LAPORAN AKHIR PENELITIAN UNGGULAN PERGURUAN TINGGI
JUDUL
Phytomining Logam Emas dari Tailing Tambang Emas Rakyat Menggunakan Tumbuhan Lokal tahun ke 1 dari rencana 2 tahun
Prof. Ir. Eko Handayanto, MSc., PhD. (NIDN 00050352 02) Dr.Ir. Budi Prasetya, MP. (NIDN 0001076108) Ir. Baiq Dewi Krisnayanti, MP., PhD. (NIDN 00100170 06) Ir. Nurul Muddarisna, MP. (NIDN 0008086801
Dibiayai oleh Direktorat Jenderal Pendidikan Tinggi Kementerian Pendidikan dan Kebudayaan, Melalui DIPA Universitas Brawijaya Nomor DIPA 023.04.2.414989/2013, tanggal 5 Desember2012, dan berdasarkan SK Rektor Universitas Brawijaya Nomor : 295/SK/2013, tanggal 12 Juni 2013
UNIVERSITAS BRAWIJAYA Desember 2013
1
ABSTRAK Penelitian yang bertujuan untuk menkaji potensi L.crustacea, P.conjugatum, dan C.kyllingia untuk “phytomining” Hg dan Au di lakukan di laboratorium Universitas Brawijaya dan Universitas Mataram serta di lahan pertanian tercemar tailing tambang emas rakyat di Lombok Barat. Penelitian tahap pertama di lakukan di green house. Masing-masing bibit dari L.crustacea, P.conjugatum, dan C.kyllingia yang telah aklimatisasi selama 2 minggu ditumbuhkan selama 9 minggu pada 5 kg tailing. Amonium thiosulfat atau natrium sianida ditambahkan dalam bentuk larutan pada saat tanaman berumur 8 minggu dengan dosis 2g/kg untuk amonium thiosulfat dan 1g/kg natrium sianida. Pada saat panen (umur 9 minggu), tajuk dan akar di analisis konsentrasi Hg dan Au. Hasil penelitian menunjukkan bahwa akumulasi merkuri tertinggi (30,09 ppm) dijumpai pada tajuk P.conjugatum dengan penambahan amonium thiosulfat. Secara rata-rata, penambahan amonium thiosulfat atau natrium sianida meningkatkan akumulasi Hg di tajuk sebesar 71% dan 48% dibandingkan dengan perlakuan tanpa penambahan bahan khelat. Penambahan amonium thiosulfat juga meningkatkan 19% akumulasi Hg dalam akar, penambahan natrium sianida meningkatkan 13% akumulasi Hg dibandingkan dengan perlakuan tanpa penambahan bahan khelat. Akumulasi Au tertinggi (859,8 ppb) dijumpai pada tajuk P. conjugatum dengan penambahan amonium thiosulfat. Pada akar, akumulasi Au tertinggi (64,7 ppb) juga dijumpai dalam akar P.conjugatum dengan penambahan amonium thisosulfat. Penambahan amonium thiosulfat atau natrium sianida meningkatkan akumulasi Au di tajuk sebesar 108% dan 34% dibandingkan dengan perlakuan tanpa penambahan bahan khelat. Penambahan amonium thiosulfat juga meningkatkan 78% akumulasi Au dalam akar, penambahan natrium sianida meningkatkan 50% akumulasi Au dibandingkan dengan perlakuan tanpa penambahan bahan khelat. Tahap kedua (tahun kedua) dari penelitian ini meliputi kegiatan (a) siklus kedua fitoekstraksi Hg dan Au oleh tiga species (percobaan di green house siklus kedua) dan (b) fitoekstraksi Hg dan Au oleh dua spesies terpilih (percobaan lapangan).
ABSTRACT A study that was aimed to measure the potential of Lindernia crustacea, Paspalum conjugatum, and Cyperus kyllingia for phytomining of Hg and Au form soils contaminated with small-scale gold mining tailings Each seed of L.crustacea, P.conjugatum, and C.kyllingia which has grown acclimatization for 2 weeks for 9 weeks at 5 kg of tailings. Ammonium thiosulfate with a rate 2g/kg or sodium cyanide with a rate of 1g/kg was added when the plant reached 8 weeks old. At harvest (9 weeks), plant shoots and roots were analyzed Hg and Au contents. The results showed that the highest accumulation of Hg (30.09 ppm) was found in the shoot of P. conjugatum with the addition of ammonium thiosulfate. On average, the addition of ammonium thiosulfate or sodium cyanide increased the accumulation of Hg in the shoots by 71% and 48%, respectively, in comparison with the treatment without the addition of chelating agents. The addition of ammonium thiosulfate also increased 19% accumulation of Hg in the roots, and the addition of sodium cyanide increased accumulation of Hg by 13% compared to treatment without the addition of chelating agents. The highest accumulation of Au (859.8 ppb) found in the shoot of P. conjugatum with the addition of ammonium thiosulfate. In the roots, the highest accumulation of Au (64.7 ppb) found in the root P.conjugatum with the addition of ammonium thisosulfat. The addition of ammonium thiosulfate or sodium cyanide in increased the accumulation of Au in the shoots by 108% and 34%, respectively, compared to treatments without the addition of chelating agents. The addition of ammonium thiosulfate also increased 78% Au accumulation in the roots, while the addition of sodium cyanide increased 50% Au accumulation in the roots compared to treatments without the addition of chelating agent. The proposed second phase (second year) of this study includes (a) the second cycle of phytoextraction ofiHg and Au by the three species (second crycle green house experiment) and (b) phytoextraction of Hg and Au by two selected species selected (field experiment).
2
RINGKASAN Pada berbagai pertambangan emas skala kecil di Indonesia, proses amalgamasi yang dikuti dengan proses sianidasi umumnya digunakan untuk memperoleh emas. Dalam proses ini merkuri yang tersisa dalam ‘tailing’ akan membentuk senyawa sianida-merkuri yang terlarut kedalam tanah dan air yang membahayakan lingkungan tanah dan air. Oleh karena itu perlu dilakukan upaya untuk mengelola tailing tersebut. Teknologi sederhana yang berbasis tanaman yang dapat memenuhi kebutuhan di atas adalah “phytomining’, dimana kegiatan pertanian dan ekstraksi emas dapat diperoleh secara simultan. Kegiatan phytomining adalah menanam tanaman hiperakumulator pada limbah tambang logam berkadar rendah, dan kemudian memanennya dan membakar biomasnya untuk menghasilkan ‘bioore’ Hasil penelitian terdahulu menunjukkan bahwa Lindernia crustacea (L.) F., Paspalum conjugatum L., dan Cyperus kyllingia Endl.merupakan tiga spesies yang berpotensi untuk digunakan sebagai fitoremediator Hg pada lahan pertanian yang tercemar limbah tambang emas rakyat yang mengandung Hg. Karena Hg merupakan bahan utama yang banyak digunakan dalam proses penambangan emas rakyat, maka tumbuhan tersebut diharapkan juga mampu mengakumulasi emas. Tujuan penelitian ini adalah mengkaji potensi tiga spesies tumbuhan tersebut untuk “phytomining” melalui kajian pertumbuhan sebelum implementasi lapangan. Penelitian dilakukan selama dua tahap (dua tahun) di laboratorium Universitas Brawijaya dan Universitas Mataram serta di lahan pertanian tercemar limbah tambang emas rakyat di Lombok Barat. Percobaan pot dilakukan di green house di lokasi lahan pembuangan tailing tambang emas proses sianidasi di Desa Sekotong Tengah, Kecamatan Sekotong, Kabupaten Lombok Barat. Penelitian dilakukan pada bulan April sampai dengan Nopember 2013. Masing-masing bibit dari L.crustacea, P.conjugatum, dan C.kyllingia yang telah diaklimatisasi selama 2 minggu ditumbuhkan selama 9 minggu pada 5 kg tailing. Untuk memaksimalkan pertumbuhan tanaman, semua tailing di dalam pot diberi pupuk phonska (setara 100 kg /ha). Untuk memacu serapan logam tersebut maka perlu ditambahkan bahan kimia, yaitu ammonium thiosulfat [(NH4)2S2O3] atau natrium sianida (NaCN). Berkaitan dengan hal di atas, maka dalam penelitian ini 3 species tumbuhan tersebut ditumbuhkan tanpa penambahan khelat dan dengan penambahan khelat amonium thiosulfat atau natrium sianida. Dengan demikian terdapat 9 perlakuan yang kemudian disusun dalam rancangan acak lengkap dengan 3 ulangan. Amonium thiosulfat atau natrium sianida ditambahkan dalam bentuk larutan 150 mL dengan dosis 2g/kg untuk amonium thiosulfat dan 1g/kg natrium sianida. Pada saat panen (umur 9 minggu), tajuk dan akar dipisahkan, di cuci, ditimbang, kemudian di keringkan selama 12 jam pada 700C untuk analisis kandungan Hg dan Au. Kandungan Hg dianalisis dengan menggunakan F732-S Cold Atomic absorption Mercury Vaporanalyzer (Shanhgai Huaguang Instrument Company). Kandungan Au ditetapkan dengan Graphite Furnace Analyzer yang dikombinasikan dengan Atomic Absorption Shectophotometer, type AAnalyst 50, PerkinElmer, UK. Hasil penelitian menunjukkan bahwa akumulasi merkuri tertinggi (30,09 ppm) dijumpai pada tajuk P. conjugatum dengan penambahan amonium thiosulfat. Angka ini melebihi nilai ambang batas konsentrasi merkuri dari 0,001% atau 10 mg/kg dari total berat kering. Secara rata-rata, penambahan amonium thiosulfat atau natrium sianida meningkatkan akumulasi Hg di tajuk sebesar 71% dan 48% dibandingkan dengan perlakuan tanpa penambahan bahan khelat. Penambahan amonium thiosulfat juga meningkatkan 19% akumulasi Hg dalam akar, penambahan natrium sianida meningkatkan 13% akumulasi Hg dibandingkan dengan perlakuan tanpa penambahan bahan khelat. Nilai TF (translocation factor), yaitu rasio akumulasi Hg dalam tajuk dengan Hg dalam akar pada tiga spesies tanaman menunjukkan bahwa semua tanaman memiliki nilai TF > 1 yang berarti bahwa tiga spesies tersebut dapat digunakan sebagai fitoekstraktor merkuri. Akumulasi Au tertinggi (859,8 ppb) dijumpai pada tajuk P. conjugatum dengan penambahan amonium thiosulfat. Pada akar, akumulasi Au tertinggi (64,7 ppb) dijumpai dalam akar P.conjugatum dengan penambahan amonium thisosulfat. Penambahan amonium thiosulfat atau natrium sianida meningkatkan akumulasi Au di tajuk sebesar 108% dan 34% dibandingkan dengan perlakuan tanpa penambahan bahan khelat. Penambahan
3 amonium thiosulfat juga meningkatkan 78% akumulasi Au dalam akar, penambahan natrium sianida meningkatkan 50% akumulasi Au dibandingkan dengan perlakuan tanpa penambahan bahan khelat. Tahap kedua (tahun kedua) dari penelitian ini meliputi kegiatan (a) siklus kedua fitoekstraksi Hg dan Au oleh tiga species (percobaan di green house siklus kedua) dan (b) fitoekstraksi Hg dan Au oleh dua spesies terpilih (percobaan lapangan). Pada fitoekstraksi siklus kedua di green house, pot yang masih berisi media tanam setelah panen umur 9 minggu (siklus pertama) kemudian ditanami lagi L.crustacea, P.conjugatum, dan C.kyllingia untuk siklus kedua. Penanaman siklus kedua ini untuk memastikan serapan maksimum Hg dan Au dari media tailing. Prosedur pelaksanaan dan analisis sama dengan percobaan siklus pertama. Dua dari tiga spesies yang paling banyak mengakumulasi Hg dan Au akan digunakan untuk pengujian lebih lanjut, yaitu fitoekstraksi Hg dan Au oleh dua spesies terpilih (percobaan lapangan).Dua spesies tumbuhan terbaik (paling banyak menyerap Hg dan Au) hasil percobaan tahun 1, akan ditanam pada bak penampung tailing pada lokasi proses sianidasi. Plot / dam tailing tersebut dibuat dengan ukuran panjang 1 m, lebar 1 m, tinggi 40 cm yang beralaskan plastik polyethelen. Pada umur 8-9 minggu setelah tanam, ditambahkan 2g/kg amonium thiosulfat atau 1/g/kg natrium sianida d dalam bentuk larutan 150 mL. Pada saat panen (umur 10 minggu), tajuk dan akar tanaman di analisis kandungan Hg dan Au.
SUMMARY In artisanal and small-scale gold mine area of Indonesia, gold is recovered through a two-stage process of amalgamation and cyanidation. In this process the mercury is left in the 'tailing' will form a cyanide-mercury compounds are dissolved into the soil and ground water and the water environment membayakan. Therefore, efforts should be made to manage the tailing. A simple plant-based technology that can meet the needs of the above is phytomining, where agriculture and extraction of gold can be obtained simultaneously. Phytomining is growing hiperakumulator plants on low-yield mining waste, and then harvest and burn the biomass to produce 'bio-ore' Results of previous studies show that Lindernia crustacea (L.) F., Paspalum conjugatum L., and Cyperus kyllingia Endl. were three species that have the potential to be used as Hg accumulators in farmland contaminated with gold mine tailing containing Hg. Because Hg is widely used in the small scale gold mining process, then the plant is also expected to accumulate gold. The purpose of this study was to measure the potential of the three plant species for phytomining of Hg and Au. The study was conducted over two stages (two years) in the laboratory of UB and the University of Mataram and contaminated farm waste people's gold mine in West Lombok. A pot experiment was conducted in a green house built at the field site of gold mine tailings in the amalgamation process of Sekotong District of, West Lombok from April to November 2013. Each seed of L.crustacea, P.conjugatum, and C.kyllingia which was grown for 9 weeks at 5 kg of tailings. To maximize plant growth, all tailings in pots were fertilized with Phonska (equivalent to 100 kg / ha). To stimulate the uptake of Hg and Au ammonium thiosulfate [(NH4) 2S2O3] or sodium cyanide (NaCN) was added to each pot at 8 weeks after planting. Nine treatments were arranged in a completely randomized design with three replicates. Ammonium thiosulfate or sodium cyanide was added in the form of a solution of 150 mL at a dose of 2g/kg ammonium thiosulfate and of 1g/kg sodium cyanide. At harvest (9 weeks), plant shoots and roots were separated, washed, weighed, then dried for 12 hours at 700C for the analysis of Hg and Au contents. Hg concentration were analyzed using the F732-S Cold Atomic Absorption Mercury Vaporanalyzer (Shanhgai Huaguang Instrument Company). Au concentration was determined using a Graphite Furnace Au Analyzer combined with Atomic Absorption Shectophotometer, type AAnalyst 50, PerkinElmer, UK. The results showed that the highest accumulation of mercury (30.09 ppm) was found in the shoot of P. conjugatum with the addition of ammonium thiosulfate. This figure exceeded the threshold value of mercury concentration of 0.001% or 10 mg / kg of total dry weight. On average, the addition of ammonium thiosulfate or sodium cyanide in increased the accumulation of Hg in the shoots by 71% and 48%, respectively, in comparison with the treatment without the addition of chelating agents. The addition of ammonium thiosulfate also increased 19% accumulation of Hg in the roots, and the addition
4 of sodium cyanide increased accumulation of Hg by 13% compared to treatment without the addition of chelating agents. The TF (translocation factor) value, which is the ratio of the accumulation of Hg in the shoot to Hg in the root in three plant species showed that all plants have the TF values> 1 indicating that the three spsesies can be used as Hg phytoextrators. The highest accumulation of Au (859.8 ppb) was found in the shoot of P. conjugatum with the addition of ammonium thiosulfate. At root, the highest accumulation of Au (64.7 ppb) was also found in the root of P.conjugatum with the addition of ammonium thisosulfat. The addition of ammonium thiosulfate or sodium cyanide increased the accumulation of Au in the shoots by 108% and 34%, respectively, compared to treatment without the addition of chelating agents. The addition of ammonium thiosulfate also increased 78% of Au accumulation in roots, while the addition of sodium cyanide increased 50% of Au accumulation compared to treatment without the addition of chelating agents. The proposed second phase (second year) of this study includes (a) the second cycle of phytoextraction ofiHg and Au by the three species (second crycle green house experiment) and ( b ) phytoextraction of Hg and Au by two selected species selected (field experiment). In the second cycle of phytoextraction to be conducted in a green house, pots which still contains planting medium after harvest of 9 weeks (first cycle) are used for planting L.crustacea , P.conjugatum, and C.kyllingia for the second cycle. The second planting cycle is aimed to ensure maximum uptake of Hg and Au. Experimental procedures are similar to the first cycle experiment. Two of the three most abundant species in accumulating Hg and Au will be used for further phytoextraction measurements of Hg and Au in the field. Two of the best plant species, will planted in the tailing dam located at the location of the cyanidation process. A plot (1 m length, 1 m wide, 40 cm high) layered by polyethelen plastic will be prepered in the tailing dam for planting the selected two plant species. At the age of 8-9 weeks after planting, ammonium thiosulfate added 2g/kg or 1/g/kg sodium cyanide solution. At harvest (10 weeks ), plant shoots and roots are subjected to Hg and Au anayses.
5
DAFTAR PUSTAKA
Achmad, S., Basuki., Soemantri, W. dan Mien, R. 2010. Pedoman Pengenalan Berbagai Jenis Gulma Penting Pada Tanaman Perkebunan. Jakarta. Alberts, H. W. and Garcia-Molinari, O. 1943. Pastures of Puerto Rico and their relation to Soil Conservation. U.S. Dep. Agr. Misc. Pub. 531 46 p. Anderson, C., Moreno, F. and Meech, J. 2005. A field demonstration of gold phytoextraction technology. Minerals Engineering 18: 385-392. Anderson, C.W.N., Brooks, R.R., Chiarucci, A., Lacoste, C.J., Leblanc, M., Robinson, B.H., Simack, R. and Steward, R.B. 1999. Phytomining for nickel, thallium and gold. J. Geochem. Explor. 67: 407-415. Anderson, C.W.N., Brooks, R.R., Stewart, R.B. and Simcock, R. 1998: Harvesting a crop of gold in plants. Nature 395: 55–56. Anderson,C. 2005. Biogeochemistry of gold: accepted theories and new opportunities. In: Shtangeeva, I. (Ed.), Trace and Ultratrace Elements in Plants and Soil. WIT Press, Southampton, pp. 287–321. ANHSIR. 2008. Australian National Herbarium Specimen Information Register. http://www.cpbr.gov.au/cgi-bin/anhsir?040=lindernia+crustacea Archer, M.J.G. and Caldwell, R.A. 2004. Response of six Australian plants species to heavy metal contamination at an abandoned mine site. Water, Air and Soil Pollution 157: 257-267. Aspinall, C. 2001. Small-scale mining in Indonesia. International Institute for Environment and Development and the World Business Council for Sustainable Development, England. Australian Bureau of Meteorology. Australian Government Bureau of Meteorology http://www.bom.gov.au/climate/averages/index.shtml?map_type=cdio&code =3. AVH (2008). Australian Virtual Herbarium. http://www.anbg.gov.au/cgi-bin/avh.cgi Baker,
A.J.M. and Brooks, R.R. 1989. Terrestrial higher plants which hyperaccumulate metal elements- a reveiew of their distribution, ecology and phytochemistry. Biorecovery 1:81-126.
Beetle, A.A. 1974. Sour Paspalum Tropical Weed or Forage?. Journal of Range Management 27 (5): 347-349 Brooks, R.R., Chambers, M.F. and Nicks, L.J.1998. Phytomining. Trends in Plant Science 3: 359-362. Bubb J. M. and Lester J. N. 1991. the impact of heavy metals on lowland rivers and the implications for man and the environment. Science of the Total Environment 100: 207-233. Cataldo, D. A. and Wildung, R. E. 1978. Soil and plant factors influencing the accumulation of heavy metals by plants. Environmental and Health Perspective 27: 149-159.
6 Chase, A. 1929. The North American species of Paspalum. Contrib. U.S. Nat. Herb. 21:1310. Cooper, E.M., Sims, J.T., Cunningham, S.D., Huang, J.W. and Berti, W.R. 1999. Chelate-assisted phytoextraction of lead from contaminated soils. Journal of Environmental Quality 28: 1709-1719. Crowley, D.E., Wang, Y.C., Reid, C.P.P. and Szansiszlo, P.J. 1991. Mechanism of Iron acquisition from siderophores by microorganisms and plants. Plant and Soil 130: 179-198. Cui, S., Zhou, Q. and L. Chao, L. 2007. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China, Environmental Geology 51, 2007, 1043-1048. Cunningham, S. D. and Berti, W. R. 1993. Remediation of contaminated soils with green plants: An overview. In Vitro Cell. Develompent Biology 29: 207-212. Cunningham, S. D., Berti, W. R. and Huang, J.W. 1995. Phytoremediation of contaminated soils. Trends in Biotechnology 13: 393-397. Cunningham,S.D.and Ow, D.W. 1996. Promises and prospects of pnytoremediation. Plant Pysiology 110, 1996, 715-719. Ebbs, S.D. 2006. Cyanide phytoremediation: Removal and fate in soil-water-plant systems. Department of Plant Biology, Southern Illinois University Carbondale. eFlora. 2008. Online information for Lindernia crustacea in Flora of China. Volume 18:32.http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=2000207 20 ePIC. 2008. Royal Botanic Gardens, Kew. Online data for Lindernia crustacea. http://epic.kew.org/searchepic/summaryquery.do?searchAll=true&scientificN ame=Linderni a+crustacea. Fasani, E. 2012. Plants that hyperaccumalte Heavy Metals. In. Plants and Heavy Metals. A. Furini (ed). SpringerBriefs in Biometals, pp 55-74. Fayiga, A.Q. and Ma, L.Q. 2006. Using phosphate rock to immobilize metals in soils and increase arsenic uptake in Pteris vittata. Science Total Environment 359: 17–25 Fitter, A.H. and Hay, R.K.M. 2002. Environmental Physiology of Plants. Academic Press, London, UK, 367 pp. Fitz, W.J. and Wenzel, W.W. 2002. Arsenic transformation in the soil–rhizosphere– plant system, fundamentals and potential application of phytoremediation. Journal of Biotechnology 99:259–78. FloraBase. 2008. Descriptions by the Western Australian Herbarium, Department of Environment and Conservation. http://florabase.calm.wa.gov.au/ Gardea-Torresdey, J.L., Rodriguez, E., Parsons, J.G., Peralta-Videa, J.R., Meitzner, G. and Cruz-Jimenez, G. 2005. Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent. Analytical and Bioanalytical Chemistry 382: 347-352. Gaymard, F. 1998. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647-655.
7 Ghosh,M. and. Singh, S.P. 2005. A review on phytoremediation of heavy metals and utilization of its byproducts, Applied Ecology and Environmental Research 3(1): 1-18. Han, F.X., Banin, A., Kingery, W.L., Triplrtt, G.B., Zhou, L.X. and Zheng, S.J. 2003. New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research 8: 113–120. Handayanto, E., Prasetyo, B., Muddarisna, N. 2012. Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas Rakyat untuk Perbaikan Produksi Jagung. Laporan Penelitian Hibang Bersaing Institusi, Universitas Brawijaya. Dibiayai oleh Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan dan Kebudayaan, Melalui DIPA Universitas Brawijaya nomor : 0636/02304.2.16/15/2012, tanggal 9 Desember 2011, dan berdasarkan SK Rektor Universitas Brawijaya Nomor : 366/SK/2012 tanggal 13 Agustus 2012 Handayanto, E., Utomo, W.H, Arisoesilaningsih, E., Kusuma, Z. dan Anderson, C.W.N. 2010. Potensi Fitostabilisasi Vegetasi Indigenus untuk Tailing Tambang Emas. Laporan Penelitian Hibah Kompetitif Penelitian Kerjasama Internasional, Dibiayai oleh DP2M-DITJEN DIKTI-DEPDIKNAS, No. 692/SP2H/PP/DP2M/X/2009 tanggal 26 Oktober 2009. Hirsch, R. E., Lewis, B.D., Spalding, E.P. and Sussman, M.R. 1998. A role for the AKTI potassium channel in plant nutrition. Science 280:918-921. Hnatiuk, R.J. 1990. Census of Australian Vascular Plants. Australian Flora and Fauna Series Number 11. Australian Government Publishing Service, Canberra. Holm, L. G.,Pancho, J.V., Herberger, J.P. and Plucknett, D.L. 1979. A Geographic Atlas of World Weeds. John Wiley & Sons, New York. Huang, J. W., Chen, J., Berti, W. R. and Cunningham, S. D. 1997. Phytoremediation of lead contaminated soil: Role of synthetic chelates in lead phytoextraction. Environmental Science and Technology 31:800–805. Hussey, B.M.J., Keighery, G.J., Dodd, J., Lloyd, S.G. and Cousens, R.D. 2007. Western Weeds. A guide to the weeds of Western Australia. Second edition. The Weeds Society of Western Australia, Western Australia. Hylander, L.D., Plath, D., Miranda, C.R., Lucke, S., Ohlander, J. and Rivera, A.T.F. 2007. Comparison of different gold recovery methods with regard to pollution control and efficiency. Clean 35, 52-61.. Karley, A. J., Leigh R. A. and Sanders, D. 2000. Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends in Plant Science 5 (11): 465-470. Kellman, M. C. 1974. The viable weed seed content of some tropical agricultural soils. The Journal of Applied Ecology 11(2): 669-677. Kinnersely, A. M. 1993. The role of phytochelates in plant growth and productivity. Plant Growth Regulation 12: 207-217 Komai, K. and Tang, C.S. 1989. Chemical constituents and inhibitory activities of essential oils from Cyperus brevifolius and C. kyllingia. Journal of Chemical Ecology 15(8): 2171- 2176. Krisnayanti, B.D., Arifin, Z. Bustan, Sudirman. and Yani, A. 2012. Mercury Concentration on Tailing and Water from One Year of ASGM at Lantung,
8 Sumbawa, Indonesia. In: Environmental, Socio-economic, and Health Impacst of Artisanal and Small-Scale Minings. E. Handayanto, B.D. Krisnayanti and Suhartini (eds). p 61-66. UB Press, Malang, Indonesia Kumar, P. B. A. N., Dushenkov, V., Motto, H. and Raskin, I. 1995. Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science and Technology 29 :1232–1238. Lasat, M.M., Baker, A.J.M. and Kochain, L.V. 1998. Altered zinc compartmentation in the root symplasms and stimulated ainc absorption in the leaves and the mechanism involved in Thalspi caerulescens. Plant Physiology 118: 875883. Leps, J. and Smilauer, P. 1999. Multivariate Analysis of Ecological Data. Faculty of Biological Sciences, University of South Bohemia. Ceske Budejovice. Li, Y.M., Chaney, R. L., Angle, J. S. and Baker, A. J. M. 2000. Phytoremediation of heavy metal contaminated soils. In D. L. Wise et al. (Eds.), Bioremediation of contaminated soils. New York: Marcel Dekker. Li,M.S. and Yang, S.X. 2008. Heavy Metal Contamination in Soils and Phytoaccumulationin a Manganese Mine Wasteland, South China. Air, Soil and Water Research 1: 31–41 Malayeri, B.E., Chehregani, A., Yousefi, N. and Lorestani, B. 2008. Identification of the hyperaccumulator plants in copper and iron mine in Iran. Pakistan Journal of Biological Science 11: 490-492 McClelland, C. K. 1915. Grasses and forage plants of Hawaii. Hawaii Agr. Exp. Sta. Bull. 36.43 p. McGrath, S.P. 1998. Phytoextraction for soil remediation. In: Brooks, R. (ed.): Plants that Hyperaccumulate Heavy Metals Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining. pp. 261287. CAB International, New York. Moreno, F.N., Anderson, C.W.N., Robinson, B.H. and Stewart, R.B. 2004. Phytoremediation of mercury-contaminated mine tailings by induced plantHg accumulation”, Environmental Practice 6 (2), 165-175. Moreno, F.N., Anderson, C.W.N., Stewart, R.B., Robinson, B.H., Nomura, R., Ghomshei, M. and Meech, J.A. 2005. Effect of thioligands on plant-Hg accumulation and volatilisation from mercury-contaminated mine tailings. Plant and Soil 275: 233-246. Msuya, F.A., Brooks, R.R. and Anderson, C. 2000. Chemically-induced uptake of gold root crops: its significance for phytomining. Gold Bullettin 33 (4), 134– 137. Nagajyoti, P.C., Lee, K.D. and Sreekanth, T.V.M. 2010. Heavy metals, occurrence and toxicity for plants: a review” Environmental Chemistry Letters 8 (3), 199216. Nedelkoska, T.V. and Doran,P.M. 2000. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Minerals Engineering 13: 549-561. Padmavathiamma, P.K. and Li, L.Y. 2007. Phytoremediation Technology: Hyperaccumulation Metals in Plants. Water, Air and Soil Pollution 184:105–126. Pedron, F., Petruzzelli, G., Barbafieri, M., Tassi, E., Ambrosini, P. and Patata, L. 2011. Mercury mobilization in a contaminated industrial soil for
9 phytoremediation. Communications in Soil Science and Plant Analysis 42 (22): 2767-2777. Piccinin, R.C.R., Ebbs, S.D., Reichman, S.M., Kolev, S.D., Woodrow, I.E. and Baker, A.J.M. 2007. A screen of some native Australian flora and exotic agricultural species for their potential application in cyanide-induced phytoextraction of gold. Minerals Engineering 20: 1327-1330. Piccinin, R.C.R., Ebbs, S.D., Reichman, S.M., Kolev, S.D., Woodrow, I.E. and Baker, A.J.M. 2007. A screen of some native Australian flora and exotic agricultural species for their potential application in cyanide-induced phytoextraction of gold. Minerals Engineering 20 (14), 1327–1330. PIER. 2008. Pacific Island Ecosystems at Risk. http://www.hear.org/pier/species/lindernia_crustacea.htm Pilon-Smits, E. 2005. Phytoremediation. Annual Review of Plant Biology 56:15-39. Prasad
M.N.V. and Frietas, H.M.O. 2003. Metal hyperaccumulation in plantsBiodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology 6:332-336.
Prasetyo, B., Krisnayanti, B.D, Utomo, W.H, and Anderson, C.W.N. 2010. Rehabilitation of Artisanal Mining Gold Land in West Lombok, Indonesia: 2. Arbuscular Mycorrhiza Status of Tailings and Surrounding Soils. Journal of Agricultural Science. Vol 2 No 2 : 2002-2009 Rahmawati, I. 2011. Pengaruh Kemiskinan Terhadap Maraknya Pertambangan Tanpa Ijin (Studi Kasus Di Kecamatan Sekotong, Kabupaten Lombok Barat). Media Bina Ilmiah, Fakultas Teknik Universitas Muhammadiyah Mataram, Desember 2011: 16-20. Randall, R.P. 2002. A Global Compendium of Weeds. Shannon Books, Australia. Rascio, N. and Navari-Izzo, F. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science 180 (2): 169-181. Raskin, I., Smith, R. D. and Salt, D.E. 1997. Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology 8(2): 221-226. Rodiyati, A., Arisoesilaningsih, E., Isagi,Y. and Nakagoshi, N. 2005. Responses of Cyperus brevifolius (Rottb.) Hassk. and Cyperus kyllingia Endl. to varying soil water availability. Environmental and Experimental Botany 53(3): 259269. Salt, D. E., Smith, R. D. and Raskin, I. 1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology 49: 643–668. Satpathi, C.R. 1999. Weeds as hosts of Bihar hairy caterpillar (Diacrisia obliqua Wlk.). Insect Environment 5(3): 122. Selin, N.E. 2009. Global Biogeochemical Cycling of Mercury: A Review", Annual Review of Environment and Resources 34: 43-63. Singh, O.V. and Jain, R.K. 2003. Phytoremediation of toxic aromatic pollutants from soil. Applied Microbiology and Biotechnology 63: 128- 135. Subowo, M., Widodo, S. dan Nugraha, A. 2007. Status dan Penyebaran Pb, Cd, dan Pestisida pada Lahan Sawah Intensifikasi di Pinggir Jalan Raya. Prosiding. Bidang Kimia dan Bioteknologi Tanah, Puslittanak, Bogor.
10 Suresh, B. and Ravishankar, G.A. 2004. Phytoremediation - a novel and promising approach for environmental clean up. Critical Review in Biotechnology 24: 97-124. Tandy, S., Schulin, R. and Nowack, B. 2006. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62 : 1454–1463. Telmer K., Costa M.P.F., Angélica R.S., Araujo E.S. and Maurice Y. 2006. The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: ground and space based evidence. Journal of Environmental Management 81: 101-113. Telmer, K.H. and Veiga, M.M. 2009. World Emissions of Mercury from Artisanal and Small Scale Gold Mining. In N. Pirrone and R. Mason (eds.), Mercury Fate and Transport in the Global Atmosphere, © Springer Science + Business Media, LLC. Pp. 131-171. Tester, M. and Leigh, R.A. 2001. Partitioning of nutrient transport processes in roots. Journal of Experimental Botany 52: 445–457. Thangavel, P. and Subhuram, C.V. 2004. Phytoextraction – Role of hyper accumulators in metal contaminated soils. Proceedings of the Indian National Science Academy. Part B 70: 109–130. USDA. 2008.. United States Department of Agriculture. ARS, National Genetic Resources Program. Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. http://www.arsgrin.gov/cgibin/npgs/html/tax_search.pl?Lindernia%20crustacea. Veiga, M.M., Maxson, P.A. and Hylander, L.D. 2006. Origin and consumption of mercury in small-scale gold mining. Journal of Cleaner Production 14: 436447. W3TROPICOS. 2008. Nomenclature and Specimen Database of the Missouri Botanical Garden. http://mobot.mobot.org/cgibin/search_pick?name=Lindernia+crustacea 1. Wang, J., X, Feng, X. and Anderson, C.W.N. 2012. Thiosulphate assisted phytoextraction of mercury (Hg) contaminated soils at the Wanshan mercury mining district, Southwest China” in Environmental, Socio-economic, and Health Impacst of Artisanal and Small-Scale Minings. E. Handayanto, B.D. Krisnayanti and Suhartini (eds). p 67-76. UB Press, Malang, Indonesia, February, 2012. Waterhouse, D.F. 1993. The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia. Australian Centre for International Agricultural Research, Canberra. Waterhouse, D.F. 1997. The Major Invertebrate Pests and Weeds of Agriculture and Plantation Forestry in the Southern and Western Pacific. Australian Centre for International Agricultural Research, Canberra. Wei,
S., Zhou, Q. and Mathews, S. 2008. A newly found cadmium accumulatorTaraxacum mongolicum. Journal of Hazardous Materials 159:544547.
11 Wilson-Corral, V., Anderson, C., Rodriguez-Lopez, M., Arenas-Vargas, M. and Lopez-Perez, J. 20110. Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Minerals Engineering 24: 1488–1494 Wilson-Corral, V., Anderson, C., Rodriguez-Lopez, M., Arenas-Vargas, M. and Lopez-Perez, J. 2011. Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Minerals Engineering 24 (2011) 1488–1494 Wilson-Corral, V., Rodriguez-Lopez, M., Lopez-Perez, J., Arenas-Vargas, M. and Anderson, C. 2010. Gold phytomining in arid and semiarid soils. In: 19th World Congress of Soil Sciences. Soil Solutions for a Changing World. International Union of Soil Sciences, Brisbane, pp. 26-29 Yamamoto, H., Iwata, I. and Ohba, T. 1981. Studies on ecological changes and control of weeds in upland irrigation culture. V. Changes in weed vegetation and competition between upland-rice and weeds in upland irrigation culture. Weed Research 26(4): 286-290. Yayasan Tambuhak Sinta. 2010. Scoping Study Report of Poboya, Palu ASGM Site. Yoon, J., Cao, X., Zhou, Q. and Ma, L.Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368: 456-464. Zhang, W.H., Cai, Y., Tu, C. and Ma, Q.L. 2002. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science of the Total Environment 300: 167–177.