Pr essed
3.3PROGRAMMOZÁS JELSZÓVAL Ez lehetséges hogy hozzanak létre egy jelszót, amely lehetővé teszi, hogy megvédje programozási paramétereket a felül írásban. A jelszó beírását a billentyűzet DISP900, lehet elvégezni.A jelszó csak számokat, tartalmazhat . Annak érdekében, hogy blokkolja az összes programozási paramétert, be kell állítania egy jelszót 5-számból állhat. (ex.0123) A jelszó be kell álítani anyomógombok segitségévela (billentyűzet DISP900 )a megfelelő paramétereket (címek 47-4849). Például, ha a jelszó megfelel a 0123, be kell írni cím= 49 "01"-es index és 48 "23" . 4 FIGURES PASSWORD BLOCK ALL PARAMETERS 47-48-49 CÍM 49 48 Érték 01 23
47 45
Minden alkalommal, ha a programozást, akarja módósítani a jelszóra lesz szükség. Ha beállít egy jelszót álló 6-számokból nem csak a programozást védi hanem az üzemórát is ellenőrzi( féléves ellenőrzés )(CÍM= 47-48-49). Ha a címeken( 47,48 és 49,) beállítjuk (pl 012345). A zárolás feloldásához a billentyűzet segítségével (DISP900 )be kell állítani a hozzáférési kódot ill a megfelelő paramétereket. Például, ha a jelszó 012345, be kell írnia címen 49 "01,cím 48" 23 "-es cím és 47" 45 ". FIGURES PASSWORD BLOCK ONLY PARAMETERS 47-48-49 INDEX 49 48 47 VALUE 01 23 45 Hiba 57 azt jelenti, hogy a jelszó hibás. Egy új jelszót lehet megadni a supervision szoftver segítségével, blank spece „” esetén a jelszó ki van kapcsolva. PASSWORD “ ” BLANK SPACE Numeric (4 figures) Numeric (6 figures) “0000” or “000000” Alphanumeric 24
DESCRIPTION PASSWORD DEACTIVATED Block all parameters, it is possibile unlock from the push button of the keypad DISP900. Block some parameters, it is possibile unlock from the push button of the keypad DISP900. Block only the supervision, it is unlock from the control board. Block only the supervision.
3.4 PROGRAMOZÁS PC -VEL A programozási a memóriban, ha lehetséges, használjon személyi számítógépet, a megfelelő szoftver segítségével. Monotoring minden bemenet és kimenet a szoftver segítségével
PC COMMUNICATION CHANNELS
Control board
Ez a rendszer képes végrehajtani a következő lépéseket : Irni paramétereket a vezérlő panel memoriájába. (Idő, Functions and Parameters); Olvasni a paramétereket (Idő, Functions and Parameters); Mgnézni az utolsó 32 hibát; Valós időben nézni a be és kimeneteket Valós időben vizsgálni a felvonót, aknai model Hívások kezdeményezése távolról
A vezérlőkártya képes kezelni a különböző típusú kapcsolatot a számítógéppel, : Helyi kapcsolat: ebben az esetben nem kell használni a modemen, de a kapcsolatot a vezérlő tábla és a számítógép között egy speciális 3-eres kábel köti össze a PC COM port 9-tűs csatlakozó a kártyán kontroll . Kód: CB_VG0056_01 (2mt.) Csatlakoztatás analóg modem: abban az esetben, távoli kapcsolat segítségével telefonvonalon és egy analóg modemhez csatlakoztatva .. Csatlakozás GSM modem: ha a távoli kapcsolatot,akarunk és nincs telefonvonal GSM segítségével a GSM modem kapcsolódik a 9-tűs csatlakozóval a vezérlő kártyára kábellel. (Lásd a brosúra felügyelet )
További információkat láthatjuk a felhasználói kézikönyv (felügyeleti szoftver)
Note: Ha használja a supervision softvert és a version V.4.3.0, érték +16 cím= 90 A vezérlő kártyán
25
4.
VEZÉRLŐ KÁRTYA JELLEMZŐI Dimensions: 150 x 255 mm Weigh: 400 g. Control board’s software: SW is contained into a removable and reprogrammable microprocessor with FLASH technology. Setting plant’s parameters and faults list: A kártya programozható a display (DISP900) személy számítógépről, ill távolról modemek segitségével. Compliance with safety’s circuits rules: A kártya megfelel UNI EN 81-1/2 Standard currently in force.
4.1 ELECTROMOS JELLEMZŐK 4.1.1 Áramellátás Power supply: Szükséges a GND and CL re egyenirányított 13Vac ± 10% to 25Vac ± 10%. Power supply with battery: az akkumlátor 12V a BAT csatlakozóra kell csatlakoztatni,, hogy a ha áramellátás kikapcsolása után az energia ellátás biztosítva legyen. Ref. 6.3 Kimeneti tápegység a sürgősségi eszközökhöz: a csatlakozó VIM, amelyen feszültség 13,5 Vdc stablized és a maximum áram 2A. Feszültség hivatkozási pontGND a nulla referencia a , és az egyéb külső eszközök (lámpák, relék, ... Kivéve biztonsági áramkörök. OM a nulla referencia az üzemi feszültség és biztonsági áramkörök; AL- is the nulla referencia vészjelző áramkörhöz. Temperature range: from 0°C to +50°C Safety’s Voltage: 24Vdc to 110Vac (OPTIONAL: up to 230Vac.)
4.1.2 Bemenetek Minden bemenet, kivéve,a biztonság láncok (optoisolated) kell csatlakoztatni GNDfelé. Nem sérült ha a feszültség kisebb, mint 24V. Minden bemenet LED-es jelzéses. .
4.1.3 Kimenetek Minden tranzisztoros kimenet zár a GND felé csatlakoztatható eszközök 12 vagy 24 Vdc. A kimeneteken a maximális áram 0,5 A, és védve rövidzártól. A kimenetek a kontaktorok, relékhez, ami kapcsolhat 5A max.
26
Elektromos kötések from 24V to 110V AC or DC (Optional:up to 220 VAC)
OM Serial Expansion boards Power supply 14Vac ± 10% ¸ 24Vac ± 10%
VIM
PTC
EXC
CL
CRP
Internal + 12V
14Vdc Regulator
Safety chain Battery Charger
Test TST
AP2
RAP2
AP
RAP
GND -
+ 12V
CP (CP/PATT) BAT
KBAT
RCP
EXC
RD
External door’s closing contacts
RS Main magnetic sensors
VM
ALT
IF
RAC*
DISP900
ICV
CS
CCO Movable Platform Door open pushbutton Door close pushbutton
OM
CCC CCS PAP
Speedy Dato
Up
Down
MAN NORM PROG
CT TG
PCP
TG
CM2 Inverter control ‘s expansion board (Optional)
INT/CM3 EM TSD Contactors Check
TP
TP
CM1 Photocells
Car Door
TS
Blocks
TG
TP NOTE: *If there are swing door landing and automatic doors in the car.
TS
TD
TD
CPP APG GND
MAN Inspection
Switch check/Timer2 Motor Temp. Relevelling Zone Protections check/Timer1 Alarm Ack Alarm Reset Oil Temp.
Insulation line (up to 3KV)
PSM PDM TM
7
APA Vmax = 35Vcc (peak)
CS1
Control Board
RES TO
16
AL-
Serial Expansion boards Power supply
GND VIM DIN
RST Fault Err
27
Ready
KI Reset Pushbutton
Signalling Leds
Position Indication
...
23
AL+
DEX KE
Car calls and relative indication on the same wire
15
All Outputs are protected from short circuit Imax = 0.5A
AUX3/PRE
Floors’ Serial Connection
8 ...
AR
AUX2/SBL
Car’s Serial Connection
External calls and relative indication on the same wire
...
AUX1/DATO
6V o 12V Alarm
+12V o +24V
OCC 0
FS3/CEP
PC Connection
FS FD SA SAR A B C D RU PAT CPF GN SNR AP2 SCP
Safety By-Pass circuit
Binary position Safety chain check output / Timer 1 Retiring Cam / Third Access Forced closing doors / Timer 3 Gong Overload Alarm Open secon access Segnalling car position
5.
VEZETÉKEZÉSI LEÍRÁS
5.10 – 23 Programozható ki ,be multiplex ). Ref paragraph 2.5.
5.2A/B/C/D Kimenet a binary coded pozició jelzéshez. Vedere paragrafo 8.1.
5.3AL-/ AL+/ AR/ RES/ SA/ SAR Vwiring: AL- : Bemenet a vészjelző nyomógombrol; AL+: Bemenet a vészjelző nyomógombról; AR: input for AKNOWLEDGED ALARM push button RES: Bemenet az ALARM RESET SA: bemeneti jelet küldenek ALARM egy villogó fény SAR: input to signal aknowledged alarm through a fixed light NOTE Ha címen 49 a programérték > 90, SAR akimenet aktív lessz (4300 hours).
5.4ALT A bemenet ellenőrzi az ALT jelet Mikor (ALT nyitva): Meghíbásodott abiztonsági áramkör fülke megálla parancsok törlödnek(külső és belső); ajtózárás megáll szintkorrekció nem engedélyezett; Mikor nem aktív (ALT zárt): Ha fülke ajtózónában van akkor kinyillik Ha fülke nincs ajtózónában az ajtó nem nyilnak; Ez a jel használható vezérlő félautomata ajtókon "zárnyitó mágnes kezelésére PAP helyett
5.5AP/CP/CRP Relays’ az ajtókhoz AP: kimenet az ajtó nyitáshoz ( csak az első bejárathoz és multi bejáratokhoz); CP: kimenet az ajtó záráshoz ; CRP: ajtó relék közöse; lehet a ALT jel után vagy a biztonsági áramkör elött Azonban az ajtózárás és nyitás kezelése csak akkor aktív ha az ALT jel aktív
5.6AP2 Kimeneti jelek a másodlagos ajtó nyitására a több bejáratú berendezések esetén. Lásd 7.11.6-os fejezet Ha a második hozzáférés nem engedélyezett (programozható ‘1’ vagy ‘3’ a 0-s címen) akkor, az AP2 kimenet aktív, amikor a vizsgáló mód is aktív.
28
Ha nincs második bejárat (programozható ‘1’ vagy ‘3’ a 0-s címen), a hidraulikus berendezésnél “emberi irányítású” módban, az AP2 kimenet aktiválva van, hogy engedélyezett legyen az emeleti hívás, amikor a fülke nem foglalt vagy vagy az emeleti hívás aktív. Például, összeköthető ezen kimenet (AP2) az INT bemenettel, ez biztosítja, a parancsokat az „emberi irányítású” módban, és az emeleti hivásokat az egyszerű automata módban.
5.7APA Ez a bemeneti jel három különböző zóna közt tesz különbséget: Engedélyezett ajtónyitási zóna. Lásd 8.7-es fejezet Újraszintezési zóna (hidraulikus eszköz csak). Lásd 10.1-es fejezet Ajtó előnyitási zóna. Lásd 7.1-es fejezet a 62-es címen programozható, ‘+8’ érték amely engedélyezi a bemenő jelek kezelését (csak a DA-DB mágneses érzékelőkkel). Annak érdekében, hogy az elő-ajtónyitás engedélyezve legyen, fontos hogy 19-es címen a paraméter értéke>= ’70’ és a 62-es címen ‘+16’ legyen (ez jelenleg csak hidraulikus berendezéseknél lehetséges).
IF ICV
IF ICV APA
STOP ZONE
IF/ICV layout
Re-levelling zone Slowing down zone
DA/DB layout
5.8APG
Bemenő jel, mely kezeli a nagysebesség mágnes kapcsolóját (TG) és az ajtónyitás reléjét (AP).
Zárva kell lennie a GND-hez: Amikor a fülke alacsony sebességgel halad, különben ’64’-es hiba jelzése történik. Amikor a fülke áll, különben ’44’-es hiba jelzése történik. Nyitva kel lennie: Amikor a fülke nagy sebességgel halad, akkor a kezelő panel aktiválja a TGP jelet, ellenkező esetben ‘65’ -ös hiba jelzése történik. Amikor a kezelő panel ajtónyitási utasítást ad ki, különben ‘55’-ös hiba jelzése történik .
5.9AUX1/AUX2/AUX3 Reserved inputs.
5.10
BAT
Bemenő jel, a 12V-os akkumulátor csatlakoztatására, elektromos áram kimaradás esetére, hogy ellássa a vészjelző funkciókat. Paragraph 6.3
5.11
CCO /CCC/ CCS
Inputs Bemenet a fülke túlterheltségének vizsgálatára (CSS). A CSS bemenet aktiválódik, a túlterheltség esetén, ha a 62-es címen ’+32’ van beállítva. Lásd 7.5-ös fejezet 29
A CCS és MAN jel együttes használata, arra használható, hogy aktiválódjon a „manuális mentési művelet” opció Lásd , Ref. Paragraph 9.6.1
5.12
CL
A pozitív pólus a tápegység felé a vezérlőpanelnek. Ref. Paragraph 4.2.
5.13
KE/ KI/ DEX/DIN
Soror kártyák csatlakozói. DIN/KI: adat és óra jel a fülkei kommunikációhóz (SERCAR, VEG0400, SERCAR_LCD…). DEX/KE: adat és óra jel az aknai communication (FLOORDIS, VEG0400, VEG0700, VEG800...) Ref. Chapter 10
5.14
CM1/CM2
Ajtó fotocella bemenete (bejárat 1,and 2); Ref. paragraph 6.7
5.14.1
CM1
Manuális ajtó esetén ‘man-present’ mode CM1 jel ALT jelként müködik: Megállítja a fülkét Törli a parancsokat Ahhoz, hogy ugyan olyan legyen a müködés egyparancsos módban is, akkor a program a "Man Present mód" helyett a "Single Call Mode"állítsa be és csatlakoztassa a INT bemenet GND. Ref. pontja 5.27.Ref. paragraph 5.27.
5.15
CPF
Multifunctional kimenet TMR3 CPF lehet kimeneti jel egy általános célú időzítő (TMR3, add.29) együtt FS3 bemeneti jellel Ez az időzítő (CHF hozzá. 29) lehet beállítani közötti értékre '0 'és '95' tizede második. Gyors sebesség Programozás érték> = '97 'címen 29 (CHF paraméter), a CPF kimeneti jel hajt a nagy sebességű (V2P). Nagy sebességgel végigegyi 2 vagy több emeleten. Ez a jel aktív, ha a távolság nagyobb, majd egy szinttávolság, és a lift nincs pozíció felvétel vagy az vízsgálat módban. . Tűzoltó mód Programming the CHF time (add. 29) at a value= ‘96’, the CPF output is used to enable forced closing and ringing. Ref. paragraph 9.8.2
5.16
CPP
Bemenet ( ellenőrzés) a lassú kontaktor (TP) ajtó zár relé (CP). Zár a GND-re Mikor nincs ajtó zárás parancs Hiba 46 jelzés Nyitva kell lennie: amikor a fülke alacsony sebességgel halad, hogy amikor a vezérlőpanel aktiválja a TP jelet, ne történjen ‘53’-as hiba; ajtó bezárása közben, és amikor nincs jel a CS bemeneten, különben ’54’-es hiba jelzése történik.. Ez a kezelés deaktiválható a ’0’ vagy ’32’-es érték megadásával a 10-es címen, ebben az esetben nem szükséges a z ajtózáró relé csatlakoztatása a CPP bemenetre. A hidraulikus berendezésen, ha a TST (25-ös cím) páros értékre van állítva ami <70, akkor CPP bemenete ellenőrizve 30
lesz a TS mágnes kapcsoló aktiválása előtt.
5.17
CS
Ezt a jelet az ajtó kapcsolatok után kell bekötni. Ha a művelet feszültség jelen van, az ajtók biztosan záródnak, és a liftvezérlő panel aktiválhatja a mágnes kapcsolót. Ha a kapcsoló nyitott állapota tovább áll fenn, mint a nem-indulás ideje (TMP, cím 21) mire az ajtó bezárás kezdődik, akkor a liftvezérlő panel: villogva jelzi a jelenlegi pozícióját a fülkének (hiba ‘0’-‘31’); kinyitja az ajtót; visszavon minden parncsot; Ez az eljárás történik abban az esetben is, ha a fülke megáll egy ajtónyitási hibával. Ha a fülke indulás sikertelen a pozíció felvétel közben, akkor a ’45’-ös hibakód jelzése történik Minden esetre lehetséges újrapróbálkozni a hívó gombbal.
5.18
CS1
Multifunctional bemenet: TMR1 CS1 lehet bemeneti jele az általános célú időzítőnek (TMR1) az RU kimeneti jellel. Ennek az időzítőnek az értéke lehet 0 –tól 98 tizedmásodperc Biztonsági áramkör kezelő CS1 lehet bemenete a biztonsági áramkor kapcsolónak h a 62 es címnél nem állatunk be ‘+4’ es értéket.(így az általános célú időzítő nem elérhető) Amikor ez a kezelő aktív és a CS1 nyitott akkor az újraszintezés lehetséges. Ref. paragraph 7.1 Nyított fékek ellenőrzése Köteles eszközöknél ha TMR1 (31 címnél) 99 értéket kap a fék feloldásellenőrzés engedélyezett. CS1 aktív (zárt) ha a fék fel van oldva. A berendezés működése közben lekapcsoló a 26-os címnél beállított idő után a CS1 nyitásáról. CS1 valóban aktív (zárt), amikor a fék nyitottl. A, a kontaktorok kiesnek egy idő után Programozható idő: cím 26 (FRR) megnyitásával a CS1 .
5.19
CT
Kontaktor közös (TD, TS, TP, TG). Ide kell csatlakoztatni a biztonsági áramkör véget. Ha ez nem zár, TS and TD contactors nem tud húzni..
5.20
EM
Bemenet a vészüzemmód aktiválására , amikor áramellátási próbléma lép fel. Ez normál módban nem aktiv külömben a hiba ‘81’. Ref. paragraph 9.2
5.21
EXC
Végálláskapcsoló kontrol. ez az első elem a biztonsági körben, . Ha a kapcsoló nyított lessz a hiba, fault ‘81’ csak ha vészüzemmód vagy karbantartás módban nem aktív. A következő esetben ezek történnek:: Ha azonnali megállás van programozva ('4 'vagy '12' at cím 5): a berendezést blokkolja azonnal, a hiba '81 'és afülke megállt tartja akkor is, ha EXC visszakapcsolja időközben. Megállás után az automatikus visszamegy a fülke ha a (0 "és vagy 8"-cím 5): 31
Hydraulic lift ha a beállátott szint 0 (ha a EXC zárt közben) visszamegy de a hiba ‘81’. Traction/rope plant a rendszer blokkol hiba ‘81’ addig marad így mig a hiba fenn áll
5.22
FD/FS
Kimenet az irány jelzéshezvagy továbbhaladás jelzéséhez (up/down arrows).
5.23
FS3
Multifunctional bemenet:
TMR3 FS3 may bejövő jel az általános időzítőnek with CPF kimenő jelnek. Ez az idő (CHF cím.29) állítható ‘0’ and ‘95’ tizedmásodperc. Ref. paragraph 6.15 Tűeset mode (EN81 – 72 – July 2003) only for firefighters lifts Állítsuk CHF (cím ‘29’) ‘96’ érték: Folyamatos ajtózárás és alarm jelzés aktiválodik a CPF kimeneten. FS3 müködik Phase 1 (Ref. paragraph 9.8.2) aktíválodik a parancs: ‘priority hivás tűzeset ’. FS3 + INT müködik a Phase 2 (Ref. paragraph 9.8.2) activation parancs: ‘aktív a tűzoltó lift’. használja a kulcsot a fülkében CM3 (INT). Fire service mode Beállítás CHF (cím 29) ‘97’ or ‘98’ érték, FS3 bemenet aktív FIRE SERVICE MODE. Mikor a jelzés aktív az aktív hívás törli, és a beállított (NPM) szint parancsa lessz aktív (cím 39). Ref. paragraph 9.8.1. A fontos kontaktok ellenőrzése Hogy aktíváljuk a 29 cím állítsuk 99 értékre at least one time during a complete run from the lower (RD sensor) to the upper (RS sensor) landing. In order to activate the switching control, it is necessary program the CHF time (addr 29) at the ‘99’ value. If the switching not occurs fault ‘57’ is generated. This fault is excluded in emergency mode or if phasing sensors (RS or RD) are out of order.
5.24
GND
Ez a bemeneti referencia (Zero voltage) áramellátás és a jelzéseknek. Ez fizikailag elkülönül OM, hogy egyszerűsítse a szigetelés vizsgálatot.
5.25
GN
GONG impulsus jelzésl. Ref. paragraph 6.8
5.26
ICV/IF
Bemenet a megálláshoz és a sebesség váltáshoz/aknai pozició számolásához Az hogy záró ill bontó funkció ez a parameter’beállítható cím 15 (‘0’ – nyitott az aknában, ‘64’- zárt az aknában). At (cím 14) kell kiválasztani (DA/DB or IF/ICV) mágnesezés (érték ‘0’ or ‘16’ for DA/DB layout, érték ‘32’ or ‘48’ for IF/ICV). Ref. paragraph 6.5 A mágnesek elrendezését mutatja az alábbi ábra:
32
I F
IC V
D B
D A
STOPP ING Zone
IF/ICV layout
5.27
RELEVELLIN G Zone
SLOWING DOWN Zone
DA/DB layout
INT
Bemenet “Internal mode” (ref paragraph 9.4) bemenet a harmadik fotoceela/ (ha a harmadik bejárati kezelés engedályezve van cím 3 érték 64). Ref paragraph 6.7. Ha a harmadik bejárat nincs engedélyezve ( érték ‘0’ at cím 3), INT jel lehetővé teszi, hogy különböző funkciókat en a kapcsolat típusától és programozása "Man Present" mód függöen (cím 63): Ha “man-present” kezelési mód aktív: Ha INT mindig zárva GND: a fülkei és aknai hívásokat úgy kezeli mint egyparancsos. Ha INT zárva a GND -hez amikor a fülke nem foglalt: fülkei parancsokat úgy kezeli “man-present” service’s és az aknai hívásokat úgy kezeli mint egyparancsos vezérlés. Ahhoz hoz az INT bemenet zárva a GND-hez amikor a fülke nem foglalt be kellkötni: Fülke foglalt érzékelőt A fülkei parancs az áramkörben konfigurált AP2 kimenet, ebben a formában aktív (closed to GND) amikor a fülke nem foglalt és a emeleti hívás aktív . Ha az INT nyított állapotban van: fülkei és emeleti hívások normál módon müködnek. Ha a MAN present mód nem engedélyezett és harmadik ajtó nincs programozva akkor az INT-tel bemenet,fenntartásoz üzem aktiválható ( kulcsos kapcsoló )
5.28
MAN
Bemenet a karbantartás mod aktiválásához. Általában a vizsgálati mód engedélyezve (normál zár a GND-re de programozható aktív nyitva (alaphelyzetben zárt) beállítás értéke "+1 címen 62. . Ref. paragraph 9.6
5.29
OCC
Kimenet a "fenntartott" fülke jelzésre (használta egyparancsos vezérlés esetén). Ref. paragraph 8.5
5.30
OM
Nulla feszültség (reference voltage) a biztonsági vonal, és a müködtető feszültség nullája. Ref paragraph 4.2.1
5.31
PAP
Ajtó nyitó vagy hívás törlő nyomógomb bemenete. Ajtó nyitása akkor lehetséges, ha az fülke a megállási zónában van és ha nem kezdte el a következő útját. Vizsgáló módban is engedélyezett és akkor, ha a CS kapcsoló nyitva van. Hidraulikus berendezésnél félautomata ajtóval. Hogy a fülke újraszintezése biztosított legyen használjunk PAP csatlakozót a külső ajtók csatlakozásához ALT csatlakozó helyet( kábelezés az ábrán). Ha az ajtózáró relé nincs engedélyezve a PAP érintkező zárva van és az ajtó nyitva marad másképpen a PAP kinyílik . PAP bemenetre két különálló válasz idő van: válaszidő a bemenet aktiválására és a bemenet kikapcsolására. Az aktiválási válasz idő a 46-os címnél programozható (LETT paraméter). A kikapcsolási válaszidő fix: 1 másodperc. Ez a funkció akkor hasznos, amikor megfigyeljük a külső ajtók záró kapcsolóit. Többhívású rendszereknél, ha a bemenet aktív marad több mint 3 másodperc minden hívás törölve lesz. 33
.
fülke ajtó Contacts
külső ajtó Closing Contacts ALT
5.32
RAc c
Bíztz árlock s
RAc C S
c
PA pp PP P
PAT
Ez a kimeneti jele a zárnyitó-nak. Ez a bemenet az indulás elején aktív (hívás vagy vizsgálás kezdetekor) Engedélyezi a külső ajtók zárását még akkor is ha afülke ajtó még nyitva van. A megállási zónában ez a kimenet nem aktív.
5.33
PCP
Bemenet az ajtó záró nyomógomb. Ha megnyomja ezt a gombot (vagy bármilyen más fülkenyomógombot) a várakozási idő törli, ajtó azonnal bezáródik és a fülke elindul. Programozás egy szokatlan értéket állítunk be ( cím. 30 (RIP), PCP-nek is igénybe vehető, mint az SAP funkció (nyitás kizárása, hogy teszteljék a renszert). Ref. paragraph 6.12.2 Az alábbi helyzetekben PCP bemenet képes aktiválodni tűzoltási módban A tűzeseti mód activated (ha aCÍM. 39 (NPM)programozott érték < ‘32’). Ne használjuk az FS3 bemenetet a mód aktíválásához
5.34
PDM/PSM
Bemnet a fel le irányok nyomógombjainak (in Inspection Mode),a fülke tetőn. Ref. paragraph 9.6
5.35
RD/RS
Bemenet a legalsó és legfelső aknai érzékelőknek. Aktív ha bontva van Elhelyezése csak extrém emeleten és néhány centiméterrel ICV érzékelők után (ez jelzi a lassulás zónát ) RD sensor legalsó aknai és az RS a legfelső szinten van elhelyezve. Az érzékelők meghibásodásat mutatják a következő hibakódokat : fault ‘41’Ha mindkét érzékelő nyitott. Ez az ellenőrzés történik, minden időben ésa fülke minden helyzetében fault ‘54’: ha a eléri a legfelső szintre, és az RS zárt, a fülke megáll, és ezután automatikusan megy az alsó szintenre. A következő alkalommal az fülke eléri a legfelső szintet, ha RS-érzékelő még mindig zárva, a rendszert blokkolja. fault ‘55’: ha bekövetkezik ugyanabban a helyzetben hiba '54 ', de utalt az RD-érzékelőre. Ez azt jelenti, hogy RDérzékelő mindig zárva ha a fülke eléri a legalsó szintet. Ezek az érzékelők ellenőrzik a menet irányát . Ref. paragraph 7.4
5.36
RU
Multifunkciós kimenetl: TMR1 RU kimeneteként működik a TMR1 jelnek (31-es címnél) a CS1 bejövő jellel. Ezen időzítő (L13 31-es címnél) értéke állítható 0-96 tizedmásodperc. Ref. paragraph 6.15. Újraszintezés engedélyezése 34
A hidraulikus eszközöknél a DA/DB mágneses érzékelőkkel ellátott, RU (G) használatos az újraszintezés engedélyezésében, beállítva az L13 időzítőt ’99’-es értékre anélkül, hogy a 62-es címre ’+4’-et állítanánk. A ‘97’-es érték beállítása esetén, a 31-es címen, az RU kimenet jelzi az IF vagy ICV jelenlétét. Ez a funkció használható, hogy aktiváljuk valamelyik biztonsági áramkört, ami engedélyezi az újraszintezést az ajtó zónájában. Ref. Paragraph 9.1 Biztonsági áramkör aktiválása Mind a hidraulikus és köteles rendszerekben az RU kimenet használható arra, hogy aktiváljuk a biztonsági áramkört. Beállítva a ‘98’-as értéket a 31-es címen. Az RU kimenet az ajtónyitási zónában aktiválódik, ha az APA bemenet aktív (‘+8’ érték a 62-es címen), egyébként csak a stop zónát elérve aktiválódik. Beállítható az ellenőrzés a biztonsági áramkörön a CS1 bemenetre, ’+4’-es értéket állítva a 62-es címre. Váltóirányú mozgás aktiválása Köteles berendezésnél az RU a váltóirányú mozgás megállapítására szolgál L13 időzítőt állítva (cím 31) ‘99’-es értékre. Ez a kimenet aktiválódik a nyitás megszakításakor (ellenőrizve a CS1 bemenettel) és deaktiválódik, amikor a fülke eléri a stop zónát. A motor mágnes kapcsolói késleltetve lesznek a TRIF idejével miután a CS1 bemenet deaktiválódik. Ref. paragraph 6.17
5.37
SCP
Kimenet a “pontos szint jelzése” vagy nyitó jel a harmadik ajtónak. Ref. Paragraph 6.12.6. Ha a harmadik ajtó van programozva ‘0’ at the address ‘3’, SCP a kimenet nem car at landing signalling vagy ha köteles vagy hydraulic lift és engedélyezve van ‘Man Present’ mode , Ez a kimenet aktiválódik minden szinten a stop zónában Nem veszi figyelembe, a vezetékelést (párhuzamos vagy soros) és a stop késleltetés (TRIF) értéket. A kötéles felvonó esetén is használható inverter leállítónak, de figyelni kell hogy a jel csak az érkezéskor jön meg. In the event that the number of floor (ind. 32) is> 16 the output “SCP” is used for binary code.
5.38
SNR
Alarm sound’s output signal. SNR három esetben: mikor a fülke túlterhelt (CCS is active) for 2 seconds; mikor vége az emergenci módnak (mikor a fülke megáll az ajtó kinyillik ; mikor a fülkei nyomógombot megnyomjuk (“Beep” if ‘2’ or ‘3’ érték at cím 0).
5.39
TD/TS
Kimenetek az irányoknak le (TD) és fel (TS) kontaktor.
5.40
TG
Gyors kontaktor (TG relay).
5.40.1
TG Delay
In hydraulic systems is possible to have a delay time of high speed introduction. This delay time is programmable in tenth of seconds at the address 25 (TST). It is necessary programming a value between ‘70’ and ‘99’ and the delay value is obtained subtracting to that value ‘70’ (delay = TST – 70) tenth of seconds). E.g. program TST = 83 for a 13 tenth of seconds ‘ delay (83 – 70 = 13 tenth of seconds). Program ‘70’ at address 10 to avoid TG delay.
5.41
TM
Input signal of thermistor that measures temperature engine. Ref. paragraph 7.6
5.42
TO
Input for the thermoresistance that measures the oil temperature. This contros is active don’t programming the value“+2” at address 62. 35
If analogic value in input is higher than wanted limit (resistance thermometry > 4K Ω), with ‘70’ fault. Unlocking is possible only if TO input measures a resistance thermometry < 1,5K Ω NOTE: The fault is gerenated only at floor.
5.43
TP
Output for the Slow speed signal (TP relay). The TP output has many actions depending on the value programmed at address 25 (TST) and on the system type.
Traction/Rope system Hydraulic system
5.43.1
TST = from 0 to 69 TP = slow speed output signal TP = star / delta starting
TST = from 70 to 99 TP always ON TP always ON and TG delayed of (TST – 70) tenth of seconds
TP Delay
In Rope Systems it is possibile to delay the deactivation of the TP relay compared to the activation of TS and TD relays. This delay time (tenths of a second) is programmable at address 25 (TST). It is necessary programming a value between ‘70’ and ‘99’ and the delay value is obtained subtracting to that value ‘70’ (delay = (TST – 70) tenth of seconds). E.g. program TST = 83 for a 13 tenth of seconds ‘ delay (83 – 70 = 13 tenth of seconds). This feature can be used to manage the soft stop on the inverter by connecting TP on contactors and TS and TD on the commands for the inverter. With this type of operation you can perform a soft stop outside the plan too (useful for soft stop on electric platform lifts with ‘Man Present’ Mode or for soft stop in Inspection Mode. Ref Paragraph 9.3.1
5.44
TSD
It is the input for the check of up and down direction run’s contactors. It has to be closed to GND when system is idle, otherwise fault ‘47’ is signalled. It has to be open when lift is moving. If this contact doesn’t open when control board activate TS or TD, are generated fault ‘52’ for TS and fault ‘51’ for TD, call is cancelled and system keeps reserved. That happens also if TSD closes when the car is running.
5.45
VIM
This output supplies a 13,5Vdc voltage backed up with battery that can be used to power other external boards which have to be powered from battery in absence of main power supply (max 1A) .
5.46
LED SIGNALLING
All the most important inputs have a led that indicates if the corresponding I/O is active (LED light ON) or inactive (LED light OFF). There are also four LEDS that signal some particular states of the control board: Led ‘PWR’. Led ‘Fault’ Led ‘Err’ Led ‘Ready’
5.46.1
Led PWR
It is a GREEN LED that signals the presence of power supply on the control board. It lights up when the control board receives the power supply voltage.
5.46.2
Led Fault
It is a RED LED that signals the presence of a fault condition that blocks the system. It remains on until there is a fault condition. 36
5.46.3
Led Err
It is a YELLOW LED that indicates if there are faults memorized in the fault record. In normal conditions the led is off and it lights up when there are faults in memory. The yellow LED flashing indicates the presence of a fault stored in the memory that has not been read yet.
5.46.4
Led Ready
It is a GREEN LED that indicates the state of the control board’s microprocessor. It lights up when the microprocessor has finished the start-up phase and is ready. The start-up phase is four seconds long but this time can be extended to ten seconds adding the value ‘+64’ at address 62.
37
6.
ARCHITECT SYSTEM’S SPECIFICATION
6.1DOOR PRE-OPENING It possible in hydraulic systems only. It is necessary to enable APA input signal control (programming ‘+8’ at add. 62). In order to enable door pre-opening, it is necessary to program parameter TRA (add.19) with value >= ’70’ and parameter 62 with value ‘+16’. This input (APA), if closed in the re-levelling zone will enable the doors opening. The safety circuit by-passes the door’s contacts to allow the car moving up to the landing stop.
6.2STARTING Y/ To enable this function, in hydraulic plant, it is necessary to program a value > ‘1’ and < ‘69’ at address 25 (TST). Ùin the figure below shows a possible contactor’s connection scheme for Y/ starting: Safety Chain
+48V
CT
Control Board TG
KY
TP
TD
TS
TSD APG CPP KY
K K
KG
KD KG
V
VL
VD
KY
KD
KS
KS
KD
KG
KY
KS
RAP
K
K
RCP
During the climbing starting, these following steps occur: TP signal’s activation for STAR power supply → it enables K y activaction (the contactor for STAR power supply). TS signal’s activation → it enables KS activaction (the up direction contactor) for engine power supply (STAR STARTING). TP signal’s disactivation after TST time and consequent activation of K ∆ (contactor for DELTA power supply). NOTE: when car runs in down direction, TP keeps active and is used as an auxiliar contact for down direction. Futhermore, programming this timer (TST) to an odd value, it is enabled CPP control before TS activation. Remember: it used a starting valve to disconnect the load at the starting.
6.3BATTERY Battery supplies power to the lift control board, serial expansion boards and safety circuit to enable alarm and emergency manoeuvres. When electric network is on, the elevator control board charges the battery with its internal battery charge. At address 28 (SBA time) you can decide how long the battery must back up the main power supply when this one goes down. SBA time may be set to a value between ‘0’ and ‘98’ minutes. Programming at addr.28 the value ‘99’ the battery will back up the power supply for an indeterminate time (until battery discharge). 38
If battery is connected to BAT connector, EM must be kept close during power outage in order to avoid fault ’81’ code message for overrun. If control board turns off, it is not possible turn on again the board through the battery because the battery is excluded for the first 4 seconds (during start-up phase) after the power supply’s switching on.
6.4SERIAL OR PARALLEL WIRING The communication from control panel (control board) to car and with each floor can be carried out through: parallel wiring Wires are connected to each control board connectors (connectors 0-23); so is used 1 wire for each signal. Ref. paragraph 2.5 serial wiring ( programming ‘64’ at add. 11) Inputs and outputs are sent to the control board and turn into serial inputs and outputs thanks to car serial expansion boards (SERCAR_LCD...) or landing serial expansion boards (VEG0600, VEG0700, FLOORDIS_01..). Ref. chapter 10. NOTE: mixed wiring is possible (e.g. a serial display can be connected to a parallel system)
6.5LANDING AND SLOWING DOWN ZONE ’S MAGNETIC SENSORS LAYOUT The control board is able to manage three different magnetic sensors layout: DA\DB layout; DA\DB reverse sensor layout; IF\ICV layout.
The second configuration (DA\DB reverse sensor layout) should be used only when it is not possible to carry out system with DA\DB slowing down magnetic sensor layout. The choice through these system type (DA\DB normal, DA\DB reverse or IF\ICV sensor layout) is done programming address 7, 14 and 15:
ADDRESS 7 14 15
39
VALUE
FUNCTION
0
DA\DB normal magnetic sensors layout
64
DA\DB reverse magnetic sensors layout
0
DA\DB magnetic sensors layout
32
ICV\IF magnetic sensors layout
0
IF\DB e ICV/DA open at floor
64
IF\DB e ICV/DA closed at floor
RD IF ICV RS
RD IF ICV RS
Optional
RD IF ICV RS
Optional
RELEVE SLOWING DOW LLING Zone Zone
Optional
RD IF ICV RS
(A) ICV\IF Layout
40
RD IF ICV RS
(B) Normal DA\DB layout
Optional
RD IF ICV RS
(C) Reversed DA\DB layout
6.6 6.7ENLARGED SLOWING DOWN ZONE AND NON-REGULAR FLOOR DISTANCES The control board is also able to manage particular magnets layout as non-regular interfloor distance and enlarged slowing down zone.
Normal slowdown: d>2Xn Long slowdown: d<2XL Non regular landings slowdown d<XB:
(A) ICV\IF Layout
(B) Normal DA\DB layout
IF ICV
IF ICV
Xn XB
XL d XL XB Xn
Legend d= distance of gap Xn= Normal slowing down zone; XL= Long slowing down zone. XB= Non regular landing slowing down zone 41
Fast System with enlarged slowdown at all floors: these plants need a slowing down zone larger then an half normal distance between two consecutive floors, so-called ‘enlarged slowing down zone’. To guarantee an enlarged slowing down zone it is sufficient to enable the appropriate function programming at address ‘2’ the value ‘32’ or ‘48’. Enabling this function and programming the CHF time (address 29) with value ‘97’, the RCPV time (address 23) becomes the slowdown delay from average speed V1P. Long slowdown: the slowdown space is defined ‘Long’ when it is larger then an half normal distance between two consecutive floor, that is when slowdown begins leaving the slowing down magnetic sensor of the previous floor. If this particular management involved only few landings, at most 3 floors, these landings must be set at addresses 35(PB1), 40 (PB2) and 42 (PB3), inserting a value equal to the sum of the lower landing of the pair and 50, without programming the ‘enlarged slowing down zone’ function (insert at address 2 value ‘+0’ or ‘16’). The dual situation is also possible. If you need an enlarged slowing down zone for all floors (ind.2 value '32 'or '48') you can program up to a maximum of 3 floors with normal slowing down zone to the addresses 35 (PB1), 40 (PB2 ) and 42 (PB3) inserting a value equal to the sum of the lower landing of the pair and 50. (A) ICV\IF Layout RD IF ICV RS
(B) Normal DA\DB layout RD IF ICV RS
UPPER FLOOR
Slowing down direction zone at floor 2 Slowing up direction at upper floor
FLOOR 2 Slowing down direction zone at floor 1
Slowing up direction at floor 2 RELEVE LLING
FLOOR 1
Zone
Slowing down direction zone at first floor Slowing up direction at floor 1
NOTE*
RELEVE LLING
FIRST FLOOR
Zone
RD IF ICV RS
RD IF ICV RS
Fast system magnetic sensors layout (2 ICV sensors) 42
NOTE* :Must be active the control on APA ( hydraulic plant only)
IF e ICV open at landing
IF e ICV close at landing
Control board
Control board IF
IF
IF
ICV ICVs ICVd
TD
IF
TS
ICV TS
TD
ICVs
ICVd
UPPER FLOOR
Slowing down direction zone at floor 1 Slowing up direction at upper floor
FLOOR 1
Slowing down direction zone at first floor Slowing up direction at floor 1
FIRST FLOOR
RD IF ICVd ICVs RS Programming: ADDRESS 7 14 15
VALUE 0 32 0 64
FUCTION DA\DB normal magnetic sensors layout ICV\IF magnetic sensors layout IF\DB e ICV/DA open at floor IF\DB e ICV/DA closed at floor
Non-regular landings (pair of ‘next-landings’): it is defined as a floor whose distance from the upper floor is smaller than a regular slowing down zone. This landings must be setup at addresses 35, 40, and 42. 43
The car will start to slow down entering in the slowing down magnetic sensor of the previous floor of the couple with a delay time programmable at address 23 (RCPV time) with a value from 0 to 99 tenth of seconds. When car runs through between the ‘next-landing’, magnetic sensor must properly be placed in order to use enlarged slowing down zone operation to obtain an accurate levelling, without resort to a slow speed run.
(A) ICV\IF Layout
(B) Normal DA\DB layout
4-Slowing down direction zone at floor 1 (starting from a floor more than 2)
4-Slowing down direction zone at floor 1 (starting from a floor more than 2)
FLOOR 2 3-Slowing up direction at upper floor 1 (starting from floor 2)
A* dx
2-Slowing up direction
B*
Ind.35=1 (first floor)
at upper floor 2 (starting from floor 1)
FLOOR 1
1-Slowing down direction zone at floor 2 (starting from a floor less than 2)
Very next landings: when the interfloor distance between the two next-landings is not sufficient to place the slowing down magnets, the next-landings’ zone is covered at slow speed (programming ‘+8’ at address 63 and lower floor programming). As shown in Figure 1, slowing down magnets can be placed or not, that depends on interfloor distance. Using DA/DB magnets layout, the extreme floor sensor (RS or RD) zone do not superimpose the slowing down sensor (IF or ICV) zone; for this reason slowing down sensor at the extreme landing is shorter than the other ones. Figure 2 shows the situations in which, slowing down zone or interfloor distance need the partial or complete superimposition of the two sensors zones, causing malfunctionings.
44
When ‘next-landing’ the extreme floor phasing sensor zone must not cover 2 floors (ref. figures 2.B and 2.D), so during synchronising phase it is necessary insert a second extreme floor phasing sensor for slowing down (RS2 and/or RD2, auxiliary extreme floor phasing sensors for car pre-slowing down), wired in this way.
R RS CB D2 2 G TG R OO A N T T D R TR D S S RD O The use of auxiliaryLextreme landing sensors is an alternative solution when there is an ‘enlarged slowing down’ zone, instead of APA’s use. R D R S
I IC F V
RS RS 2 UPPER FLOOR
(B) Pair of ‘next-landing’ at the upper floor
LOWER FLOOR RD R I IC D F V at the lower floor Pair of2‘next-landing’ Magnets layout at the extreme landings in case of ‘ ‘next-landing’
Examples: programming examples to obtain different combination of normal floor, enlarged slowing down and nonregular landings.
Normal Slowing Down Enlarged Slowing Landings Down Landings
Non-Regular Landings ‘Next-Landings’
Add.2
Addr.35 Addr.40 Addr.42
All All All, excepted 3/4 No one No one 3/4
No one 1/2 e 7/8 1/2 e 7/8 No one 1/2 e 7/8 1/2 e 7/8
0 or 16 0 or 16 0 or 16 32 or 48 32 or 48 32 or 48
99 1 1 99 1 1
45
No one No one 3/4 All All All, excepted 3/4
99 7 7 99 7 7
99 99 53 99 99 53
6.8DELAYED STOPPING It is possible to delay the car stop of a programmable time (TRIF). This delay time can be programmed at add. 26 up to 9.9 seconds in units of 1 tenth of second. Stop delaying allows to decrease the re-levelling numbers. If the programmed time is too long or stop magnet is too short, the car surpasses the stop zone, fault code ‘42’ is signalled and in any case the car will stops crossing IF. Inspection service mode do not manage the fault ‘42’ control. TRIF delay is always active. In rope plant, setting parameter 31 (L13) at ‘99’, motor contactors deactivation is delayed of TRIF time after CS1 input deactivation that controls break opening. The RU output can be used for inverter moving enabling to allow controlled stop.
6.9PHOTOCELLS AND SAFETY REOPENING SYSTEM CM1, CM2 and INT (CM3) are the inputs for the photocells and safety reopening system signals for 1° entance, 2° entrance and 3° entrance ( respectively AP, AP2 and SCP). To make work CM2 and INT (CM3) as safety reopening input signals for 2° and 3° entrance, it is necessary to enable the second and the third access programming the opportune values at address ‘0’and ‘3’. If one of this inputs is opened: Disable the closing of the door for the respective access and command a reopening (if door were closing). Ref. paragraph 6.12 Cancel the call. Extend the opening door time. When the doors are closed (at input CS there is the 48V signal) this inputs are disabled. At all floor are enabled only the inputs respective to the open entrances. This inputs can be used to control the closing contacts of the external manual doors.
6.10
GONG
At the add. ‘8’ and ‘9’ it is possible to program this functions: 1 gong during speed change or at stopping; 1 or 2 impulses in down direction run (in up direction there always may be only 1 gong): Address 8 ‘+0’ or ‘1’ ‘+2’ or ‘3’ ‘+0’ or ‘1’ ‘+2’ or ‘3’
Address 9 ‘+0’ or ‘4’ ‘+0’ or ‘4’ ‘+8’ or ‘12’ ‘+8’ or ‘12’
GONG Gong during speed change, 1 Gong in up direction and 1 in down direction run Gong during speed change, 1 Gong in up direction e 2 in down direction run Gong during car stopping, 1 Gong in up direction e 1 in down direction run Gong during car stopping, 1 Gong in up direction e 2 in down direction run
The gong impulse time is programmable at address ‘20’ (TIG time) within range 2¸45 tenths of seconds. To disable the GONG signal you must set the TIG time to 0. The Gong is also disabled during programming procedure (PRESET = ON), during inspection operation and when the system is blocked. If 2 gongs are used, the time interval between the two impulses is of 1 second (not programmable).
6.11
LAW ‘13’ OPERATION
The Law ‘13’ is the legislation that regulates the management of the alarm. It provides for a defined sequence of events: Press the ALARM button (connected on inputs AL+ and AL-) for a fixed time of 0.5 s to activate intermittently the alarm’s signalling on output SA. The alarm’s signalling stays on even after you release the button. Pressing ALARM RECEIVED button (connected on input AR) turns off the alarm signal SA and activates the alarm received signal with a steady light (connected on output SAR). Pressing the ALARM RESET button (connected on RES) or activating a manual call (in car or external), both signals SA and SAR are switched off.
6.12
IMMEDIATE STARTING
Pressing the doors closing push button (PCP) or any car call push button, TAP (waiting time with open door) is cancelled. So, the doors close and car starts immediately. 46
6.13
RETIRING CAM
PAT output is used for the retiring cam. With manual doors is available even CP output for this function programming ‘0’ or ‘32’ at add. 2 or activating OPERATOR ON during run function (add. 12, value ‘2’ or ‘3’). It is activated at the start of service (also in inspection mode), even if door are still opened, and it is disabled going to stop.
6.14
DOORS
Door opening and closing are regulated by programmable times: TAP add. 16: it is the time the door remains open with car reserved signal active. This timer is cancelled when the PCP button is pushed or when a car calling button is pushed. If car is at landing, there are not reservations and the system is programmed to do the parking with close doors (add. 1 value ‘8’ or ‘12’), TAP is the time the plant wait before closing the doors and start to serve another booking (in collective operation). When car is at landing and there are already others reservations, it is the time after which doors close and the car starts again. TOP add. 17: maximum time for door opening command TCH add. 18: maximum time for door closing command. The closing relay remains ON until the complete closure, which is marked by the presence manoeuvre voltage on input CS, that works as limit switch. The maximum time of closing TCH must be greater than or equal to the time actually used to close the door. If the door’s check is enabled (programming the value ‘16’ or ‘48’ at address 10), the activation of CPP input is used as confirmation of the door closing in addition to the presence of manoeuvre voltage on input CS ( this means that the closing relay stay ON until CPP input is activated even if the manoeuvre voltage is present on input CS ). The door closing command can persist for all the car run if it is enabled the OPERATOR ON function programming the value ‘2’ or ‘3’ at address 12. TRA add. 19: door opening delay after stop at floor if TRA<’70’, otherwise (TRA>=70, delay=TRA-70) it is the delay on door opening (pre-opening) after the activation of APA input. APA input check must be enabled programming the value ‘+8’ at address 62.
6.14.1
Door Checking
To enable this checks it is necessary to program at address 10 the value ‘16’ or ‘48’ and it is necessary to connect the door relays control contact in series with the relative inputs APG and CPP (do not connect this inputs if this control is not active). If the control is not enabled connect at least a normally close contact of opening relay RAP at APG input or at CM input. The fault relative to door control are: Fault ‘50’ and ‘61’: if the doors don’t close, connector CS remain open for all the closing time TCH or RCP (closing external relay) is disabled (CPP remains closed) after delay time (RITUSC) on outputs and delay time (RITING) on inputs, board returns one of the following errors: fault ‘50’: If CPP input is closed means that the external closing relay RCP is faulty or doors are closed with safety contact that is out of order; fault ‘61’:If CPP opens means that RCP and door safety contacts are OK while door operator is faulty; In any case the board opens the doors and tries to close them again for a number of attempts that depend on the value programmed at address 60 (NUMCH). If the problem persist the board return fault ‘0-31’ (missed start). With the reopening devices activation (CM, PAP, etc...), the number of doors closing attempts made is carried to zero to avoid the missed start fault due to the continuos activation of these opening devices. Fault ‘48’ and ‘49’: if the doors don’t open, connector CS remains live for all the opening time TOP, or RAP (external opening relay) is disabled (APG remains closed) after delay on RITUSC outputs and antirebounce time on RITING inputs, the board cancels all the booked calls and returns one of the following errors: fault ‘49’: If APG input remains closed (means that the external opening relay RAP is faulty or doors are opened with the safety contact out of order). fault ‘48’: If APG is opened means that RAP is OK while door operator is faulty, so the board returns fault ‘48’. NOTE: If the door’s check is not enabled (programming at address 10 value ‘0’ or ‘32’), faults ‘61’ and ‘48’ remains active. Also, with the door’s check disabled, the opening command is maintained for at least 5 seconds after the deactivation of CS input. The doors control is automatically disabled during inspection mode and emergency mode. ATTENTION: The door’s check is used to enable or disable the reporting of door failures. The procedures for reopening and reclosing attempts in case of malfunctions in the door management remain unchanged regardless of the fact that the door’s check is enabled or disabled.
6.14.2
Door Opening Exclusion During Testing Operation
To enable this function is necessary to set the parameter at address 30, with an odd value. 47
To enable the ‘door opening exclusion during testing operation’ it is necessary to keep pressed PCP push button (keep active the PCP input). Doors will be closed even if interlock will be opened.
6.14.3
Manual Doors
To select the ‘manual doors’ option program value ‘0’ or ‘32’ at address 2. In that case: CP output drives the retiring cam; AP output drives the GONG signal; Two operation modes are possible depending on the value programmed at address 1. Value ‘0’ or ‘4’ (Parking with open doors): the board accepts the call with input CS open too. The control board will wait the door safety interlock signals before to generate (after TMP time) a ‘missed start’ fault. Value ‘8’ or ‘12’ (Parking with closed doors): if CS input remains open all the calls are cancelled and the plants remains reserved. Stop
External door’s closing contacts
Car door
Blocks
Block are closed by Retiring cams ALT
CS
CT
After the last served call, the ‘Reserved’ car signalling’s lights stay on for the TOC time. The door faults and the closing and opening time are ignored.
6.14.4
Automatic Doors
To select the ‘automatic doors’ option program ‘16’ or ‘48’ at address 2. In that case: CP output drives the closing of the doors; AP output drives the opening of the doors of the first access;
6.14.5
Semi-Automatic Doors
With semi-automatic doors (that means automatic car doors and manual landing doors) you have to select the same option as ‘automatic doors’: program ‘16’ or ‘48’ at address 2. Landing doors safety contacts must be placed before the ALT terminal. For hydraulic plant, to allow RE-LEVELLING even with landing doors open, it is necessary not disturb ALT input with approach contacts and it is necessary also to connect a relay to the approach end and stop the photocell (with a normally open contact) or closing the PAP input to avoid car automatic doors closing with the manual landing doors opened.
6.14.6
Multi-Entrances
We speak about Multi-Entrances when there is more than an access to the car ( Accesses on different car sides). In this case car has 2 or 3 distinct entrances. Entrances are selective when operations of the 2 or 3 entrances at the same landing are independents. Each selective door is considered like a separated stop, then, system has a stops number bigger than the landings one. For each landing, it is possible to program at most 3 entrances. Each entrance is driven through the AP, AP2 e SCP signals and controlled by CM1, CM2 e INT(CM3) photosensors. They are programmed at addresses from 50 up to 59. Floor No. 1 → AP (1° entrance) 2 → AP2 (2° entrance) 4 → SCP (3° entrance)
the third entrance on output SCP must be enabled programming ‘64’ at address 3. For tunnel-opening between the 2 entrances at one landing, program ‘+4’ at the relative floor. For this function the third access must not be present. All entrances are closed by CP signal. For Example 48
Side 2 (C7) 6 (C6) 5 (C5) 4B (C2)
2
Floor 7 add. 57 Floor 6 add. 56 Floor 5 add. 55 Floor 4 add. 54 Floor 3 add. 53 Floor 2 add. 52 Floor 1 add. 51 Floor 0 add. 50
Side 1 7 (C8) 6 (C7) 4A (C4) 3 (C3) 1 0
Tunnel-opening Independent openings
(C1) (C0)
Address 57 56 55 54 53 52 51 50
Programmed value 1 4 2 3 1 2 1 1
The bold numbers represent the car call push-buttons for each floor and for each opening-side. The numbers in brackets (red numbers) represent the corresponding signals that must be connected to the control board or to the serial expansion board. Ref paragraph 2.5 and chapter 10. At floor 4 there are two independent call push-buttons (selective opening). At floor 6 we have the tunnel-opening and the two push-buttons corresponding to the two opening side are wired to the same board terminal because they are managed as a single call push-button. At address 32 (NP parameter) must be programmed the number of floors (8) because the number of stops are automatically calculated.
6.14.7
OPERATOR ON During Run
This function can be useful to manage electronic doors operators that have not limit switches signals. To enable this function program ‘2’ or ‘3’ at the add. 12. Opening and closing commands are active until the system is reserved and the control of maximum opening (TOP) and closing (TCH) times is excluded. The doors open and close commands remains active for a maximum time that is the missed start time TMP (add.21). If the commands reach this time the fault 67 is signalled. Ref paragraph 7.2.
6.15
LIMIT SWITCH TEST
This test can be made through board terminals (RS, RD, IF, ICV). It is necessary to provide bridges to the synchronising sensors and magnetic sensors of the extreme landing to create a floors count error.
6.16 6.16.1
PARKING Parking Operation
Parking operation at landing NST: after a programmable TSN time at add. 27 from ‘0’ to ‘99’ x 10 seconds from reserved signal deactivation, car is moved to parking flor (NST) programmed at address 34. this operation is disabled if NST > stops number. Parking operation at lower floor after 14 minutes: only for hydraulic lift there is an automatic operation that moves car to the lower floor after 14 minutes from reserved signal deactivation, programming ‘0’ or ‘2’ at add. 12. When the car is at ground floor (‘0’ floor) cannot be move to other destinations for parking. During Firefighters service, Fire service and internal mode any automatic parking operation is disabled. If parking operation is with close doors (SPC, Ref. paragraph 6.14.2), after this operation doors do not open and there is not GONG.
6.16.2
Parking With Open or Close Doors
After last service, car can stand with open door (SPA) programming ‘0’ or ‘4’ at add. 1, or with close door (SPC) programming ‘8’ or ‘12’ at add. 1. If SPC is enabled, at the end of parking operation, the doors do not open and there is not GONG. If the system is programmend SPC (Parking with close door), it is possible to program up to 2 stops with parking with open door (SPA): one at address. 36 (SPA1) and the other at address 37 (SPA2). Dually If the system is programmend SPA (Parking with open door), it is possible to program up to 2 stops with parking with close door (SPC): one at address. 36 (SPA1) and the other at address 37 (SPA2). With the open doors parking active, doing a call at the same floor activates the GONG signal. To exclude the 2 stops with ‘inverted’ parking mode, program a value greater than ‘31’at add. 36 and 37.
6.17
TIMERS
Lift control board has two general purpose timers: 49
CS1 input/ RU output This delay may be set to a value from ‘0’ to ‘96’ tenths of second at address 31 (L13). It is disabled when ‘99’ value is programmed, and CS1/RU are used for the safety circuit or for inverter control. FS3 input/ CPF output (TMR3) This delay may be set to a value from ‘0’ to ‘95’ tenths of second at address 29 (CHF). This two timers have different meanings: Inputs T CS1/FS3 Output RU Output T CPF the first timer concerns the excitement instant, the second one the de-energize instant.
6.18 PLANT TYPES: SINGLE AUTOMATIC PUSH BUTTON (SINGLE CALL), COLLECTIVE OR DUPLEX PLANT 6.18.1
Single Automatic Push Button Plant (Single Call)
It accepts only one call at time. The control board works up to 12 stops without the use of serial expansion board.
6.18.2
Down Collective Plant
It is divided into 2 ways: Car calls Landing calls It accepts all calls, but landing calls are accepted only during car down run and if load is not full. Up to 32 stops: up to 12 stops with DEC16, the board to decode the position, to reach 32 stops control board needs serial expansion modules. Duplex plants are possible thanks to a connection between 2 control boards; Multiplex systems are possible up to 4 lifts thanks to a multiplex central board
6.18.3
Up / Down Collective
It is divided into 3 ways: Car calls Up Landing calls Down landing calls It accepts all calls, but landing calls priority depending on run direction and if load is not full. Up to 32 stops: up to 8 stops with DEC16 board to decode the position, to reach 32 stops control board needs serial expansion modules. Duplex plants are possible thanks to a connection between 2 control boards; Multiplex plants are possible up to 4 lifts thanks to a multiplex central board. NOTE: Programming at the add. 14, the value ‘16’ or ‘48’ it is possible activate a simplified management of collective plant. When the arrival at landing happens, all reservation are cancelled; in case of overload activation, all landing reservation are cancelled
6.18.4
Duplex Plant
It is possible manage duplex plant using two lift control boards. In order to manage duplex plant it is necessary setup both control boards and program duplex service mode (‘+4’ at parameter MISC (add. 63). It is necessary also setup one of 2 boards like ‘master’, programming ‘+16’ at parameter 63 of chosen board. Each lboard controls only one car so: car signals are wired directly to the control board landing signals are parallel wired to both control boards 50
All informations will be exchanged between the 2 expansion boards through RS232 imput (9 wires with a serial cross cable. The call assignment is dynamic and it is calculated at all times. Functioning is synthetically resumed with these cases: if both cars are stopped: the landing call is served by the nearest car if both cars are running: the external call will reach both the control boards but the call will be served from the one that can do the work faster. (not necessary is the nearest car). For example, if the first car is nearer then the second one, but it has some car calls at the intermediate landings (between car position and destination floor), the second one will reach this floor for serving the call; if both cars halt at the same level: the car with ‘master’ control board will reach the destination floor. If serial expansion board are used to collect landing calls you will need 2 board for each call. Each serial expansion board will be connected with only one control board whereas each landing signals will be connected both to the 2 expansion boards in parallel connection. If a lift is in one of the following cases will send to the other lift its ‘out of order’ state, so the operating one will supply all the calls : in inspection service mode in programming mode in faulty state during syncronizing operation during emergency operation in Fire service mode of firefighters service mode in internal service mode with CCC and CCS inputs active with ALT input active
6.18.5
Duplo
Enabling the Duplex mode (ref paragraph 6.14.4) in a single automatic call system (address 13 value ‘0’ or ‘8’) you can have the Duplo operation.
6.18.6
Multiplex Plant
Thank to a multiplex central board you can control up to 4 plants. For more information look particular manual up.
6.19
INVERTER / ELECTRONIC UNIT MANAGEMENT
In the rope plant, setting parameter 31(L13) at ‘99’ contactors activation is delayed of TRIF time by CS1 input deactivation (break opening control) whereas RU output can be used to enable inverter moving to allow controlled stop. Otherwise it can be used the SCP output (if there is not the third entrance, do not programming ‘0’ at add. 3): this output, during standard working, is activated only to the arrival at the destination floor; during phasing mode and inspection mode SCP is activated only to the arrival at extreme floors and remains activated at standing floor. In the hydraulic plant, SCP output can be used even as ‘car at landing’ signal.
6.20 6.20.1
SPEED One Speed
If plant has only one run speed, program ‘4’ or ‘12’ at address 1
6.20.2
Two Speeds
If plant has two speeds (‘high’ and ‘slow’), program ‘0’ or ‘8’ at address 1
6.20.3
Three Speeds
Three speeds: Stopping speed (slow speed) 51
Velocity to cover distance between 2 floors (V1P or average speed) Velocity to cover distance larger then 2 o more floors (V2P or high speed) High speed is activated when the distance covered is larger then 2 floors and syncronizing/phasing or inspection/maintenance service modes are not active. Programming the time CHF (address 29) with a value >= 97, the CPF output commands the high speed change (V2P). To setup the slowing down zone for the maximum speed V2P, it is possible to enable the ‘enlarged slowing down zone’ function (programming the value ‘32’ or ’48’ at address 2) while, for average speed V1P, the slowdown can be delayed with the RCPV Time (address 23). If the TST time (address 25) is not programmed with value ‘99’, this delay time (RCPV) is active during synchronizing mode too, so the synchronizing sensor must be placed at a lower distance that the one needed for the slowdown at maximum speed.
52
7.
CONTROLS
7.1SAFETY CIRCUIT To enable safety circuit control do not program ‘+4’ at add. 62 (in this way TMR1 is disabled for general use). When this control is enabled and when CS1 is opened re-levelling is automatically disabled. If there are the following situations: Plant is not in INSPECTION SERVICE MODE ALT is not activated Plant is not in OVERRUN Plant is not in EMERGENCY SERVICE MODE Plant is not in PHASING operation It is an hydraulic plant with DA/DB sensors configuration Not call is activated control is carried out on CS1 input according to the following picture: IF IS ID ON OFF open close
RU CS 1
1,5 s
4s
4s At ARRIVAL At START
1,5 s
Only in IF zone, if after 1,5 seconds (add. 44 – RITUSC) CS1 remains open the plant will halt and it will be showed fault ‘83’. To activate the safety circuit can be used the output RU. RU output is ON during re-levelling programming at address 31 the value ‘99’. Programming at address 31 the value ‘98’ RU output is activated in the door’s opening zone if it is enabled the check on APA input (value ‘+8’ at address 61) , otherwise is actifìvated when the stop zone is reached. Halt ‘83’ is permanent, so it is possible to unlock the plant only pressing SPEEDY push button on DISP900 programming keypad. This halt can be disabled programming ‘+4’ at add. 62. In this way CS1 input is disabled but RU remains activated. The same fault happens if during re-levelling phase CS1 is open.
7.2RE-OPENING DEVICES Re-opening device check signals if photocells, safety reopening systems (CM), doors open push button (PAP) remain active for more than the programmable time (seconds) at the address 21 TMP. If this happens the fault ‘67’ is generated. Regarding inputs CM and PAP failure is triggered only if the system is programmed as collective and if there is a reservation active. The fault is generated regardless of the type of installation (collective or single automatic call) if the AP output remains active for a time longer than the value setted at address 21.
7.3MAXIMUM TRAVEL TMC is the maximum travel (run) time; this is the time within the car can reach one floor. TMC is programmable from 10 to 99 seconds at add.22. If TMC < 10 MAXIMUM TRAVEL TIME = DEFAULT VALUE If TMC > 80 MAXIMUM TRAVEL TIME = 80sec. +(TMC – 80) tenth * 10 DEFAULT VALUE If TMC = 99 MAXIMUM TRAVEL TIME = infinite 53
It’s enough to program a time for one travel of only one floor becouse this timer is resetted in stop zone and when entering or leaving the slowing down zone. Over this maximum time, the control board generates one of the following faults depending on the situation in which is the car the timer has expired: Alarm 76: Maximum travel time for floor approaching in up direction expired; Alarm 77: Maximum travel time for floor approaching in down direction expired; Alarm 78: Maximum travel time for high speed in up direction expired; Alarm 79: Maximum travel time for high speed in down direction expired; After the occurrence of one of this alarms the system is not blocked and you can retry. If the maximum travel time espires for two consecutives times than the system enter in permanent halt signalling the ‘80’ fault code. The HALT can be immediate (‘4’ or ‘12’ at add. 5) or it can happen after the return operation at landing ‘0’ (P0) (programming ‘0’ or ‘8’ at add. 5). Plant can be unlocked only pressing SPEEDY on the programming keypad DISP900 or entering in INSPECTION SERVICE mode. During EMERGENCY and INSPECTION SERVICE operations this timer is disabled.
7.4RUN DIRECTION RD and RS inputs are used also for run direction control. If the car, leaving from a point out of the synchronizing sensors (an intermediate floor), moves toward opposite direction of the one commanded, when it reaches synchronising sensor is halted (only if immediate halt is activated programming ‘4’ or ‘12’ at add. 5) and control board shows ‘84’ fault code. The control board knows that car is moving in the opposite direction becouse after TD activation the car reaches RS phasing sensor or , after TS activation car reaches RD. If car is already in a synchronizing sensor and leaves in a wrong run direction, it goes in overrun signalling the ‘81’ fault.
7.5MOVABLE PLATFORM There are three inputs for movable platform control: CCO: busy car contact CCC: full load contact CCS: overload contact The contacts presence has to be programmed at add. 63, whereas if it is necessary CCC connection directly with the control board, even if there is a serial wiring, need to program ‘+16’ at add. 38. CCS is programmable open active (normally close) setting ‘+32’ at the add. 62, otherwise CCS is close active (normally open). CCO: SINGLE CALL PLANTS: when CCO is close, opening doors is activated and plant is busy and do not allow to make landing calls through CE contact. COLLECTIVE PLANTS: when CCO is open, plant receives one only car call at time (cancel any last internal reservations) CCC: SINGLE CALL PLANTS: when CCC is enable, doors open is activated and car is busy up to load is full COLLECTIVE PLANTS: when CCC is close, landing calls are not sent but they are stored and will be send when CCC will be open CCS: SINGLE CALL PLANTS: when CCS is enable, plant is kept halted with open doors and SNR alarm signal is activated. Call is deleted. CCS is not considered outdoor zone and during travel. COLLECTIVE PLANTS: in the case of SIMPLIFIED COLLECTIVE PLANT (add. 14, ‘16’ or ‘48’), when CCS is activated, the lift works like in a single automatic push button plant and all reservation are deleted; otherwise, in a standard collective plants (add. 14, ‘0’ or ‘32’), when CCS is activated, it keeps the lift halted with opened doors, SNR ringing is activated and reservations are not cancelled. This three signals’ control is disabled during car travel. (these signals work only when the car is stopped at landing).
54
7.6ENGINE TEMPERATURE To control engine temperature, it is necessary to connect at TM board input: PTC probe programming parameter ‘+2’ at add. 62. If analogic value in input is higher than wanted limit (resistance thermometry > 4K Ω), plant goes in permanent halt with ‘56’ fault. Unlocking is possible only if TM input measures a resistance thermometry < 1,5K Ω A normally open contact, connected to temperature sensor (NOT PTC probe), programming the value ‘+2’ at add. 62. If temperature sensors are on, engine is automatically halted, safety circuits’power supply is cut off (EXC open) and TM contact is close. Plant is halted with ‘56’ fault, this fault is permanent only during EMERGENCY mode.
Temperature control engine(TM) in maintenance: Is activated if there is “4”or “12” at the address 5 (immediate block). The fault blocks the elevator to the next restart from the activation TM (in order to allow completion of the run). The fault is excluded for 5 seconds from activation of the maintenance (to allow a restart also after the intervention of the fault). Plant is halted with ‘56’ fault, this fault is permanent only during EMERGENCY mode.
7.7DOORS ZONE Doors zone is the hoistway space where doors can open. This zone is always enable in stop zone (IF in ICV/IF layout or in IF-ICV superinposition in DA/DB layout). In IF/ICV layout, doors zone is disabled when car crosses stop zone and starts a regular service, otherwise, in DA/DB layout is deactivated when leaves IF and ICV magnetic sensors. If APA input is activated programming ‘+8’ at add. 62, doors zone is activated in advance when APA signal is present simultaneously with IF or ICV.
55
8.
SIGNALLING
8.1POSITION /ARRIVAL /RESERVATION 8.1.1 Position Signalling DECIMAL VALUE POSITION Decimal value position indicator shows always the floor number In Parlallel system: indication is provided from I/O 0-23 (only single call plants) or from DEC16 board. In Serial system, these indication are available on VEG0400 and SERCAR_LCD (car serial boards) BINARY POSITION Bynary code position signalling (floor only) is provided from A, B, C, D and SCP binary outputs. For the position it is necessary to set at the add. 8, the values ‘1’ or ‘3’, only if car calls are connected locally (‘+2’ add. 61). Ref. paragraph 2.5 Connecting ABCD to the auxiliary board DEC16 you can decode the position indication of first ten stops from binary code to decimal code. The programmed underground levels number has not effects on these outputs (e.g. if the car is in the lower extreme landing ‘-2’, DEC16 will turn on lower lights). ABCD outputs can be negated programming ‘32’ at add. 61. NOTE: In the event that the number of floor (ind. 32) is> 16 the output “SCP” is used for binary code. ON = output active (Output closed to GND) OFF = output inactive(Output open) SCP(E)
D
C
B
A
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON
OFF OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON OFF OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON
OFF OFF OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON ON
OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON
OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF
56
Address 61 (+32) (+0) 0 31 1 30 2 29 3 28 4 27 5 26 6 25 7 24 8 23 9 22 10 21 11 20 12 19 13 18 14 17 15 16 16 15 17 14 18 13 19 12 20 11 21 10 22 9 23 8 24 7 25 6 26 5 27 4 28 3 29 2 30 1
ON ON ON ON ON 31 0 DIGITAL position (7 segments plus sign “-“) The digital position signal (7 segments with sign “-“) is available, set the value '+48' at address 61, used the same outputs for the decoded one pole fore floor (P0.. P7). Ref. paragraph 2.5. and chapter 10. The correspondence between the mapping one pole for floor and 7 segment mapping is shown in the table below. TABLE Fram one pole for floor to 7 segments 1 POLE FOR 7 SEGMENTS FLOOR P0 a P1 b P2 c P3 d P4 e P5 f P6 g P7 g(-) … …
a f g(-)
b g
e
c d
8.1.2 Underground Floors At add. 33 (NS) is possible to program what value visualize on the display when there are underground levels. Underground floors number has effect only on the serial displays (car and floors). In the following table are resumed the values visualized from display at the lowest floor depending on value programmed at add. 33 (NS). “UNDERGROUND FLOORS” TABLE NS Number displayed at floor 0 0 0 1 -9 2 -8 3 -7 4 -6 5 -5 6 -4 7 -3 8 -2 9 -1 10 0 11 1 12 2 13 3 14 4 15 5 16 6 17 7 18 8 19 9 20 10 … …
8.1.3 Arrival Signalling In parallel mode, arrival signalling can be supplied in parallel plant from 0-23 connectors (only single call plant) or from the ABCD binary outputs. Arrival on ABCD is available only if the car calls are connected locally (‘+2’ at the add. 61) and programming at the add. 8 the value ‘0’ or ‘2’. Ref. paragraph 2.5. Arrival signalling can be supplied also from car and landing serial expansion boards VEG0400, SERCAR_LCD, FLOORDIS, VEG800 etc. (Ref paragraph 2.5, 10.1 and 10.2)
57
8.1.4 Reservation Signalling In parallel mode, reservation signalling can be supplied from 0-23 connectors or from car and landing serial expansion boards VEG0400, SERCAR_LCD, FLOORDIS VEG800 etc. (Ref paragraph 2.5, 10.1 and 10.2).
8.2DIRECTION FS/FD outputs on the control board give run direction indication if it is programmed ‘0’ or ‘32’ at add. 14. The arrow lights ON after the first call and it turns OFF after last stop in the same direction. It never turns OFF on intermediate stops. There are 3 different situations during speed change of last stop: if there was a landing call for opposite direction, when speed change happens, current arrow turns OFF and a new arrow turns ON (not important if there is or not a car call). If within TAP (add. 16) time a next car call is not commanded, the new arrow turns OFF; if there was a landing call for the same direction, current arrow remains ON. If within TAP (add. 16) time a next car call is not commanded, the new arrow turns OFF; if both external calls are made at that floor, current arrow remains ON up to TAP (add. 16) waiting end, after that an other arrow turns ON. If within TAP (add. 16) time a next car call is not commanded, the new arrow turns OFF;
8.2.1 Next arrow direction The next direction of the arrow is use for reserved plants in particular in plants duplex, triplex and quadruplex. The display of the arrow only appears on the floor where he stopped the car. Turns on at the beginning of the slowdown and turns off at the end of the closing doors of the next departure. It’s possible to have this signalling in 2 ways:
• In parallel through external circuitry (see diagram below) +
Legend: FS= Up arrow FD= Down arrow RFS= Relay up arrow RFD= relay down arrow KG= Relay hight speed P0,P1,Pn°=Position n°
Next direction floor n°
+
+
Next direction floor 1
+
Next direction floor 0
CAR
+
KG
RFS
FD
RFD
+12
CONTROL BOARD
In serial: 58
P0
P1
Pn° Position floor n°
FS
RFD A2
Position floor 1
RFS A2
Position floor 0
FD
A1
1N4007
FS
1N4007
+
A1
You can activate the next direction of the arrow in the display serial:
ICARO_DSR_D00: appropriate programming menu 1 and 5 of the display: Set the number of floor for each display (32 = function off) menu 1, and activate the next direction to menu 5 (YES 5 =menu) For more information on programming see Manual display LCD600/601
LCD600 / LCD601: appropriate programming menu 1 and 5 of the display: Set the number of floor for each display (32 = function off) menu 1, and activate the next direction to menu 5 (YES 5 =menu) For more information on programming see Manual display LCD600/601
LCD4001: It’s possible to program the floor where the display is mounted by means of dip-switch.Off, Off, Off, Off, Off, On = First floor). To active the arrow next direction you need to set the dip switch 6 oN.
VEG800 (dip switch) / ITF801 It can be connected to the outputs of a bright Veg800 (version with the dip-switch) or ITF801 to operate the arrow next direction. If you also use the calls to the plans must need another serial VEG800/ITF800 Program the on-floor or ITF800 Veg800 serial devices (see Section 9.4 for programming) The ITF801 always work as arrow next direction, you just program the floor, on VEG800 you can enable this feature by configuring the number of floor with the DIP-switch with 6 = ON. See diagram below.
FLOOR n°
- Veg 800(with jumper) - Veg 800 (with dip-switch) -ITF800
-Veg800(with dip-switch)/ -ITF801
59
Control board
20 CL L1 1
CEX 20 KE CL
20 DIP- switch CL ON L0 1 2 3 4 5 6 0
CEX 20 KE CL
20 CL L1 1
CEX 20 KE CL
20 DIP- switch CL ON L0 1 2 3 4 5 6 0
CEX 20 KE CL
DIP SWITCH Es.Floor 1 1=ON
DIP SWITCH Es. Floor 1 1,6= ON Active the next arrow directione mode at floor 1
Next serial device
8.3CAR LIGHTING There are many way to light the car: light can be always ON light can turn ON or OFF together with reserved signal. In this case a relay has to be connected to OCC output and its relay contacts turn ON the car light light can turn OFF after a time higher than reserved signal time through one of the general TIMER (e.g. using TMR3, a relay connected to CPF output to manage the light and with FS3 input activation with reserved signal)
8.4LIGHTS Car and landing lights have many different meaning depending on plant type: Automatic Single call system Car lights show the ARRIVAL; Down landing lights show the RESERVED SIGNAL; Up landing lights show the ARRIVAL; Collective call system Both car and up/down landing lights show the RESERVATION. ‘Man Present’ call system Car lights show the ARRIVAL Down landing lights show the RESERVED signal; Position shows the presence
8.5RESERVED SIGNAL Reserved signal turns ON with following conditions: after first call entering in the car (when CCO is close) and even when there are over load or full load during INSPECTION SERVICE mode during INTERNAL mode during control board programming (PRESET enabling) during plant HALT The reserved signal turns OFF after a TOC time (programmable from ‘0’ to ‘99’ tenths of second at add. 24) from the end of last service.
8.6SKIPPING THE FLOOR INDICATION ON SERIAL DISPLAY In systems where there is a floor with no stops it possible to skip the indication of that floor in the serial display. To enable this function it is necessary to program the number of the floor to skip floor plus 50 (considering always the lower floor as floor number 0) at address 39 (NPM) and add 1 to the value programmed ad address 33 (NS).For example, if we have a system with 6 floors (position from 0 to 5) but without stops at floor 3 (counted always starting from 0), it is possible to skip the visualization of the floor position in the serial display, passing from position 2 to 4 in up direction and from position 4 to 2 in down direction, programming the value 53 (3 + 50) at add. 39 and the value 11 (10 + 1) at add. 33.
NOTE: if this function is enabled it’s not possible use the fire service operation and the firefighters operation.
60
9.
SIGNALLING
9.1AUTOMATIC RELEVELLING It’s a manoeuvre that permits an accuracy levelling of car when this one is stopped at landing: if IF signal is deactivated while ICV is not yet, TS contactor is activated if ICV signal is deactivated while IF is not yet, TD contactor is activated. If this manoeuvre’s duration is greater then RIP programmable time (add. 30), plant is blocked permanently with fault code ‘82’. Relevelling is enabled both with close doors (programming ‘16’at the add. 62 ) and with open doors (CS open) This operation doesn’t carry out if: Plant is blocked for the occurrence of fault ‘82’ Plant is blocked for the occurrence of fault ‘83’ Contactor are jammed. Inspection or Emergency service mode is active. CS1 input signal kept opened (when safety circuit is enabled, do not programming value ‘+4’ at address 62) ALT button pushed (then if plant is in overrun fault). If APA input controls relevelling operations (‘+8’ at add. 62) but it is opened, that is the car is out of relevelling zone. In Programming mode (PRESET mode).
9.2EMERGENCY SERVICE MODE It is activated when there is a power cut. It is suited both for rope and hydraulic plants. Operation begins when EM input is closed to GND and avoiding the control board power off (wiring a battery to BAT connector). This operation works both in hydraulic plant and in rope plant. There will be the following situations for this operation: In inspection service mode it is disabled. It is enabled even in systems without head and pit. Safety inputs must be powered on during the emergency service mode. In rope systems, programming the value ‘98’ at address 31, the stop delay (TRIF) is disabled during Emergency Manoeuvre. FS3 change’s control is disabled. Movable platform is deactivated (CCO). car overload (CCS) sensors are deactivated. all displays are switched off except for the car’s one. The Alarms for the serial communications are disabled: Alarm ’62 and Alarm ‘63’. Synchronising sensors faults are deactivated: fault ‘55’ ‘54’. Run direction control is deactivated: fault ‘84’. Doors checking are deactivated: fault ‘50’, ‘61’, ‘48’ and ‘49’. When EM is released, after the car has finished the current action, emergency service mode is disabled.
9.2.1 Emergency Service Mode in Hydraulic Plant The operation depends on the value programmed at the add. 43 (PPE). PPE = 32 the car carry out a synchronising operation excluding sensors controls, goes to the landing 0 until RD synchronising sensors; then it stops and commands the opening of the main entrance for all the busy signal time. PPE < 32 and PPE < plant’s number of stops: If the car is in stop zone, opens the doors; If the car is halted at an upper level of PPE, reaches it with a regular stop; If the car is out of floor, under PPE floor, reaches the lower level and opens the doors. PPE < 32 and PPE > plant’s number of stops the car goes down, stops at the nearest floor and opens the doors. 61
Indipending on PPE value, during the emergency service mode, the RE-LEVELLING is always deactivated.
9.2.2 Emergency Service Mode in Rope Plant The operation depends on the value programmed at the add. 43 (PPE). PPE = 32 the car goes down, stops at the first IF and commands the doors opening for the busy signal time. In the rope plants at 2 speed TG is commanded instead TP. PPE = 31 will be enabled the emergency operation with the search for the optimum direction of motion. The operation is described below: If the EM input is activated when the car is moving and the ALT signal is not interrupted, the car continues to move (until reaches the first floor that meets) in the same direction in which it was already moving; If the ALT signal is interrupted (this will cause the stop of the car) before the activation of the EM input, the control board activates the search for the optimum direction of motion. When the ALT signal comes back, thje control board try to move the car in one of the two directions and at each interruption and return of ALT signal the control board reverses the direction in which attempts to move the car.. To interrupt the ALT signal to search for the optimum direction of motion it is necessary to connect a control contact of the emergency device in serie s to ALT input. So the ALT input is interrupted if there is an overload of the emergency device (the overload occurs when the car moves in the unfavourable direction). Can be programmed a waiting time for a new attempt after the interruption and return of ALT signal. This waiting time is programmable at address 30 (RIP). If the car never reaches the floor when moving in one direction, the control board stops the operation after a timeout time programmable at address 27 even if the ALT signal was not interrupted, and after the time programmed at address 30 makes a new attempt in the opposite direction. PPE < 31 and PPE < plant’s number of stops: If the car is in stop zone, opens the doors; If the car is halted at an upper level of PPE, reaches it with a regular stop; If the car is out of floor, under PPE floor, reaches the lower level and opens the doors. PPE < 31 and PPE > plant’s number of stops the car goes down, stops at the nearest floor and opens the doors. During the emergency service mode, the synchronising contactors are always deactivated and the low speed is forced.
9.3PLATFORM MANAGEMENT To enable platform management or the “Man Present” call managment, must be programmed the value ‘2’ at address 63 and wire separately landing calls and car calls (like a down collective plant) . For the correct working of platform lifts with ‘Man Present’ Mode you must enable the multiplexing of the call’s inputs adding value '+64' at address 61. This management includes the following actions: Car runs only if call button (car or landing ones) is kept pressed All landing buttons are ignored when car runs for a car call When car is busy for an external call, other landing calls are ignored until the corresponding call button is pressed. If the current call button is released, car is still reserved for this call until car reserved signal is active, but car stops when the call button is released. The control board is able to manage variations of these operations. In fact, if the third entrance is not enabled (‘0’ at add. 3), INT input signal is the activation command of this service mode in this way: If INT is always connected to GND: car and landing calls are managed like single call plant’s ones If INT is connected to GND when car is not reserved: car calls are served like “man-present” service’s ones and landing calls are served like automatic single call system’s ones. To connect INT to GND when car is not reserved, it is possible to wire this input to: A “presence in car” sensor (car reserved). A car call button circuit properly configured. To the AP2 output signal, that is, in this condition, active (closed to GND) when plant is not reserved or when landing call is active. 62
If INT input is always open: car and landing calls are managed like “man-present” service’s ones.
9.3.1 Electric Platforms In case of elevating platform powered by an electric winch controlled by VVVF you need to: PROGRAM ROPE SYSTEM (address 6) Programming at address 25 (TST time) a value greather than 70, it is possibile to delay (delay = (TST – 70) tenths of a second) the disactivation of contactors (TP output) compared to the commands of the VVVF (TS and TD outputs) to allow the ramp for the stop. Otherwise can be used the Stop Delay (TRIF) as for the rope systems. With this functions it is possible to have a soft stop (the stops is completed with the ramp of the VVVF even if the call push-button is released). At address 1 it is possibile to choose if you want a one speed system or a two speed system.
MANAGMENT OF THE SAFETY CIRCUIT. At address 31 program the value ‘98’. So the RU output is used to enable the safety circuit to bypass the locks of the external door at the landing. With this set up the timer TMR1 is not available. At address 62 add the value ‘+8’ to enable the APA input. Moreover can be enabled the check of the safety circuit on input CS1 adding the value ‘+4’ at address 62.
9.4REDUCED HEADROOM AND PIT MANAGMENT. When a building has realization problems related to lack of space or special structural and regulatory constraints, you can install special equipment made in accordance with local rules,
To perform maintenance in the elevator shaft you need:
Enter in maintenance working mode (activate the input MAN); You can move the car with PSM and PDM maintenance buttons Press the Stop button (in the pit or in the head) and insert the safety stakes Carry out any maintenance; Remove the safety stakes and re-enable the Stop button; Exit the maintenance mode and enter the "normal". The board will show the code "88"; To reset the system press the SPEEDY button for 3 seconds at least
9.5PRIORITY CALL A priority call can be made from one of the floors by closing the external key on that floor. You can make a priority call from all floors by reusing the same input “INT” used for the “internal mode” and you can activated it following the same paragraph.It is activated if: -You program “0” in address 3, otherwise “INT” is the door photodetector for third entrance: 63
-“Man present mode” is not activated by not programming +2 in address 63 throught a proper wiring, as showed in the picture below. After a priority call all previous calls are deleted, the open doors parking with close door activated and every type of automatic return is deactivated. The first priority call excludes all the others that follow. Here is what after a priority call can happened: If the car is going in an opposite direction of the first floor where the call has been made and then it moves towards the priority call floor. If the car is stationary, it immediately moves towards the priority call floor when the car reaches the priority call floor, you can close the internal key and move the car with an internal mode after removing the external key. In this way, every other priority call will be ignored. NOTE: if the priority mode is from a single floor, you can: Use the fire service mode to manage a priority call from 1 floor Use the classic “internal mode” Control Board
GND 12
14
13
C/ L 0
C/ L 1
15
C/ L 2
16
C/ L 3
17
C/ L 4
CL 1
C/ L 5
S/ L 0
3
5
7
2
S/ L 1 S/ L 2 S/ L 3 S/ L 4
EXTERNAL
INTERNAL CALL
9
4
6
8
10
INT
D/ L 1 D/ L 2 D/ L 3 D/ L 4 D/ L 5
EXTERNAL
UP
DOWN
CALL
CALL
UP/DOWN COLLECTIVE WIRING Internal Key
Key to floor 0
Key to floor 1
Key to floor 2
Key to floor 3
Key to floor 4
Key to floor 5
9.6INTERNAL MODE This operation is enabled closing INT input signal to GND after programming ‘0’ at address 3 and if “man-present” service is disabled (not programming ‘+2’ at add. 63). This activation causes these actions: cancellation of all reservations (car one and landing one); the car remains reserved with open doors; accept a car calls at a time.
9.7MOUNTING OPERATION To enable inspection mode during plant mounting phase, it is necessary to connect RS and RD connectors to GND and to connect the EXC, ALT, CS and CT connectors to manouvre voltage. ùEnter in Inspection service mode and so press the PSM push button to go up or PDM to go down. The car speed in inspection mode will be the one programmed at address 4. NOTE: CAR DO NOT STOP at extreme landing if you keep pressed the push button becouse synchronising sensors are not there.
9.8INSPECTION SERVICE MODE Inspection mode is activated when MAN input signal is connected to GND or moving the switch present on the programming keypad DISP900 in MAN position. If the inspection mode is activated through the switch of the programming keypad, is possible to move the car with the buttons UP (to move the car in up direction) and DW (to move the car in down direction) of DISP900. NOTE: The inspection mode activated through the inspection panel on the roof of the car (activated on MAN Input) is prioritary compared with the inspection mode activated through the switch of the programming keypad DISP900. So if 64
the MAN input is active, it is not possibile to move the car in Inspection Mode using the buttons UP and DW of the programming Keypad DISP900. At the address 62 MAN input can be programmed normally closed (‘+1’ => the Inspection Mode is active when the MAN input is open) or normally open (do not program ‘+1’ => the Inspection Mode is active when the MAN input is closed). This type of manoeuvre is carried out in this way: All reservation/calls are cancelled (current e future ones); Car can move only keeping pressed the PDM (down direction run) or PSM (up direction run) button placed on the car roof. Pressing at the same time these two buttons, car is stopped. Buttons are enabled after RITING programmable time (add.45) since the car stopping, that is when contactors trip and buttons are released; Door closing is activated after the PDM or PSM pressure if photosensor, PAP, car load complete and ALT signals are inactive. When inspection service is deactivated, doors are opened if car is at the landing. Car can run at high speed (‘0’ or ‘2’ at add. 4) or low speed ( ‘1’ or ‘3’at add. 4) and it can stop (also when PDM or PSM buttons are pressed) on synchronizing sensors (‘0’ or ‘1’ at add. 4) or at the extreme floor on IF sensor (‘2’ or ‘3’ at add. 4); During this service are not active: The Alarms for the serial communications: Alarm ’62 and Alarm ‘63’. Maximum car run time; High speed, in inspection mode car can move only at running speed V1P; Resrved car sensor (presence in car sensor or MOVABLE PLATFORM); relevelling; emergency service; door pre-opening; FS3 change’s checking; At the end of inspection service mode, after the operator had left the car roof and the door had been closed, the car stands until a new call is made (a car call or a landing call). NOTE: If plant has 3 speeds with immediate halt (programming ‘4’ or ‘12’ at add. 5), when the first call is done, automatic car call at an extreme landing is activated to avoid wrong floors’ count.
9.8.1 Hand operation Activating MAN and CCS together, car is moved to the nearest floor in low speed, with PDM/PSM push buttons. Car is stopped even if the push button remains active. Once car is stopped, doors are opened.
9.9SYNCRONIZING/PHASING After an outage, the system has to synchronize itself, except if car is already at an extreme landing. It is possible to choose the extreme landing where to go at add. 19. If there is a car sensor faulty (sensor doesn’t open at extreme landing), plant tries to phase on the opposite extreme landing. Phasing can start automatically, that is without pressing any call’s push buttons (‘0’ or ‘4’ at the add. 13) or manually, that is after pressing a call push button (‘8’ or ‘12’ at add. 13). When there are manual doors it is necessary to program even the manual phasing mode. In an hydraulic system, if the car is stopped at landing ‘zero’ out of floor but in RD zone, at power on, car goes up until it leaves the synchronizing sensor and then it goes back to landing ‘zero’. If you have programmed parking with close doors, doors opening is disabled.
9.10
FIRE SERVICE
There are two operating mode: FIRE SERVICE mode and FIREFIGHTERS SERVICE mode.
9.10.1
Fire Service Mode
This operation is enabled only when parameter at address 39 (NPM) is set at a value < ’32’. If NPM = 32, fire service mode is always disabled. In order to activate this service mode, it is possible use one of these input signals: FS3, programming ‘96’, ‘97’ or ‘98’ at address 29 (CHF); PCP, otherwise (when FS3 is used for other function and if PCP is not used yet for doors closing push button). When this signal is activated: 65
All calls are cancelled; PAP (opening doors push button) remains active; Re-opening devices (photocells and car sensors) are disabled; An automatic call to NPM landing (add.39) is done after the end of the call in progress, to avoid sudden car u-turn. If with manual doors or a manual command -Open, remain stop at the floor; -Close, go to designed floor An elevator that runs from the designated floor, it stops on the first floor as possible, reverse direction and go without opening the doors to floor designated NPM (ind.39). An elevator in moving in direction of the designated floor ,continues without stopping, until at floor designed. If you block the intervention of a safety device, remain blocked. When the car arrives to the designated floor, must remain in parking with automatic doors open and be removed from the normal working; The manual doors must be unlocked and the elevator must be removed rom the normal working.
9.10.2
Firefighters Service Mode (EN 81-70)
To enable firefighters service mode CHF parameter (add.29) has to be programmed with ‘96’ value. This operation is enabled only when parameter at address 39 (NPM) is set at a value < ’32’. If NPM = 32 or CHF is different from ‘96’, firefighters service mode is always disabled. In accordance with EN 81 –72 July 2003 – 72 part STANDARDS, this operation is divided into 2 phases: the first one guarantees the shorter time for the car to reach the NPM floor (in case of FIRE) to be used from firefighters; the second one manages the car when car is under firefighters control. Setting CHF = ‘96’: Activation of forced closing and alarm horn on CPF output. FS3 is used like Phase 1 activation command: ‘priority recall for the firefighters lift’. (fire service mode) FS3 + INT are used like Phase 2 activation commands: ‘use of the lift under firefighters control’. (firefighters service mode) Check of the second key in car with INT input.
The operation mode can be resumed with the following points: Fire service mode is used for Phase 1 to guarantee the priority recall for firefighters landing (in this case is fire-fighting). If car is running in opposite direction in respect to the firefighters floor, it is stopped at first floor that it founds, don’t open the doors and then leaves for firefighters landing, otherwise reaches the firefighters landing without intermediate stops. If the car is standing with open doors at a parking floor different from firefighters floor, or if doors are halted, when firefighters service mode is activated, after 2 minutes that doors remains open, a forced closing will be activated. When the door is closed, the car will leave for firefighters landing. Phase 2, car is under control of firefighters; This phase is activated just at firefighters landing arrival and when INT and CEP (FS3 connector) are active. Phase 2 needs a particular firefighter lift switches management as described below:
INT Internal switch (optional in car)
66
CEP External switch (at fire-fighting landing)
0
0
0
1
1
0
1
1
Description Blocked plant with open doors, if it is at fire-fighting landing. If this situation remains for a time > 5 seconds, plant goes back to the standard mode. Blocked plant with open doors Standard fire-fighting mode (man present doors opening), closed doors parking Standard fire-fighting mode (man present doors opening), closed doors parking
If internal key is disabled, system is blocked with open doors , otherwise if this key is set at ‘1’, system works in compliance with rule, that is with ‘man present’ doors opening. The second key (the one in the car) is optional, so there are system with only one key. In this case will be necessary to connect together FS3 and INT, so 00 and 11 will be the only possible combinations. Once arrived at desired landing, doors remain closed. Only with a constant pressure of PAP push-button doors are opened, but if the push button is left before the complete doors opening, doors will close. When doors are completely open, they remains open until a new car’s call is made.
67
10. SERIAL EXPANSIONS 10.1
WIRINGS
In order to minimize noise and interferences on communication between control board and serial board, it is important to assign the 4 wires of the multipole falt cable as shown in the figure below. 1 K I
2 2 0
3
4
16
CI N
CL
1
13 14 15 16 C L
C I N
2 0
K I
OTHERWISE
It is also good to keep the wires that carry the power supply and the commands to the door operator on the others side of the falt cable compared to the wires that carry serial communication, especially in the case of operators doors at 380 Vac. In these cases (with 380Vac door operators) it is appropriate to take precautions with special filtering to prevent disturbance to the serial communication between the control board and the peripheral boards.
68
Serial Display
10.1.1
TFT 5.7”
SERCAR_LCD2.4 _03
SERCAR_LCD2.4/LCD600 SERCAR SCREEN LCD4001
LCD601
ICARO_D SR
FLOORDIS
Car Signalling
LCD600-601
OUT OF SERVICE
OUT OF SERVICE icon “MA” … “Ooverload” icon
MAINTENANCE GONG OVERLOAD Full load ALARM ACTIVE ALARM RECEIVE FIREMAN PRIORITY CALL EMERGENCY
NOTE: * Scrolling text Floor Signalling
“C” “alarm active” icon “AR” “P” “P” …
Lcd4001/Sercar_screen/ Icaro_DSR/Floordis FS
“MA” gong “SC”+(Icon+ buzzer) … *“ALARM”
MA
“AR” “P” “P” EM+icon Overload+ Buzzer
TFT 5.7”-TFT210
SC
“OUT OF SERVICE” icon “Manuteinance” icon Gong “Overload” icon
… …
“Full load” icon “Alarm active” icon
… … … EM
“Alarm receive” icon “Fireman” icon “Riserve” icon Emergency light + Emergeny icon
OUT OF SERVICE
“F”
LCD4001/ Icaro_Dsr/ Floordis “F”
MAINTENANCE
“F”
“F”
GONG
…
OVERLOAD Full load ALLARM ACTIVE
“C” “C” “A”
Only in mode next direction arrow “C” “C” “A”
ALLARM RECEIVE FIREMAN PRIORITY CALL EMERGENCY
… “P” “P” …
… “P” “P” …
10.2
Sercar lcd_2.4/ sercar screen
Sercar_lcd2. 4 “FS”
LCD600-601
TFT 5.7”-TFT210
OUT OF SERVICE OUT OF SERVICE Only in mode next direction arrow “Ooverload” icon “Ooverload” icon “alarm active” icon … “P” “P” …
“OUT OF SERVICE” icon “Manuteinance” icon … “Overload” icon “Full load” icon “Alarm active” icon “Alarm receive” icon “Fireman” icon “Riserve” icon Emergency light + Emergeny icon
CAR’S SERIALS (VEG400, SERCAR_LCD)
The car’s serials are board with 24 digital inputs and 24 digital outputs. This boards can be connected on the same serial channel (max 4 boards on the same channel) and can be distinguished assigning to each board a unique address. This address can be assigned with the opportune bridge on the apposite Jumpers. To the car’s serials is possible to connect both the signals of the calls and the signals for the services. These signals are then sent to the control board through a serial protocol framework. The number of serial boards needed to meet a given installation depends on the number of floors of the plant to achieve, and on the signals you want to bring to the control board with the serial framework (only the calls’ signals or calls’ signals + signals of services): If the system has a number of stops less than 13, it is possibile to connect all the signals (calls’s one and services’s one) to one serial board. Ref paragraph 10.1.1 e 10.1.2 69
If the system has a number of stops greather than 13 can be used two serial board depending on your needs: If you need to use the serial framework only for the car’s calls, only a serial board is needed. Ref paragraph 10.1.3. If you need to use the serial framework for both car’s calls and services’ signals, two serial board are nedeed. Ref paragraph 10.1.3.
70
10.2.1
Serial Board VEG400
+12Vdc CK 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
GND DA L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23
P I C 1 6 C 6 2 B
71
Input and Output Connections to serial board VEG400 KI CONTROL BOARD DIN
0 1 2 ………………………………. 23 Inputs CK VEG400 DA Outputs L0 L1 L2 ……………………………L23
INPUTS SINGLE FULL COLLECTIVE AUTOMATIC Inp. 1entr. 2entr. 3entr. 1entr. 2entr. 0 C0 C0 C0 C0 C0 1 C1 C1 C1 C1 C1 2 C2 C2 C2 C2 C2 3 C3 C3 C3 C3 C3 4 C4 C4 C4 C4 C4 5 C5 C5 C5 C5 C5 6 C6 C6 C6 C6 C6 7 C7 C7 C7 C7 C7 8 C8 C8 C8 C8 C8 9 C9 C9 C9 C9 C9 10 C10 C10 C10 C10 C10 11 C11 C11 CM3 C11 CCC/C11 12 C12 CM2 CM2 CCC/C12 CM2 13 CCS CCS CCS CCS CCS 14 MAN MAN MAN MAN MAN 15 CCO CCO CCO CCO CCO 16 CM1 CM1 CM1 CM1 CM1 17 PAP PAP PAP PAP PAP 18 PSM PSM PSM PSM PSM 19 PDM PDM PDM PDM PDM 20OUTPUTS RS RS RS RS RS 21 RDSINGLE RD AUTOMATIC RD RDCALL RD 22OUT.ICVTYPEICV ICV ICV ICV A TYPE B 23 IF 1 IF IF IF IF1 2 3 entrance entrances entrances entrance L0 P0-A0 P0-A0 P0-A0 A0 L1 P1-A1 P1-A1 P1-A1 A1 L2 P2-A2 P2-A2 P2-A2 A2 L3 P3-A3 P3-A3 P3-A3 A3 L4 P4-A4 P4-A4 P4-A4 A4 L5 P5-A5 P5-A5 P5-A5 A5 L6 P6-A6 P6-A6 P6-A6 A6 L7 P7-A7 P7-A7 P7-A7 A7 L8 P8-A8 P8-A8 P8-A8 A8 L9 P9-A9 P9-A9 P9-A9 A9 L10 P10-A10 P10-A10 P10-A10 A10 L11 P11-A11 P11-A11 -A11 L12 P12-A12 --A12 L13 --AP3 -L14 --CP3 -L15 -AP2 AP2 -L16 SAR CP2 CP2 SAR L17 AP1 AP1 AP1 AP1 L18 CP1 CP1 CP1 CP1 L19 OCC OCC OCC OCC L20 GONG GONG GONG GONG L21 SNR SNR SNR SNR L22 FS FS FS FS L23 FD FD FD FD 72
NOTES
Cn = Car call button 3entr. CCS,MAN,CCO,CM1,PAP,PSM,PDM,RS,RD,ICV,IF, CM2,CM3,CCC = Input signal wired directly to the C0 C1 Note1: To enable car call button instead of CCC signal, C2 program the parameter at address 38 and wire CCC signal C3 to the control board. C4 C5 Note2: C6 In order to reduce complexity and lenght of site work, C7 control board reads in parallel some signals: C8 Calls Cn C9 CCC CCC/C10 CCS CM3 MAN CM2 PSM CCS PDM RS MAN RD CCO CM1 PAP PSM PDM RS RD COLLECTIVE CALL ICV 2IF 3 1 2 3 entrances A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 ---AP2 CP2 AP1 CP1 OCC GONG SNR FS FD
entrances A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 --AP3 CP3 AP2 CP2 AP1 CP1 OCC GONG SNR FS FD
entrance LC0-A0 LC1-A1 LC2-A2 LC3-A3 LC4-A4 LC5-A5 LC6-A6 LC7-A7 LC8-A8 LC9-A9 LC10-A10 LC11-A11 LC12-A12 ---SAR AP1 CP1 OCC GONG SNR FS FD
entrances LC0-A0 LC1-A1 LC2-A2 LC3-A3 LC4-A4 LC5-A5 LC6-A6 LC7-A7 LC8-A8 LC9-A9 LC10-A10 LC11-A11 ---AP2 CP2 AP1 CP1 OCC GONG SNR FS FD
entrances LC0-A0 LC1-A1 LC2-A2 LC3-A3 LC4-A4 LC5-A5 LC6-A6 LC7-A7 LC8-A8 LC9-A9 LC10-A10 --AP3 CP3 AP2 CP2 AP1 CP1 OCC GONG SNR FS FD
NOTES Pn = Position at floor n An = Arrival at floor n LCn = Car’s reservation at floor n AP1,CP1,OCC,GONG,SNR,FS,FD,AP2,CP2,AP3,CP3= Serialized Output signals of the contol panel. NOTE: The serialized output signals of the control panel are always priority respect to the light signalling.
N.B. When it is programmed serial board type A, in both types of plant, arrival landing signalling has to be blinked because it is laid on the car position and the calls ones that are fixed lights. When it is programmed serial board type B, in single automatic call systems the arrival and position signalling are separated (are on different connectors) then it is possible choose fixed or blinked lights for the arrival signalling (programmable at address 5, FIXED OR BLINKED LIGHT). IMPORTANT As described in the preceding tables, the maximum number of floors that can be managed with car’s serial expansion board is 13 for normal system (with one access), 12 for double access and 11 for systems with 3 entrances. Depending on the value programmed at address 61 you can have two types of mapping for the serial outputs: fixed or dynamic. Not adding the value ‘+0’ at address 61, the serial board works with fixed mapping for the outputs. So if the total number of floors is less then 8, the first free connector is used to signal car position (no particular programming is needed, there is an automatic configuration). So this last management is used when the maximum plant’s floors number is 8 if car has only 1 entrance, 7 landings if it has 2 entrances and 6 if 3 entrances system. Otherwise, adding the value ‘+16’ at address 60 (NUMCH) the serial board works with fixed mapping for the outputs and there are two fixed mapping depending on the number of stops. If the number of stops is <= 8 you have the position signalled with one pole for floor, if the number of stops is > 8 and <= 12 you have the position signalled with binary code. NOTE: * = same signal as table at previous page. OUTPUTS OUTPUT Ind.60 ‘+16’ Ind.60 ‘+0’ (Fixed Mapping) (Dynamic Mapping) The mapping depends on the number of stops (parameter NF) Up to 8 Up to 12 Example Example Example Example Example stops stops NF = 2 NF = 3 NF = 4 NF = 5 NF = 7 (NF <= 8) (NF <= 12) L0 * * * * * * * L1 * * * * * * * L2 * * P0 * * * * L3 * * P1 P0 * * * L4 * * * P1 P0 * * L5 * * * P2 P1 P0 * L6 * * * * P2 P1 * L7 * * * * P3 P2 P0 L8 P0 * * * * P3 P1 L9 P1 * * * * P4 P2 L10 P2 * * * * * P3 L11 P3 * * * * * P4 L12 P4 A * * * * P5 L13 P5 B * * * * P6 L14 P6 C * * * * * L15 P7 D * * * * * L16 * * * * * * * L17 * * * * * * * L18 * * * * * * * L19 * * * * * * * L20 * * * * * * * L21 * * * * * * * L22 * * * * * * * L23 * * * * * * * 73
10.2.2
SERCAR_LCD
The serial card SERCAR_LCD has 24 Inputs/Outputs for connecting calls and signals of service, with fast connection AMP and also has an LCD display. There are no jumpers to set the address in the serial communication, so the card has a fixed address "0".
SERCAR_LCD_03_2.4
SERCAR_LCD_2.4
Car push button “11”
EXPANSION
11 0
Icon*: -Alarm active; -Alarm receive.
V.0.9A
Disabling buzzer
Serial connector
PCP PAP
Buzzer Jumper for
Enabling call
1
0
4 3
2 0
5
4 0
7
6 0
8 0
9
10 0
Car push buttons
Nota: *The connector ALM is only available for the model SERCAR_LCD_03_2.4 11
PCP
PAP
ESPANSIONI +12V KI GND DIN
GND +12v L11 I11
AA+ AAAR+ AR-
11
POW
ALM*
PCP PAP
SERCAR_LCD_03_2.4
5
6
7
9
8
GND +12v L9 I9
GND +12v L8 I8
8
9
10 GND +12v L10 I10
7 GND +12v L7 I7
4
6 GND +12v L6 I6
3
GND +12v L5 I5
GND +12v L2 I2
2
GND +12v L4 I4
1
5
4
3
2
GND +12v L3 I3
0
1 GND +12v L1 I1
GND +12v L0 I0
0
10
To the SERCAR_LCD without expansion can be connected up to 12 calls but there are no input for the service signals. 74
It is possible the use of some expansion boards designed for several applications. So you can connect the service signals or extend the number of calls (up to 24 calls): SERADP03: this board is supplied with a box so can be mounted on DIN rail and with screw connectors. So this board is suitable to be mounted above the car and to collect and deliver the service signals as Inspection signals and signals for door’s operator etc.
SERADP04: is a little board supplied with AMP connectors and a double-sided adhesive to the back so to occupy a small space and be easily attached to the back of the operating panel of the car. This expansion board is designed to collect car’s calls (for system with number of stops greater than 12) which can not be connected directly to SERCAR_LCD board.
The Input/Output mapping of the board SERCAR_LCD is the same of the board VEG400 so you should refer to the mapping tables for the board VEG400. Ref paragraph 9.1.1.
75
10.2.3
Using Two Car’s Serial Board
If the number of stops is greather than 13 and you want the serial connection both for car’s calls (up to 16) and for the service signals, then you need to use two serial expansion board. The two serial boards must have two different addresses to work correctly. To SERCAR_LCD can not be assigned an address so it has always the address 0. To VEG0400 can be assigned an address through the apposite jumpers. You connect all the calls and signalling lights to the serial that is assigned the address 0, while to the other serial (that with address 1) you connect the service signals. NOTE: The second serial board (the one with address 1) can not be required if you want to provide a serial connection only for car’s calls (up to 16 calls). 012 ..................................................................... CK ....23 VEG0400 Inputs DA Jp Add. Jp 0 1 Outputs 2 L0 L1 L2
KI CONTROL BOARD DIN
...............................................................L2 3 012 ..................................................................... CK ....23 VEG0400 Inputs DA Jp Add.1 Jp 1 Outputs 2 L0 L1 L2 ...............................................................L2 In the following tables are reported the Input/Output mappings if two serial board are used (this is the mapping in the worst 3 case). INPUTS’ TABLE SINGLE AUTOMATIC CALL 3 ENTRANCES
76
Inp.
Add. 0
Add. 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23
C24 C25 C26 C27 C28 C29 C30 C31 ---CM3 CM2 CCS MAN CCO CM1 PAP PSM PDM RS RD ICV IF
COLLECTIVE CALL 3 ENTRANCES Add. Add. 1 0 C0 C24 C1 C25 C2 C26 C3 C27 C4 C28 C5 C29 C6 C30 C7 C31 C8 -C9 -C10 CCC C11 CM3 C12 CM2 C13 CCS C14 MAN C15 CCO C16 CM1 C17 PAP C18 PSM C19 PDM C20 RS C21 RD C22 ICV C23 IF
OUTPUTS’ TABLE SINGLE AUTOMATIC CALL COLLECTIVE CALL (Up to 32 stops) (Up to 32 stops) TYPE A TYPE B 3 ENTRANCES 3 ENTRANCES 3 ENTRANCES Output Add. 0 Add. 1 Add. 0 Add. 1 Add. 0 Add. 1 L0 P0-A0 P24-A24 A0 P8 LC0-A0 LC24-A24 L1 P1-A1 P25-A25 A1 P9 LC1-A1 LC25-A25 L2 P2-A2 P26-A26 A2 P10 LC2-A2 LC26-A26 L3 P3-A3 P27-A27 A3 P11 LC3-A3 LC27-A27 L4 P4-A4 P28-A28 A4 P12 LC4-A4 LC28-A28 L5 P5-A5 P29-A29 A5 P13 LC5-A5 LC29-A29 L6 P6-A6 P30-A30 A6 P14 LC6-A6 LC30-A30 L7 P7-A7 P31-A31 A7 P15 LC7-A7 LC31-A31 L8 P8-A8 A A8 A LC8-A8 A L9 P9-A9 B A9 B LC9-A9 B L10 P10-A10 C A10 C LC10-A10 C L11 P11-A11 D A11 D LC11-A11 D L12 P12-A12 E A12 E LC12-A12 E L13 P13-A13 AP3 A13 AP3 LC13-A13 AP3 L14 P14-A14 CP3 A14 CP3 LC14-A14 CP3 L15 P15-A15 AP2 A15 AP2 LC15-A15 AP2 L16 P16-A16 CP2 P0 CP2 LC16-A16 CP2 L17 P17-A17 AP1 P1 AP1 LC17-A17 AP1 L18 P18-A18 CP1 P2 CP1 LC18-A18 CP1 L19 P19-A19 OCC P3 PDM LC19-A19 OCC L20 P20-A20 GONG P4 RS LC20-A20 GONG L21 P21-A21 SNR P5 RD LC21-A21 SNR L22 P22-A22 FS P6 ICV LC22-A22 FS L23 P23-A23 FD P7 IF LC23-A23 FD Adding at parameter 60 the value ‘16’ the outputs’ mapping changes as shown in the table below. Outputs L16, L17, L18, L19 of the serial board with address 0 inicate the position with the binary code. INPUTS
OUTPUTS’ TABLE COLLECTIVE CALL
SINGLE AUTOMATIC CALL Inp. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 77
Add. 0 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15/PCP CM1 PAP PSM PDM RS RD ICV IF
Output L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23
TYPE A/ 3 ent. Add. 0 Add. 1 P0-A0 --P1-A1 --P2-A2 --P3-A3 --P4-A4 --P5-A5 --P6-A6 --P7-A7 --P8-A8 --P9-A9 --P10-A10 --P11-A11 --P12-A12 --P13-A13 AP3 P14-A14 CP3 P15-A15 AP2 A CP2 B AP1 C CP1 D OCC GONG GONG SNR SNR FS FS FD FD
TYPE B/ Add. 0 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A B C D GONG SNR FS FD
3 ent. Add. 1 ----------------------------CP3 AP2 CP2 AP1 CP1 PDM RS RD ICV IF
3 entrances Add. 0 LC0-A0 LC1-A1 LC2-A2 LC3-A3 LC4-A4 LC5-A5 LC6-A6 LC7-A7 LC8-A8 LC9-A9 LC10-A10 LC11-A11 LC12-A12 LC13-A13 LC14-A14 LC15-A15 A B C D GONG SNR FS FD
Add. 1 --------------------------AP3 CP3 AP2 CP2 AP1 CP1 OCC GONG SNR FS FD
Applications 1° CASE – VEG400 +
VEG400 Using 2 VEG400: setup two different address “0” and “1” through the configuration jumper.
2° CASE – SERCAR_LCD + VEGA400 Currently the best solution to extend the calls and to have the service signals is to use a SERCAR_LCD + SERADP04 board to collect the car’s calls and use a VEG400 to collect and deliver the service signal. The address of the SERCAR_LCD board can not be configured and it is fixed to ‘0’. So the address of the VEG400 board must be set to ‘1’ through the configuration jumper. In this way all the car’s calls (up to 24) will be connected to the SERCAR_LCD board and all the service signals will be connected to the VEG400 board. Note A: GONG and OVERLOAD signalling in the SERCAR_LCD. When using a single serial board (number of floor <= 13), the outputs’ mapping provides the GONG and SNR (overload) signals respectively on outputs L20 – L21. The display mounted on SERCAR_LCD automatically reads these outputs to activate GONG’s bell and the Oveload Alarm. When using two serial boards (number of floors > 13) the outputs’ mapping changes. On the serial board with address ‘0’ the outputs L20 and L21 are used to signal the positions of floors P4 and P5. So the GONG’s bell and the overload Alarm will activate when the car reaches the floor 4 and floor 5. To avoid this situation you must jumper the pin 3 and pin 4 of the programming connector as shown in the figure below.
SNR (overload) and GONG signals will be no more used in the display. Note B: PAP and PCP pushbutton on SERCAR_LCD board. When using a single serial board (number of floor <= 13), the inputs’ mapping provides the connection of PCP (Door closing) pushbutton and PAP (Door opening) pushbutton respectively on inputs I15 and I17. The SERCAR_LCD board provides two additional AMP connectors for these signals. This signals are connected in parallel to the input I15 and I17.
When using two serial board (number of floors > 13) these two connectors can not be more used as the inputs’ mapping changes. The inputs for PAP signals and PCP signals move on the second serial board, the one with adrress ‘1’.
78
10.3
SERIAL BOARD FOR EXTERNAL CALLS
These expansion boards are used to collect the floors’ calls and trasmit them through the serial connectin to the control board. In addition, these cards also provide the light signals for the floors and the alarm signals.
10.3.1 Floors’ Serial boards (VEG602, VEG701, FLOORDIS, VEG800, ITF800,LCD600,LCD601) Inputs/Outputs mapping for floors’ serial boards This boards have 2 inputs used for the floors’ call pushbuttons and two output used for the floors’ light signal. In the tables below are shown the function of each input and each output. The functions associated to the inputs and to the outputs depend on the operation mode of the system: Single Automatic Call System or Collective Call System. The function of the L1 output depends on the value programmed at address 10 too. INPUTS’ MAPPING Single Automatic Call Input 0 CEx (External Call) 1 --
Collective Call Dx (Down Reservation) Sx (Up Reservation)
OUTPUTS’ MAPPING Single Automatic Call Output OCC (‘Busy’ light signal) L0
Collective Call LDx (Down light signal)
PRESENT (car at floor light signal) \ SA (‘Alarm Active’ light signal)
LSx (Up light signal) \ SA (‘Alarm Active’ light signal)
Programmable function at address 10 NOTE: In the case of universal plant you can decide to use the L1 output as present signal or as an alarm signal (set "0" or "16" at address 10). L1
CONTROL BOARD VIM
KE
GND
DEX
VIM KE GND DEX Min. size 0,5mm Until to 10 floor
2
ICARO DISPLAY
FLOOR 9 CB_VG0017 CB_VG0002
White CL KE Yellow Brown 20 CEX Green
VEG800
ICARO DISPLAY
FLOOR 0
VEG800
79
VEG800 Type of plant J1 J2
Collective Dw Push-button and light Up Push-button and light
J3 J4 BZ1
Serial connector Serial connector Buzzer
Single call Push button and “busy” signal Present light/SA( Alarm active signal) Jumper for programming of the floor
Next serial device J4
J1
0 L0 CL 20
CL KE 20 CEX ON
J3
CL KE 20 CEX
1
2 3
4
5
1 L1 CL 20
6
J2
Serial device Buzzer
VEG800 jumper version
PINOUT JP1-JP2 Serial connector
CEX
20
KE CL
CEX 20 KE CL
External serial data Power supply (-) External serial Clock
VEG800 dip-switch version
Power supply (+)
Dip switch for setting of the floor Next serial device
1 2 3 4 5 6
J3
CL KE 20 CEX
ON
J4
CL KE 20 CEX ON
1
2 3
4
5
6
0 L0 CL 20
J1
1 L1 CL 20
J2
Serial device
Buzzer
80
ITF800 Serial Board for landing commands -4 Led for diagnostics; -Connect up to 2 push buttons and 2 lights or arrows managements; PINOUT JP1-JP2 -programmable minigong and beep for push button pressing Serial connector -Programming with jumper or dip-switch DEX External serial data -Power supply 12-24Vdc +/- 10% DEX GNDKE Power supply (-) GND -Supply current: 40mA max VIM KE External serial Clock -Extra small 22x60 mm VIM Power supply (+)
Type of plant JP3 JP4
Collective Dw Push-button and light Up Push-button and light
JP1 JP2 DL1 DL2 DL3 DL4 BZ1
Serial connector Serial connector Diagnostic serial Diagnostic serial Status up push-button Status dw push-button Buzzer
Single call Push button and “busy” signal Present light/SA( Alarm active signal) Serial diagnostic: DL1: -Slow blinking (1 sec on 1 sec. Off), the display riceve the serial signals correctly. -Fast blinking= Serial Wiring incorrect or broken. DL2: Slow blinking= run the system (1 sec on and 1 sec off);
Push buttons diagnostic OFF
ON
DL4 DL3
Jumper version Jumper per la programmazione
Next serial device
Dw Push-button and light
DL3
JP3
DL4
JP4
JP1 DL1
DL2 ON
JP2 BZ1
UP Push-button and light
Serial device Dip switch version Dip switch for programming of the floor Next serial device DL3
JP3
DL4
JP4
Dw Push-button and light
JP1 DL1
DL2
DIP-switch
ON
JP2
1
BZ1
Serial devica 81
2 3
4
5
6
UP Push-button and light
Programming VEG800/ITF800:
Jumper version 1) Insert the jumper programming (DL1 LED blinking fast); 2) Press a button (JP3 or JP4) No. times to the depending floor (first floor 1 pressure): each press of the button, the buzzer sounds a short beep. 3) Remove the jumper programming to save the address of the floor; 4) To verify the programmed address, power cycle the board with jumper. The buzzer will No. beep depending of the stored floor. N° Floor 0 1 2 3 4 5 6 7 8 ... N
The version for the next arrow direction is available only in the model ITF801. The buttons for the collection calls are not handled.
Dip-switch:
DIP-SWITCH 6=ON You enable the arrow next direction* Note: *If use also the inputs for the collection of calls you have to use 2 ITF800 opportunely configured.
82
N° pressure 1 2 3 4 5 6 7 8 9 ... N+1
Dip switch version 6
5
4
3
2
1
FLOOR
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON
OFF OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON OFF OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON
OFF OFF OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON ON ON
OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON
OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
LCD600-601 Display Icaro con la raccolta delle chiamate di piano: LCD600
LCD601
External serial DEX GND KE VIM
LED’S DIAGNOSTIC: Push-buttons: At the pression of push button the led switch on. L0 (Push-button P0) and L1 (push-button P1)
LED DIAGNOSTIC SERIAL
OFF
LCD600
L0 L1
DL2 LED DIAGNOSTIC PUSH- BUTTON
P1
DL1
Serial diagnostic: DL2: Slow blinking= run the system (1 sec on and 1 sec off); DL1: Slow blinking, the display riceve the serial signals. Fast blinking= Serial Wiring incorrect or broken, or menù 1=32.
P0 L1
L0 SW1
SW2
Push-button Down reservation
Push-button Up reservation
ON
EXAMPLE OF CONNECTION: Collective calls (UP-DW).
CONTROL BOARD Serial external DEX
GND
KE
VIM
NOTE: * The write “NF” (NO FLOOR) is visualize of default.Must be setting a floor at MENU 1. Started of floor 0à Menu 1=0
SW1
SW2
Push-button Up reservation
+
+
Push-button Down reservation
Floor -1 *MENU 1 = 0 83
SW1
SW2
Push-button Up reservation
+
+
Push-button Down reservation
FLOOR 0 *MENU 1 = 1
SW1
SW2
Push-button Up reservation
+
+
Push-button Down reservation
FLOOR 30 *MENU 1 = 31
10.3.2
Collecting external calls with VEG400
The board VEG400 can be used to collect the external calls too. To do this you must connect the VEG400 board to the external serial channel as shown in the figure and program the control board adding at address 61 the value ‘+1’. KE Control Board
DEX
0 1 2 ........................................................23 Inputs CK DA VEG400 Outputs L0 L1 L2 ..............................................L23
As for car calls, when collecting external calls with the VEG400 board, may be necessary two serial board depending on the number of landings: Less then 12, one serial board is sufficient. Equal to12, you can use one serial board, but FS and FD signals are not available. More then 12 (up to 16), you must use 2 serial boards. Up to the 12 th landing, light signal and call’s pushbuttons are connected to the serial board with address 0; for the other landings, light signals and call’s pushbutton are connected to the second serial board (the one with address 1). The signals for the UP/DOWN direction light arrows (FS,FD) are also connected to the second serial board (address 1). In the tables below is shown the Inputs\Outpus mapping when using the car’s serial board to collect the external calls. INPUTS SINGLE In Add. 0 0 CE0 1 CE0 2 CE1 3 CE1 4 CE2 5 CE2 6 CE3 7 CE3 8 CE4 9 CE4 10 CE5 11 CE5 12 CE6 13 CE6 14 CE7 15 CE7 16 CE8 17 CE8 18 CE9 19 CE9 20 CE10 21 CE10 22 CE11 23 CE11
CALL Add. 1 CE12 CE12 CE13 CE13 CE14 CE14 CE15 CE15 CE16 CE16 CE17 CE17 CE18 CE18 CE19 CE19 CE20 CE20 CE21 CE21 CE22 CE22 CE23 CE24
COLLECTIVE CALL Add. 0 Add. 1 D0 D12 S0 S12 D1 D13 S1 S13 D2 D14 S2 S14 D3 D15 S3 S15 D4 D16 S4 S16 D5 D17 S5 S17 D6 D18 S6 S18 D7 D19 S7 S19 D8 D20 S8 S20 D9 D21 S9 S21 D10 D22 S10 S22 D11 D23 S11 S23
OUTPUTS SINGLE AUTOMATIC CALL Out Address 0 Address 1 L0 AD0 AD12 L1 AS0 AS12 L2 AD1 AD13 L3 AS1 AS13 L4 AD2 AD14 L5 AS2 AS14 L6 AD3 AD15 L7 AS3 AS15 L8 AD4 AD16 L9 AS4 AS16 L10 AD5 AD17 L11 AS5 AS17 L12 AD6 AD18 L13 AS6 AS18 L14 AD7 AD19 L15 AS7 AS19 L16 AD8 AD20 L17 AS8 AS20 L18 AD9 AD21 L19 AS9 AS21 L20 AD10 AD22 L21 AS10 AS22 L22 AD11/FS AD23/FS L23 AS11/FD AS23/FD
COLLECTIVE CALL Address 0 Address 1 LD0 LD12 LS0 LS12 LD1 LD13 LS1 LS13 LD2 LD14 LS2 LS14 LD3 LD15 LS3 LS15 LD4 LD16 LS4 LS16 LD5 LD17 LS5 LS17 LD6 LD18 LS6 LS18 LD7 LD19 LS7 LS19 LD8 LD20 LS8 LS20 LD9 LD21 LS9 LS21 LD10 LD22 LS10 LS22 LD11/FS LD23/FS LS11/FD LS23/FD
NOTES CEn Dn Sn ADn ASn LDn LSn
= landing call push button at floor ‘n’ (single automatic call systems) = call push button to go down at floor ‘n’ (collective call systems) = call push button to go up at floor ‘n’ (collective call systems) = down direction arrival’s light signal at floor ‘n’ = up direction arrival’s light signal at floor ‘n’ = down direction reservation’s light signal at floor ‘n’ = up direction reservation’ s light signal at floor ‘n’
NOTE: The address selection of the two car’s serial boards when used to collect the esternal calls, is the same as when used to collect car’s signals. (Ref. paragraph 10.1.3). 84
Version chronology: V4.3.039… Management Support new serial displays LCD600-601- TFT5.7”-TFT210; V4.3.062… Addition “To” Management
85