[leader] Het vallen van een steen verklaar je met behulp van valwetten. Valwetten kun je verklaren door een beroep op fundamentelere wetten. Na een paar stappen kom je dan uit op fundamentele wetten, die niet meer door andere wetten verklaard kunnen worden. Wat verklaart dan die fundamentele wetten? Dr.ir. De Ridder laat zien hoe theïsme een vruchtbare positie is in het wetenschapsfilosofische debat over deze vraag. God en de natuurwetten Jeroen de Ridder Natuurwetten en verklaringen Je hoeft geen toponderzoeker te zijn om vast te stellen dat onze werkelijkheid zich in allerlei opzichten regelmatig gedraagt. Water bevriest bij 0ºC en verdampt bij 100ºC. Draadjes koper geleiden stroom, maar elastiekjes niet. Vallende objecten versnellen (op aarde in een vacuüm) met ongeveer 9,81 m/s2 en licht beweegt zich altijd voort met een snelheid van 299.792.458 m/s. Zulke regelmatigheden vragen om een verklaring. Dingen gebeuren nu eenmaal niet zomaar toevallig met strikte regelmaat. Als je met iemand een potje Yahtzee speelt en hij gooit tien keer achter elkaar een Grote Straat, dan zou je hem niet geloven als hij zou beweren dat dat zomaar toevallig gebeurde. Regelmaat eist een verklaring en puur toeval is geen goede verklaring. Zo werkt het ook in de wetenschap. Als wetenschappers een of ander verschijnsel op het spoor komen dat zich onder bepaalde omstandigheden voordoet, proberen ze dat nauwkeurig te beschrijven en te verklaren. Natuurwetenschappers doen daarbij een beroep op natuurwetten. Als je kunt laten zien dat een verschijnsel onder een natuurwet valt, dan heb je er een goede verklaring voor waarom dat verschijnsel optreedt. Zo kunnen we bijvoorbeeld de baan van een kogel verklaren door te laten zien dat die baan volgt uit de bewegingswetten van Newton. Zulke sommen hebben we op de middelbare school allemaal wel eens gemaakt. (Eigenlijk is het iets ingewikkelder dan ik hier suggereer, want Newtons wetten gelden alleen in geïdealiseerde omstandigheden die je nooit in het echt aantreft. Die subtiliteit maakt voor het betoog hier geen verschil.) Maar denk nu nog eens na over die natuurwetten. Die wetten leveren een precieze algemene beschrijving van hoe kogels (of andere objecten) zich gedragen als ze met een bepaalde snelheid afgeschoten worden. Dat kogels en andere objecten zich zo gedragen als 1
die natuurwetten zeggen, is net zo goed een regelmatigheid die verklaring behoeft. We kunnen dus een stap verder gaan en ons afvragen wat de verklaring is van de natuurwetten die we gebruiken om de baan van de kogel te verklaren. Waarom gelden die natuurwetten? Van de specifieke wetten die we gebruiken voor kogelbanen kunnen we laten zien dat ze op hun beurt afleidbaar zijn uit algemenere natuurwetten. De wet die beschrijft hoe groot de zwaartekracht is die op de kogel werkt (F = mg, kracht is gelijk aan massa maal valversnelling), volgt bijvoorbeeld uit Newtons algemene zwaartekrachtwet (F = Gm1m2/r2, de aantrekkingskracht tussen objecten met massa’s m1 en m2 is omgekeerd evenredig aan het kwadraat van hun onderlinge afstand; G staat voor de gravitatieconstante). Die laatste wet volgt op haar beurt weer uit Einsteins algemene relativiteitstheorie. Natuurwetten kun je dus door algemenere of fundamentelere wetten verklaren. Na een aantal stappen komt daar echter een eind aan, omdat we dan aankomen bij fundamentele wetten die niet in termen van nog fundamentelere wetten verklaard kunnen worden. Het zou natuurlijk ook kunnen dat er wel wetten zijn die die fundamentele wetten verklaren, maar dat wij die wetten nog niet kennen. Dat is zo, maar die mogelijkheid duwt het probleem alleen maar een stap naar achteren. Het is redelijk om te veronderstellen dat je op enig moment uitkomt bij fundamentele wetten waarvoor geen verdere verklaring gegeven kan worden in termen van nog fundamentelere wetten. Dat is een intellectueel teleurstellend resultaat. We gingen uit van de zeer aannemelijke stelling dat regelmatigheden verklaring behoeven. Een beroep op natuurwetten bood zo’n verklaring, maar die natuurwetten zelf staan ook voor regelmatigheden die net zo goed verklaard moeten worden. Dat kun je dan doen via een beroep op fundamentelere natuurwetten, maar na een aantal stappen loopt deze weg alsnog dood omdat de meest fundamentele wetten geen verklaring meer hebben, terwijl ze net zo goed om een verklaring vragen als de eenvoudige regelmatigheden waar we mee begonnen. Wetenschapsfilosofen hebben geprobeerd dit probleem op te lossen door te zoeken naar een ander soort verklaring voor de fundamentele natuurwetten. Ik wil nu drie voorgestelde oplossingen bespreken en evalueren. Geen verklaring nodig? Ik kan vrij kort zijn over de eerste oplossing, die eigenlijk meer een afwijzing van het probleem is. Filosofen die consequent empiristisch willen zijn, zoals bijvoorbeeld David Hume, David Lewis (1986) en Bas van Fraassen (1989), stellen zich op het standpunt dat elke 2
verklaring of theorie die vereist dat we in iets geloven dat voorbij het zintuiglijk waarneembare gaat, niet geloofd moet worden. De vraag naar een verklaring van de fundamentele natuurwetten is dus ongepast, want ze vraagt naar iets dat op de een of andere manier voorbij de waarneembare regelmatigheden gaat en daar nog achter zit. Empiristen weigeren verder te gaan dan de constatering dat de natuur blijkbaar op een fundamenteel niveau regelmatig is. Dat is dat. Meer valt er niet over te zeggen. Ik vind dit een hoogst onbevredigende ‘oplossing’. Van allerlei regelmatigheden vinden we dat ze verklaard moeten worden, maar bij de fundamentele regelmatigheden zouden we dat niet meer mogen verwachten. Dat lijkt op meten met twee maten en dat moet je ook in het intellectuele leven niet doen. Universalia Een tweede oplossing voor het probleem zegt dat de natuurwetten zijn wat ze zijn omdat er relaties bestaan tussen sommige universalia; relaties van noodzakelijk maken. Dat is nogal cryptisch geformuleerd. Ik zal het uitleggen. Heel veel verschillende dingen zijn rood: appels, brandweerauto’s en huiduitslag. Die dingen moeten dus iets gemeenschappelijks hebben, maar wat kan dat zijn? De eigenschap roodheid, zeggen veel filosofen. Roodheid is nu een voorbeeld van zo’n universale: een eigenschap, relatie of soort die in verscheidene concrete individuele dingen gerealiseerd kan worden. Alle elektronen bezitten bijvoorbeeld de eigenschap ‘elektron-zijn’. Bovendien hebben ze allemaal een elektrische lading van 1,6 · 1019
Coulomb. Het is een vrij fundamentele natuurwet dat elektronen precies die lading hebben.
Wat is hiervan de verklaring? Welnu, zeggen filosofen als Fred Dretske (1977), David Armstrong (1983) en Michael Tooley (1988), er bestaat een relatie van noodzakelijk maken tussen de universalia ‘elektron-zijn’ en ‘een elektrische lading hebben van 1,6 · 10-19 Coulomb’. Die relatie tussen de betreffende universalia is er de oorzaak van dat alle elektronen precies dezelfde lading hebben en verklaart dus deze universele regelmatigheid. En zo werkt het met alle natuurwetten; ze zijn er omdat sommige universalia andere noodzakelijk maken. Is dit een goede verklaring? Op het eerste gezicht wel. We treffen een opmerkelijk regelmatige herhaling aan van eigenschappen van elektronen; allemaal hebben ze dezelfde lading. Nu blijkt dat die herhaling voortkomt uit een gemeenschappelijke bron, namelijk een relatie tussen universalia. Het is net zoiets als wanneer je steeds zwarte Fords ziet rijden. In eerste instantie lijkt dat wel erg toevallig. Als vervolgens blijkt dat de Ford fabriek slechts één 3
kleur kan maken en dat het dus noodzakelijk is dat Fords zwart zijn, dan zou je verbazing over moeten gaan. Met dit voorbeeld komen we ook een probleem op het spoor. Voor de Fords kunnen we eenvoudig inzien wat de aard is van de noodzakelijkheid dat ze allemaal zwart zijn. De machines gebruiken alleen zwart, of misschien is de geschikte verf alleen in zwart beschikbaar. Het is echter veel moeilijker om ons een voorstelling te vormen van een relatie van noodzakelijk maken tussen universalia. We kunnen ons al nauwelijks iets voorstellen bij universalia zelf, laat staan bij het idee dat het ene universale het andere noodzakelijk maakt. De oplossing voor ons probleem is dus een konijn uit een hoge hoed: opeens worden er mysterieuze relaties van noodzakelijk-maken geïntroduceerd en die zouden dan verklaren waarom de natuurwetten zijn zoals ze zijn. Ook deze oplossing is dus onbevredigend. Essenties De derde oplossing zoekt een verklaring van de natuurwetten in de aard van objecten. Dat alle elektronen een lading hebben van 1,6 · 10-19 Coulomb is niet een soort externe regel waar elektronen zich, als het ware tegen wil en dank, aan conformeren, maar het zit in de aard van het elektron. Het behoort tot de essentie van een elektron om precies die lading te hebben; dat is het wat het ding tot een elektron maakt. Het is dus ook noodzakelijk dat het die lading heeft. Zo gaat het met alle natuurwetten. Het behoort tot de essentie van objecten met massa om zich te gedragen zoals Newtons zwaartekracht beschrijft. De aard van licht maakt dat het zich noodzakelijk met de lichtsnelheid voortbeweegt. Voorstanders van deze oplossing, zoals Brian Ellis (2001), Stephen Mumford (2004) en Alexander Bird (2007), accepteren dus de eis dat er een verklaring gegeven moet worden voor de (fundamentele) natuurwetten en ze vinden die verklaring dan in de essenties of de aard van individuele objecten. Is dit een adequate verklaring? Dat staat nog te bezien. Ons probleem was dat het al te toevallig is dat de natuur zich zo strikt regelmatig gedraagt. Deze oplossing zegt nu dat dit helemaal niet zo toevallig is, het zit namelijk in de aard van elk individueel object om zich op bepaalde regelmatige manieren te gedragen. Maar lost dat wel echt iets op? Het kan wel zo zijn dat elk individueel object zich noodzakelijk op bepaalde regelmatige manieren gedraagt, maar waarom zijn die manieren dan precies hetzelfde voor talloze verschillende individuele objecten? Waarom heeft bijvoorbeeld het ene elektron niet een lading van 1,7 · 10-19 en een ander weer van 1,5 · 10-19? Er zijn miljarden en miljarden elektronen in het universum en stuk
4
voor stuk hebben ze dezelfde lading. Zoiets schreeuwt om een verklaring en op dit punt laat de zojuist besproken oplossing ons alsnog in de kou staan. Theïsme De conclusie is dat de drie voornaamste kandidaatoplossingen voor ons probleem allemaal zelf met grote problemen te kampen hebben. Als ik het goed zie, geldt dat echter niet voor de laatste oplossing, die ik hier nu wil introduceren: een theïstische verklaring van de natuurwetten, zoals bijvoorbeeld Richard Swinburne (2004) en John Foster (2004) geven. Als we aannemen dat er een God bestaat die (ten minste) de kenmerken heeft die het klassieke christendom aan Hem toedicht – almacht, alwetendheid en volmaakte goedheid – dan ligt het voor de hand te denken dat zo’n God redenen heeft om een goede wereld te scheppen en die daarom ook schept. Hij is immers volmaakt goed en dus gemotiveerd om goede dingen tot stand te brengen. Hij is bovendien alwetend en weet dus precies welke dingen goed zijn en hoe hij die dingen kan realiseren. En omdat Hij almachtig is, kan hij ze ook realiseren. Om het argument compleet te maken, moet vervolgens duidelijk worden dat een regelmatige wereld die zich gedraagt in overeenstemming met natuurwetten, beter is dan andere mogelijke werelden. Ook daar valt wel het een en ander voor te zeggen. Een regelmatige wereld die zich laat begrijpen in termen van relatief eenvoudige natuurwetten heeft immers esthetische waarde; orde en regelmatigheid zijn mooier dan willekeurige chaos. Veel wetenschappers verwonderen zich over de (wiskundige) elegantie van de natuurwetten. Daarnaast heeft zo’n wereld morele waarde, omdat zij het mogelijk maakt dat er belichaamde en (zelf)bewuste wezens zoals mensen ontstaan die moreel significante keuzes kunnen maken en bovendien vanwege de betrouwbaarheid van een regelmatige wereld in staat zijn om creatief te handelen. Als we, samen met Gn1 en met veel filosofen uit verleden en heden, aannemen dat dat moreel waardevolle zaken zijn, volgt dat een regelmatige wereld inderdaad meer morele waarde heeft dan een chaotische. De conclusie is dat het theïstische uitgangspunt dat er een God bestaat ons een goede verklaring levert voor de regelmatigheid van onze wereld en het bestaan van de (fundamentele) natuurwetten. Zo zien we dat de gedachte dat natuurwetten een wetgever nodig hebben – waar in de wetenschapsfilosofie nog wel eens wat lacherig over gedaan wordt – wel eens dichter bij de waarheid zou kunnen zitten dan deze lachers leuk vinden. Bibliografie 5
Armstrong, David (1983), What Is a Law of Nature?, Cambridge, Cambridge University Press. Bird, Alexander (2007), Nature’s Metaphysics: Laws and Properties, Oxford, Oxford University Press. Dretske, Fred (1977), ‘Laws of nature’, Philosophy of Science 44, 248-268. Ellis, Brian (2001), Scientific Essentialism, Cambridge, Cambridge University Press. Foster, John (2004), The Divine Lawmaker: Lectures on Induction, Laws of Nature, and the Existence of God, Oxford, Clarendon Press. Lewis, David (1986), Philosophical Papers, Volume 2, New York, Oxford University Press. Mumford, Stephen (2004), Laws in Nature, London, Routledge. Swinburne, Richard (2004), The Existence of God, 2nd ed., Oxford, Clarendon Press. Tooley, Michael (1988), Causation: A Realist Approach, New York, Oxford University Press. Van Fraassen, Bas C. (1989), Laws and Symmetry, New York, Oxford University Press.
Dr.ir. G.J. de Ridder (1978) heeft Technische Bestuurskunde gestudeerd aan de Technische Universiteit Delft en Wijsbegeerte aan de Vrije Universiteit Amsterdam. Hij is in 2007 gepromoveerd aan de TU Delft op een techniekfilosofisch proefschrift. Thans werkt hij als docent wetenschapsfilosofie en kennisleer aan de Faculteit Wijsbegeerte van de VU en houdt zich daarnaast bezig met godsdienstfilosofie.
6