MSBADRIK_13_March_2011
Muhammad Syahril Badri Kusuma, Water Resources Engineering Research Group Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia
` `
Introduction: Several Activities ◦ ◦ ◦ ◦
Research Metdhology Update Education Community Services National Policy
Interests
`
White paper of Climate Chang Adaptation Scenario (Koike T, Univ of Tokyo, AWCI, Nov 2010)
Reliability
Distributed Model
RekayasaH Rekayasa ydraulik
Model
Hidraulik & Mekanika Fluida
DataBase
Perencanaan & Perencanaan & Pengelolaan SDA Pengelolaan SDA
Stochastic Model
Rekayasa Hidrologi & Air Tanah
Management
Model Physical Fisik Model Rekayasa Sungai, Rawa & Muara
Spatial & Non Spatial Database Sistem Informasi Geografis (SIG)
Model Base Management
Specific, Generator & Tools DSS Technology
Water Resources Information System & Hidro Informatika
System-Analysis Lumped Model
Model
Coastal Processs
Integrated Sustainable Development of Lowland Area
Wave Modelling Development
Integrated Coastal Protectiion System
Water Quality Modelling in River,Estuary, Lake, Reservoir and Coastal
Pengembangan waduk,Land and Water Conservation
Pengembagan Instrumentasi Peringatan dini Banjir Integrated Water Resources Management
Hydraulics Structure Dynamic River and Estuary Process
Information System and Real Time Simulation
Rainfall Run Off Modelling
Rain water-harvesting technology
Water Resources Database Development
Soil and Water Conseervation Sistem Pemberian Air Untuk Pertanian Zone Akar
Irrigation Netwark Performace Based On Suistanable Development
Kaitan Riset dengan Roadmap KK
Priority of Water Allocation and Distribution Modelling Based Watershed Capacity Stabilization Watershed Capacity Indicator Due to Meet Regional Infrastructure Development
Water Resources Information System and Hydroinformatics Technology
` Water
Resources Engineering
` Hydrology, Hydraulic, Environmental, GIS and Socio Economic
` Sustainibility
` Research and Education : University and research center ` Community Services (local government and people) ` Policy Æ Regional and Development Planning (ministry public work, Local Government, BAPPENAS, Association, Private Partners)
Atas Banjir Bandung Kiri di Bale Endah, Februari 2010 (Lap LPPM, msbadrik, 2010), tengah Kiri Jalan Dago (msbadrik nov 2010), Kanan Jalan Cicalengka MSbadrik, Februari 2010). Bawah Banjir Jakarta Kiri Okt. 2010, Kompas.Com, Tengah Banjir Feb 2010, BukitDuri, Kompas.Com, kanan Oktober 2010, Kompas.com
Atas : kanan dan kiri, Lahan rawan erosi akibat abu merapi di cangkringan, jogjakarta, msbadrik 2010. Bawah Sungai korban lahar dingin merapi, jgjakarta, msbadrik 2010, kanan sebarabn sedimen hasil erosi lahan akibat hujan, palu, msbadrik, november 2010)
Flood: Scouring Problem
Atas Banjir pad jembatan Serayu, msbadrik Des 2005) Bawah gerusan pilar jembatan kreta api, Cilacap-Purwokert, msbadrik, Agt, 2008)
Atas gerusan pilar jembatan kreta api, Cilacap, msbadrik, Nov, 2010) Bawah gerusan pada badan sungai, Lariang, msbadrik nov 2010)
Dam Break, atas Situ Gintung, Maret 2009, Bawah kiri (lurah randu belatung) dan tengah (msbadrik agustus 2008) embung keruk, blora, Juni 2006 , kanan wasior, 2010 (kompas.com)
Supporting Institution (Donor, Experts , NGO etc)
Preparedness Response
Mitigation
Stake holder Government (Local/ Center)
Disaster Impact
Dasar Pengelolaan Bencana
Stake Holder Capacity
Disaster prone people
Prevention
•
• • •
Recovery
Pada umumnya untuk banjir akibat hujan dan bersifat struktural. Peringatan dini tsunami. Peringatan dini banjir akibat dambreak belum berkembang Penyertaan masyarakat sebagai stake holder minimÆ dominasi pemerintah dan belum ada adaptasi terhadap kapasitas stakeholder sesungguhnya Integrasi dengan pengembangan wilayah belum ada Akurasi analisi parameter banjir rendah Æ data dan metoda
Redevelopment
Gambar 15 Atas Kiri Pintu polder ancol dan Pompa Polder S Ciliwung Gunung Sahari, Jakarta (msbadrik, 2008). Bawah kiri pintu pengendalian kanal banjir semarang (msbadrik, 1996).
20 ha Pengendalian Banjir : 20 juta penduduk 110 MW Listrik 10 000 MW !,2 Km Panjang Dam 2 Km 100 m Tinggi Dam 200 m ?
Waduk multi fungsi yang salah satu fungsinya sebagai pengendali banjir Atas : kiri : Jatiluhur, Jawa Barat, Indonesia (Msbadrik, 2007), kanan Three Gorges Dam, Yichang, China (msbadrik, 2007) Bawah Pada Tahap Pembangunan Kiri, Jatigede, Jabar, Indonesia (msbadrik, Maret 2009), Tengah dan Kanan : Erfurt, Jerman (msbadrik, Nov 2009)
Peta Curah Hujan Tahunan Indonesia
Sumber: Depdagri
<1000 1000-1500 1500-1750 1750-2000 2000-2500 2500-3000 3000-3500 3500-4000 >4000]
Sumber: BNPB
Peta Indeks ancaman banjir dan kekeringan saat ini
Sumber: BNPB
Sistem koordinasi pengendalian banjir dan tata Sungai DKI Jakarta dan ir (Sumber Pemda DKI Jakarta, 2007) dan Skema pengendalian banjir Jakarta (sumber Dinas Pengairan PU Jakarta, 2005)
Perubahan Tata Guna Lahan DKI dari 1995 (kiri) ke 2005 (kanan) (Pemda DKI, 2005).
Sampah dan Bantaran kumuh di S Ciliwung DKI Jakarta (Pemda DKI, 2005)
24 Kurva Intensitas Hujan DKI Jakarta pada Banjir 2002 dan 2007 (M. Syahril BK etal, 2007)
Luas (kiri) dan Volume (kanan) Daerah Genangan pada Banjir 2002 dan 2007 (MSBadrik dan Rommy, 2007)
Turbulen : ketidakastabilan aliran akibat besarnya perbedaan (gradien) kecepatan antar massa air yang berdekatanÆ pengaruh media pengalirannya (dinding/fluida sekeliingnya)Æ inersia melebihi rekatan antar massa air (skala molekul dan/atau kelompok massa air) (bilangan
Reynold).
Tipe aliran pembangkit daya rusak air : Atas kiri Lapisan batas, kanan wall jet. Bawah Kiri Jet, kanan wake
Kiri : turbulensi pada zona resirkulasi dibalik terjunan saluran dan kanan Two Paralel Hot Wire sebagai alat ukur kecepatan ulang alik (msbadrik, 1992)
Research : Updating Methods of Analysis Æ Slope Stability
Ilustrasi erosi akibat butiran hujan
Tanah erosi
Research : Updating Methods of Analysis Æ Dam Break Ilustrasi Keruntuhan Dam Overflow
Tampungan air di dam
Piping
Dam
Seepage
Dam mengalami keruntuhan Terjadi gelombang banjir ke sebelah hilir dam
Research : Updating Methods of Analysis Æ Scouring
Konsep Pengendalian : Pengendalian pola aliran Perlindungan/proteksi bangunan
Research : Updating Methods of Analysis Æ Scouring
`
Perlindungan gerusan jembatan Kreta Api Atas : Jembatan Bumi Ayu-Purwokerto 1120
Research : Updating Methods of Analysis Æ Flood Hydrograph r ds/dt
S
Q
Konsep hidrograf banjir sintetis (kiri : bak hidrologi, tengah: hidrograf dari bak hidrologi dan kanan hidrograf satuan
Konsep dasar analisis hidrograf sintetis banjir Q (debit direct run off): •Tampungan DAS dianggap sebagai bak hidrologi parameter karakteristik tampungan K • Banjir pada musim hujanÆdas dianggap jenuh. • Hujan dalam DAS merata (seragam dalam fungsi ruang) • Hubungan Q dan tampungan DAS S dianggap linear Q= k S sehingga: • Kurva naik Q(t) = r (1-eKt) dan Kurva turun dQ= K ds
Research : Updating Methods of Analysis Æ Flood Hydrograph
Contoh Hidrograf Satuan (HS) DAS Citarum Hulu Kiri : distribusi hujan pada 25-11-2001, Kanan : perbandingan HS untuk beberapa tanggal berbeda (Ariani, 2010 berdasarkan data BBWSC)
Konsep dasar analisis hidrograf sintetis banjir Q (debit direct run off): •Kenyataannya • hujan tidak merata terhadap ruang • K tidak linear dipengaruhi permeabilitas tanah dan rambatan aliran permukaan
Research : Updating Methods of Analysis Æ Flood Hydrograph
Research : Updating Methods of Analysis Æ Flood Hydrograph 200
4500
180
4000
160
3500
140
3000
120 Hidrograf Nakayasu
2500
100
Hidrograf Hitung 2000
80
Volume Kumulatif Nakayasu
1500
Volume Kumulatif Hitung
60
1000
Volume Hujan Eff
40
500
Volume (x10 6 m3)
Debit (m3/det)
Debit Banjir Q5 (m3/det) (Titik 33,36) 5000
Komparasi hasil : Sub-DAS Serayu Titik (33,36) Luas DAS = 1557 km2 L Sungai = 111 km Koef.Corak = A/L2 = 0,091
20
0
0
0
12
24
36
48
60
72
84
96
Jam
Debit Banjir Q5 (m3/det) (Titik 42,16) 3000
45 40
2500
Debit (m3/det)
2000
30 25
Hidrograf Nakayasu (45,15) 1500
Hidrograf Hitung (45,15)
20
Volume Kumulatif Nakayasu (45,15) 1000
15
Volume Kumulatif Hitung (45,15)
3
Volume Hujan Eff Titik 45,15
10
500 5 0
0
2
4
0
12
24
36
48 Jam
60
72
84
96
Volume (x10 6 m3)
1
35
Komparasi hasil : Sub-DAS Serayu Titik (42,16) Luas DAS = 324 km2 L Sungai = 23,3 km Koef.Corak = A/L2 = 0,597
Research : Updating Methods of Analysis Æ Flood Hydrograph 11 Okt 1996
23 Okt 1985 200
160 140
Debit (m3/det)
Debit (m3/det)
DAS
160
Perhitungan
120
Pengamatan
100 80 60 40
Perhitungan Pengamatan
120
80 40
20 0
0 0
6
12
18
24
30
36
0
6
12
18
Jam
24
1985
Hidrograf
30
36
Jam
1996
600
700 Perhitungan
500
Perhitungan
600
Pengamatan
Pengamatan 500 Debit (m3/det)
Debit (m3/det)
400
300
400
300
200 200 100
100
0
0 0
25
50
75
Intensitas Hujan (m m /hari)
100
0
25
50
75
100
Intensitas Hujan (m m /hari)
Korelasi Hujan-Debit Banjir
31
Research : Updating Methods of Analysis Æ Flood Hydrograph an Propagation
Research : Updating Methods of Analysis Æ Flood Hydrograph an Propagation
Research : Updating Methods of Analysis Æ Flood Warning
100 - 200 200 - 400 400 - 800 800 - 1,000 1,000 - 1,500 1,500 - 2,000 2,000 - 2,500 2,500 - 3,000
680000.000000 685000.000000 690000 .000000 695000.000000 700000 .000000 705000.000000 710000 .000000 715000.000000 720000 .000000 725000.0000
Sawangan
Cibinong
Rancabungur
Darmaga
Cilember
Citeko
680000.000000 685000.000000 690000 .000000 695000.000000 700000 .000000 705000.000000710000. 000000 715000.000000720000 .000000 725000.0000
Legend
0- 5 5 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90
9255000.0000009260000.0000009265000.0000009270000.0000009275000.0000009280000.0000009285000.0000009290000.0000009295000.0000009300000.0000009305000.0000009310000.0000009315000.0000009320000.000000
50 - 100
Manggarai
Pondok Betung
9250000.0000009255000.0000009260000.0000009265000.0000009270000.0000009275000.0000009280000.0000009285000.0000009290000.0000009295000.0000009300000.0000009305000.0000009310000.0000009315000.0000009320000.000000
7 - 50
Jakpus
Pasar Baru
9255000.0000009260000.0000009265000.0000009270000.0000009275000.0000009280000.0000009285000.0000009290000.0000009295000.0000009300000.0000009305000.0000009310000.0000009315000.0000009320000.000000
9255000.0000009260000.0000009265000.0000009270000.0000009275000.0000009280000.0000009285000.0000009290000.0000009295000.0000009300000.0000009305000.0000009310000.0000009315000.0000009320000.000000
SRTM.asc
9250000.0000009255000.0000009260000.0000009265000.0000009270000.0000009275000.0000009280000.0000009285000.0000009290000.0000009295000.0000009300000.0000009305000.0000009310000.0000009315000.0000009320000.000000
9250000.0000009255000.0000009260000.0000009265000.0000009270000.0000009275000.0000009280000.0000009285000.0000009290000.0000009295000.0000009300000.0000009305000.0000009310000.0000009315000.0000009320000.000000
Legend
680000.000000 685000.000000 690000.000000 695000.000000 700000 .000000 705000.000000710000. 000000 715000.000000720000 .000000 725000.0000
680000.000000 685000.000000 690000 .000000 695000.000000 700000 .000000 705000.000000710000. 000000 715000.000000720000 .000000 725000.0000
680000.000000 685000.000000 690000 .000000 695000.000000 700000 .000000 705000.000000 710000 .000000 715000.000000 720000 .000000 725000.0000
680000.000000 685000.000000 690000.000000 695000.000000 700000 .000000 705000.000000710000. 000000 715000.000000720000 .000000 725000.0000
Atas kiri ke kanan, peta Topografi , Sungai, Slope/Arah Aliran dan kanan bawah Hasil Reproduksi Sebuah Kejadian banjir ( Riset Asahi Glass Foundation, MSBadrik dan Hadi K, 2009)
Research : Updating Methods of Analysis Æ Flood Risk
Riset ITB, Analisis Indeks Banjir Cawang Manggarai dengan FESWMS (Finite Element Surface Water Modeling System) (MSBadrik, Adam Formanek, H Kardhana, Rasmiati, dan Setiawati, 2010)
Research : pdating Methods of Analysis Æ Jakarta Flood Mitigation
Hotel
Peruma han
Pusat Perbelanjaan Perkant oran
Research : Updating Methods of Analysis Æ Jakarta Flood Risk
(a) Indeks Hazard.
(c) Indeks Capacity.
(b) Indeks Vulnerability.
(d) Indeks Resiko
Peta Resiko Banjir Bukit Duri, Hibah Penelitian PROMISE, USAID-ADPC (Rahayu, MSBadriK, M Bagus, M Farid dan Laksmiarti, 2009)
Research : Updating Methods of Analysis Æ Flood Dam Break
Komparasi model rambatan tsunami run up dengan eksperimen Synolakis (1986) dan model Yung li (2002) dan Synolakis (2002) (msbadrik et al, ICEED 2007) Rambatan Banjir Akibat Long Wave, Hibah Pasca (MSBAdrik, M Cahyono, M Bagus dan M Farid, 2007-2008))
Research : Updating Methods of Analysis Æ Flood Dam Break Blok bangunan
5.20 4.00 1.87 0.70
Reservoir h = 0.40 m
2.65 0.65
G6
1.30
3.60
G1
Gate
G2
1.75
1.30 6.90
G3
1.50 G5
1.00
0.80
1.20
G4
Channel h = 0.01 m
1.00
3.40 35.80
Finite Difference Approach for The Building
Kiri model fisik dam break atas Soares Frazão et. al., 2002 dan bawah msbadrik (2010)C
Kanan model matematik dam break atas Soares Frazão et. al., 2002 dan bawah msbadrik etal (2008)
Research : Updating Methods of Analysis Æ Flood Dam Break 2
h [m]
u [m/s]
0,15
G1 - this study G1 - experiment G1 - numerical
1,5
1
0,1
0,5 0,05
0
G1 - this study G1 - experiment G1 - numerical
0 0
5
10
15
20
25
t [s]
-0,5 0
30
5
10
15
20
2,5
h [m]
u [m/s]
0,15
25
t [s]
30
G2 - this study G2 - experiment G2 - numerical
2
1,5
0,1
1 0,05
0,5
G2 - this study G2 - experiment G2 - numerical
0 0
5
10
15
20
25
t [s]
0 0
30
5
10
15
20
2
h [m]
u [m/s]
0,15
25
t [s]
30
G3 - this study G3 - experiment G3 - numerical
1,5
1
0,1
0,5 0,05
0
G3 - this study G3 - experiment G3 - numerical
0 0
5
10
15
20
25
t [s]
-0,5 30
0
5
10
15
20
25
t [s]
30
Water depth (left) and the velocity in control point G1-G3 (downstream of the dam) shows good comparison to both experimental data and other numerical model.
Research : Updating Methods of Analysis Æ Flood Dam Break 2
h [m]
u [m/s]
0,15
G3 - this study G3 - experiment G3 - numerical
1,5
1
0,1
0,5 0,05
0
G3 - this study G3 - experiment G3 - numerical
0 0
5
10
15
20
25
t [s]
-0,5 0
30
5
10
15
20
25
t [s]
30
1,5
h [m]
u [m/s]
0,15
1
0,1 0,5
0,05 0 G5 - this study G5 - experiment G5 - numerical
0 0
5
10
15
20
25
30
t [s]
G5 - this study G5 - experiment G5 - numerical
-0,5 0
5
10
15
20
25
t [s]
30
h [m]
0,4
0,3
0,2
0,1 G6 - this study G6 - experiment G6 - numerical
0 0
5
10
15
20
25
t [s]
30
Result for G4, G5 and G6 • The water depth (left) and the velocity (downstream of the dam) shows good comparison to both experimental data and other numerical model. However, the water depth tend to increase faster than the experimental data and other model • The water depth at point G6 decrease faster than the experimental data and other model • Further effort for improvement: boundary problem, denser grid but.
Research : Updating Methods of Analysis Æ Flood Propagation
Building Building Building Building Building
Dari kiri ke kanan, model aliran banjir sekitar bangunan berkompleksitas rendah, sedang dan tinggi
Research : Updating Methods of Analysis Æ Flood Dam Break
Kiri :Keruntuhan Embung Blora (Lurah randu belatung, 2006) dan Kanan :Embung keruk baru yang perlu di evaluasi (msbadrik, 2008) Kontur Daerah Aliran Banjir Keruntuhan Tanggul Situ Gintung
`
Indeks Banjir untuk beberapa waduk/dam : Situ Gintung, Embung Keruk, curug