KESUBURAN TANAH DAN PEMUPUKAN Unsur Hara dan Sifat Kimia Tanah Sugeng Winarso, Dr.
Departemen of Soil, Faculty of Agriculture, University of Jember http:winarsosugeng.blogspot.com
[email protected] 081559544003
Mahasiswa dapat menganalisis dan menjelaskan status kesuburan tanah dan tindakan mempertahankan/meningkatkan kesuburan melalui pemupukan Aplikasi Pemupukan berdasar 5 Tepat Pemupukan Konversi pupuk anorganik ke organik Macam-macam Pupuk dan Soil Amanadement Evaluasi Kesuburan Tanah Unsur Hara Makro (NPK)
Unsur Hara Sekunder dan mikro
Unsur Hara dan Sifat Kimia Tanah
Fisika dan Biologi Tanah
Kondisi lahan Pertanian di Indonesia secara Umum Pemahanan pengertian Kesuburan dan Produktivitas Tanah
Hara Tanaman Unsur hara yang diambil oleh tanaman dari tanah
Hara Makro:
Hara Mikro:
(dibutuhkan dalam jumlah besar)
(dibutuhkan dalam jumlah kecil)
Nitrogen (N)
Chlorine (Cl)
Phosphorus (P)
Cobalt (Co)
Potassium (K)
Copper (Cu)
Calcium (Ca)
Iron (Fe)
Magnesium (Mg)
Manganese (Mn)
Sulfur (S)
Molybdenum (Mo) Nickel (Ni) Zinc (Zn)
Dimana tanaman mendapatkan unsur hara yang dibutuhkan? Sisa tanaman yang melapuk
Hasil pelapukan minerals tanah Diberi oleh manusia Pupuk komersial Pupuk kandang kapur
Lainnya
Siklus hara tanaman
Pelapukan mineral tanah
air asam Zn
Ca K Ni
Mg Cu
The soil solution Soil water is a complex
solution that contains
Many types of nutrients Other trace elements Complex organic molecules
Nutrients in the soil solution
can be readily taken up by plant roots
If nutrients remained in
solution they could all be quickly lost from the soil.
N
Zn
P
Ni
Ca
K
Mg
Cu
Adsorption Adsorpsi menggambarkan
+
-
kemampuan tanah (bahan) untuk menarik dan mengikat pada permukaannya. Partikel-partikel padat dalam tanah
mempunyai kemampuan mengadsorp Air Hara dan senyawa kimia lainnya
Pengadsorp penting di dalam tanah
adalah Liat Bahan Organik
Daerah Permukaan Liat ¼ cangkir
¼ cangkir liat mempunyai luas permukaan lebih besar dibandingkan dengan lapangan sepak bola
Luas permukaan liat yang besar memungkinkan untuk: • Mengadsorp banyak air • Menyimpan hara-hara • Mempengaruhi partikel tanah lainnya
Macht, F, K Eusterhues, GJ Pronk, and KU Totsche. 2011. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Applied Clay Science. Vol 53(1): 20–26 Abstract The specific surface area of natural particles is an important parameter to quantify processes such as mineral dissolution and sorptive interactions in soils and sediments. In this study, the external specific surface area (SSA), specific edge surface area (ESA) and specific basal surface area (BSA) of an illite (Inter-ILI) and a montmorillonite (Ceratosil) were determined by atomic force microscopy (AFM) and compared with the SSA obtained by N2 gas adsorption (BET) and by liquid adsorption using ethylene glycol monomethyl ether (EGME). For the illite we found an SSA of 41 ± 3 m2 g− 1 by BET and of 83 ± 5 m2 g− 1 by analysing 54 particles by AFM. For the montmorillonite BET we estimated a SSA of 61 ± 2 m2 g− 1, whereas the analysis of 62 particles by AFM images gave a much larger mean SSA of 346 ± 37 m2 g− 1. We assume that the sample treatment prior to AFM imaging (involving dispersion by NaOH in a dilute dispersion and sonication for 2 min) resulted in delamination of the clay mineral particles. The ESA was 5.6 ± 0.4 m2 g− 1for the illite, and 15 ± 2 m2 g− 1 for the montmorillonite. This leads to an ESA/BSA ratio of 0.07 for the illite and 0.05 for the montmorillonite for the delaminated particles. For the untreated, nondelaminated particles we calculated an ESA/BSA ratio of 0.16 for the illite and of 0.27 for the montmorillonite. The specific surface area as estimated by EGME was 112 m2 g− 1 for the illite and 475 m2 g− 1 for the montmorillonite, i.e. about 30–40% larger than the respective AFM values. However, this difference in specific surface area was not in agreement with the expected interlayer surface area of both minerals.
Sifat-sifat Liat Tanah Partikel liat tersusun dalam lapisan-lapisan seperti kertas. Setiap lembar liat terpisah dengan yang lainnya. Setiap lembar mempunyai muatan negatif pada permukaannya. Muatan negatif tersebut harus disetimbangkan oleh muatan positif atau disebut kation.
Clay Mineral Structures Clays are aluminosilicate minerals. (They contain layers of silica bonded to layers of alumina).
Clays are classified by the number and arrangement of these sheets. Water can be hydrogen bonded on the surface of or between sheets. Metal cations (Na, K, Ca, Fe, Mg) in the water will swap places with Al, giving individual clays unique colors and hydrologic properties.
Posisi Unsur hara dan Reaksi Pengapuran
Retensi Kation pada Permukaan Liat Calcium, +2 Magnesium, +2 Potassium, +1 Ammonium, +1 Sodium, +1 Copper, +2 Aluminum, +3 Hydrogen, +1
Retensi Kation pada Bahan Organik Hidrogen Hara
pH meningkat, meningkatkan kemampuan bahan organik untuk mempertukarkan kation
pH rendah, 4 - 5 (tanah masam)
pH netral, ~7 (tanah ideal)
Cation Exchange Capacity Cation exchange capacity
(CEC) is the total amount of cations that a soil can retain The higher the soil CEC the
greater ability it has to store plant nutrients Soil CEC increases as The amount of clay increases The amount of organic matter
increases The soil pH increases
Estimated cation exchange capacity (CEC) of soils typical for New York State agricultural land (modified from: Cornell Field Crops and Soils Handbook, 1987). SMG* General Description CEC (cmolc/kg soil) 1 Fine-textured soils developed from clayey lake sediments and medium- to fine-textured soils developed from lake sediments. 25 2 Medium- to fine-textured soils developed from calcareous glacial till, medium-textured to moderately fine-textured soils developed from slightly calcareous glacial till mixed with shale, and medium-textured soils developed in recent alluvium. 20 3 Moderately coarse textured soil developed from glacial outwash and recent alluvium and mediumtextured acid soil developed on glacial till. 18 3 Coarse- to medium-textured soils formed from glacial till or glacial outwash. 16 4 Coarse- to very coarse-textured soils formed from gravelly or sandy glacial outwash or glacial lake beach ridges or deltas. 12 * SMG = soil management group.
Negatively Charged Nutrients (Anions)
Some very important plant nutrients are anions.
Nitrate
Phosphate
Sulfate
Chloride
Soils are able to retain some of these nutrient
anions. Retention of nutrient anions varies from one anion to
another
Phosphate retention in soil 1. Formation of a new solid material
+ Phosphate
Aluminum phosphate solid Aluminum 2. Anion exchange
Phosphate
Geometry of aluminium 4 coordinate : tetrahedral Element
%
Al
22.12
O
52.48
P
25.40
Phosphate retention in soil 3. Adsorption on oxide surfaces
Phosphate anions Each held by two chemical bonds to the iron oxide surface Iron oxide surface
Nitrate (NO3-) retention in soils Unlike phosphate, nitrate is very weakly held by soils • Nitrate does not react to form new solids • Nitrate is not held by oxide surfaces
If nitrate is not taken up by plants it is very likely to be lost from the soil
NO3-
Moving nutrients from soil to plants Nutrients in soil solution
Plant Root
Nutrients on soil clay and organic matter
Excessive Nutrient Loading Nutrients in soil solution
Plant Root
Nutrients on soil clay and organic matter
Nutrient loss in drainage water
The black box is open Soil consists of mineral and organic matter, air and
water Soils are able to adsorb nutrients and other chemicals The most important adsorbers are clay and organic matter • Adsorbed nutrients are available to plants • Adsorbed nutrients are not prone to loss in drainage water • Soil adsorption capacity can be exceeded leading to greater nutrient loss
CP atau LO Sikap dan Tata Nilai Penguasaan Pengetahuan Kemampuan Bidang Kerja Kemampuan Manajerial
Menteri Koperasi dan Usaha Kecil Menengah (UKM), A.A.G.N Puspayoga mengatakan Indonesia masih tertinggal dalam jumlah wirausahawan dibandingkan sejumlah negara di ASEAN. Jumlah wirausahawan kita hanya 1,65% dari 250 juta penduduk. Amerika Serikat mencapai 12% China dan Jepang 10%, Singapura dan India 7%, Malaysia 5%, Thailand 4% dari total populasi Target menjadi 2 persen untuk menaikkan kelas pengusaha Indonesia
Dengan jumlah populasi Indonesia saat ini, secara proporsional dibutuhkan 4,8 juta wirausahawan, sebagai prasyarat pembangunan ekonomi suatu negara Realitasnya, saat ini proporsi wirausaha Indonesia baru sekitar 0,24 persen dari populasi penduduk atau sekitar 500.000 an orang