Puhl. Univ. of Miskolc, Series A. Mining, Vol. 53. (1999) pp. 261-276 Epithermal Gold Deposit in Lahôca: Mining History and Prospects
EPITHERMAL GOLD DEPOSIT IN LAHOCA: MINING HISTORY AND PROSPECTS
Eva Seres-Hartai Dr. univ. assistant professor University of Miskolc Department of Geology and Mineral Deposits
Abstract Epithermal gold deposits form in hydrothermal systems in which the gold mineralization occurs within 1 to 2 km of surface. The Lahoca epithermal Cu-Au deposit is spatially and genetically associated with the Eocene Recsk porphyry. Mining activity in the area lasted from 1852-1979 producing copper with gold and silver. The exploration of the deeper Cu-porphyry-skarn system began in 1968 but the mining for the ore has not been started. Drilling exploration of the epithermal gold started in 1994. According to the recent results, biooxidation technology would be the most economic exploitation method.
University of Miskolc
Éva Seres-Hartai Dr.univ.assistant professor 261
Epithermal
Gold Deposit
in
Lahóca:
Mining
History
and Prospects
1. INTRODUCTION The Lahoca mine is situated in Recsk, NE part of Hungary. It was the main producer of copper in the country for many decades. Although the main time of mining can be ascribed to the years 1930-70, the history of mining and exploration lasted for more than 230 years. The epithermal gold mineralization that was revealed by the newest explorations make Lahoca have the potential to became a significant producer of gold in Central-Europe.
2. HISTORY OF MINING AND EXPLORATION The first discovery in the area of Recsk-Parádfiirdö was made by MARKHOT in 1763 who mentioned Cu-Ag ores near the alum outcrops in Parádfürdő. More than 30 years later, KITAIBEL (1799) described the rocks in the surroundings of Recsk as "porphyrs". He also mentioned traces of oil near Recsk. Until the middle of the XIX. century, smaller adits were opened that are still known (Antal, Etelka, Irma, József, Orczy ). The discovery of the famous native copper in Bajpatak (HAIDINGER, 1850; KUBINYI, 1852) gave a new impulse to exploration. The smaller drifts of Fehérkö were re-opened, and the mining in Lahóca started. By a few fits and starts, mining activity was carried here until 1979. At the beginning of mining, Austrian geologists worked in the area. They described the ore bodies as impregnated stocks. They also dealt with the rock alterations in connection with the ore mineralization and the separation of different volcanic rock types (HAIDINGER, 1850; KUBINYI, 1852). SZABÓ (1875) distinguished three rock types: "amphybole-trachyte" in Nagykő, "quartz-trachyte" in Fehérkő and propilitic rocks in Lahóca. He discovered, that the volcanic rocks were covered by limestone beds in Lahóca. As regards to ore minerals, he realized the difference between the enargite and the sphalerite-pyrite-tetrahedrite mineralization. The volcanic rocks of Lahóca were first described as "biotiteamphibole-andesites" by MAURITZ (1909). In 1912 Senior NOSZKY stated that the andesites of Lahóca were laccolithes. He examined the quartzite in Hegyeshegy and originated it from the geyser activity. Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 262
Epithermal Gold Deposit
in
Lahóca:
Mining History and Prospects
In 1926 the Recsk mine were transferred into state ownership and the production increased. It resulted the reviving of the exploration work as well. It was also the time of the more intensive oil-exploration in the Biikkszek-Parad area, revealing new data about the basement and Terciary rocks. LOW (1925) made a parallelization between the geological situation and mineralization of Bor mine, Yugoslavia and Recsk mine. He also described the oxidationcementation zone in Lahoca. In 1937 TELEGDY-ROTH made a geological mapping in the surroundings of the Darno-line. ROZLOZSNIK (1939) first realized the important role of the Darno-line in the tectonic setting of Hungary. He also gave a description about the stratovolcanic formations in the Lahoca-KanazsvarFeherko area. The first detailed paragenetic examinations of ore minerals were made by PAPP (1938) and SZTROKAY (1940). After the 2nd World War SCHRETER (1949) and SZENTES (1951) made geological mapping in the NE part of the Matra Mountains. That time the production of Lahoca mine was suspended because the ore reserves seemed to be worked out. Due to the intensive exploration by drillholes and drifts, new reserves of ore became known. The local exploration was managed by Senior GAGYI-PALFFY (1950) who determined the shape of the newly discovered ore bodies and made reserve calculations. The mining of the new ore bodies was continuous until 1979. The geological reambulation and geological mapping of the NorthMatra started in 1958. VARROK (1962) described the andesites in Recsk as laccoliths and similarly to the main andesitic mass of the mountain, put them into the Miocene epoch. The ore-exploration was also re-started by VIDACS (1958) looking for the deeper connections of the Lahoca ore bodies. The drilling exploration was made in three steps. At first, a metasomatic Pb-Zn mineralization was revealed by four, 1000 m deep drillholes in a N-S section. Following this, 12 deep drillholes were made, in two E-W sections. Besides the ore indications above, porphyry copper ore was found in intrusive rocks. In the third step, 1200 m deep drillings in networks of 500x500 m, 350x350 m, than 175x175 m were made. During this, the skarn mineralization was discovered with chalcopyrite, pyrite, sphalerite and magnetite minerals. Based on the results above, a deep underground mine started to be built in 1970, in the northern part of the area. Meanwhile, the drilling exploration was continued in the southern part. The economic rentability of the deep-seated copper ore was
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 263
Epithermal
Gold
Deposit
in
Lahóca:
Mining
History
and Prospects
proved by Senior GAGYI-PÁLFFY (1975). The geological situation of the deep-seated ore deposit was described by CSEH-NÉMETH (1975). ZELENKA (1975) sketched the structural-magmatic setting of the ore bodies. The subvolcanic andesite was described by BAKSA (1975), the stratovolcanic andesite group was examined by FÖLDESSY (1975). The hydrothermal alterations and the skarn-hydrothermal-metasomatic processes were studied by CSILLAG, 1975. In 1975, during the exploration for the porphyry and skam copper ore a new enargite-luzonite-pyrite mineralization was found in the northern foreground of the Lahóca hill by BAKSA. He divided the mineralization into three genetically interrelated groups. The so-called "gold-pyrite" occured in lenses and small ore-bodies on the top of the lava-breccias. In 1981, BAKSA stressed the clear connection between the Paleogene volcanic activity and the Darnó tectonic zone. While the significant mineralization at Recsk was connected to the andesite-diorite intrusives, the surficial andesitic volcanism was associated by the copper-pyrite mineralization. The role of the Darnó-line in the Recsk mineralization was also pointed out by ZELENKA at al. in 1983. FÖLDESSY (1984) outlined a horst-structure formed prior to the volcanism along a N-E trend shear zone that disappeared because of the Paleogene intrusive and volcanic events. The horst-structure kept its relatively uplifted position during the Paleogene and Neogene geological evolution. Based on the new recognition due to the intense exploration activities in the former two decades, BAKSA gave an outline of the Recsk mineralized complex in 1984. He pointed out that the Recsk complex was a part of the Eocene island arc along the Balaton-Darnó line, the main part of ore mineralization was connected to the hydrothermal phases of the dioriteporphyrite intrusion, and two, younger volcanic phases produced younger, remobilized ore mineralizations near surface. In relation to the porphyry and skarn copper deposits, two deep shafts, 7.5 km drifts and 95 km underground drillings were completed until 1986. The necessity of the continuous exploration in the deep-seated complex was reasoned by CSEH-NEMETH (1986). The results of the morphogenetic explorations were summarized by GASZTONYI, KATONA, POLGÁR and SZEBÉNYI (1989). As concerning the late Eocene tectonic pattern in the
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 264
Epithermal
Gold Deposit
in
Lahóca:
Mining History and Prospects
Carpatho-Pannonian region, BALLA gave a new interpretation of the tectonic situation of the area in 1988. The Australian Rhodes Mining NL, Perth acquired the ownership of the Lahoca epithermal deposit in 1993. According to the growing interest for gold in the world and based on the gold discoveries in the eighties, the drilling exploration was re-started in the Lahoca zone in 1994. It was realized a few years before, that the model of epithermal gold deposits perfectly fitted to the Lahoca area (FOLDESSY, 1997). The exploration program was carried out in three steps. During three years, 57 drillholes were made with a total length of 8220 m.
3. GEOLOGICAL CHARACTERISTICS OF THE LAHOCA GOLD MINERALIZATION Geology of the Recsk complex The Lahoca gold mineralization is a part of the Recsk complex. The Recsk complex can be considered unique as ore formations of different genesis in connection with a shallow, sub-volcanic intrusion are situated in one, relatively small occurence, and a complete porphyry Cu formation has been preserved in one system. The Damo-line, the major tectonic zone of Hungary proved to be continued in the pre-Tertiary basement of the Matra Mountains. The structural differences between the two units separated by the tectonic zone have been maintained throughout the Tertiary period. The oldest formations of the Recsk area are Triassic limestone, quartzite and shales. After a long gap, the Paleogene series starts with Upper Eocene marine limestone and marl. The formation of these sediments was followed by intrusive and volcanic events. Opposite to the main part of the Matra Mountains, where Neogene events produced volcanic mass, the igneous activity took place during the Paleogene period, along a N-S trend shear zone in the Recsk area. The age of the magmatism is determined to be Upper Eocene by the underlying, intermingling and overlying sediments of the Nummulites fabianii horizon. Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 265
Epithermal Gold Deposit in
Lahóca:
Mining History and Prospects
The Paleogene volcanic cycle comprises four stages (Fig. 2): 1. subaqueuos andesitic lavaflows, agglometares and tuffs; 2. stratovolcanic products in a gradual shift from submarine to subaerial environments, with a dacitic chemical character; 3. stratovolcanic sequence of biotite-hornblende andesites and breccia and an intrusive dioritic body, in smaller regional extension, with highly intensive hydrothermal alteration; 4. development of the central explosive caldera, andesite dykes, extrusions and laccoliths (BAKSA et al., 1981). The Eocene volcanics are covered by reef limestones and other lacustrine sediments. The subsidence of the area reached its maximum in the Middle Oligocene when only the central horst escaped transgressions. Volcanic intercalations have been found even in the Lower and Middle Oligocene sediments.
Mineralization of the Recsk complex The Upper Eocene volcanic activity has associated with very significant mineralizations which composed of mesothermal and epithermal zones. In connection with the shallow intrusive porphyric body in the Triassic limestone, the mesothermal zoning of the Recsk complex is a porphyry copper mineralization overprinted by the skarn reactions. The high grade copper appears in the propylitic zone of the intrusive body and is associated with gold mainly in the areas where the propylitic zone underwent the skarn processes. The skarn copper ores were formed in the limestone along the contact with the intrusive. In the outer parts of the skarn zinc ores were developed. In the higher horizons of the Triassic series, stratabound metasomatic lead-zinc ores are found. The basic copper-bearing mineral is chalcopyrite accompanied by pyrite, pyrrhotite, magnetite and hematite in the skarnous association of the deep horizons. In the skarnous polymetallic deposits sphalerite is essential associated by pyrite, chalcopyrite, galena and magnetite. The porphyric copper ore body shows chalcopyrite dissemination with pyrite. In the peripheral parts of the body molibdenite occurs in siliceous-anhydritic veins. In the zones of the hydrothermal-metasomatic alterations the polymetallic ore deposits contain dominantly sphalerite, beside pyrite, galena and chalcopyrite (CSONGRADI, 1975).
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 266
Epithermal Gold Deposit
in
Lahóca:
Mining History
and Prospects
Mineralization of Lah6ca The Upper Eocene Recsk porphyry has a close spatial and genetical association with the Lahoca epithermal Cu-Au deposit. The mineralization appears in the second and third stages of the Paleogene volcanic cycle (Fig. 2), and some indications suggest that it was continued until the Middle Oligocene (FOLDESSY, 1996). In the second-stage dacites, a typical low sulphidation mineralization occurs with a quartz-sericite-adularia-alunite alteration. The dominant ore minerals are tetrahedrite and pyrite as dissemination of the silicified breccia dikes and veins penetrating the dacite. The gold appears in Au-Ag tellurides and in native form (NAGY, 1983). This unit is found in the peripheral part around the high sulphidation system. The high sulphidation mineralization is associated with the third-stage volcanics. These volcanic products are in the center of the second-stage volcanics, lying uncomformably or penetrating them. The third-stage volcanics can be divided into three units upward from below: 1. shallow-seated subvolcanic hornblende diorite porhyry; 2. thick, southerly dipping breccia, 3. hornblende andesite forming plugs, dikes or blankets on the breccia (FOLDESSY, 1996). The high sulphidation mineralization is connected to the breccia blanket which has a high fractuation on the top and lower fractuation at the bottom. The gold enrichment has a sharp upper boundary at the covering blueschist and weakens downwards. Ore minerals appear in both the matrix and clasts. The enargite and luzonite occur in form of impregnations and veins in quartzite. The breccia also contain enargite and luzonite. The main Au-bearing mineral is the collomorph pyrite in dissemination and fine impregnation. The coarse grained euhedral pyrite is usually free of gold. Enargite and luzonite also contain gold. About 25% of the gold is free. Sphalerite and tetrahedrite are common accesorial minerals in the lower parts. Several Pb, Bi and Te sulfosalts also occur. The ore appears in the matrix of vuggy siliceous breccias, as breccia cement, clasts, veins or stockwork. Barite and chalcopyrite are present in the pipe breccias (KOCH, 1985; FOLDESSY, 1996). The silification shows close correlation with the gold content. Advanced argillic alteration (kaolinite, dickite, pyrophyllite) and less silification are linked to lower, subeconomic Au grades. Smectite-illite alteration indicates barren zones. Propylitization is related to late plugs along the central N-S line, in places as overprints on argillic alteration zones (FOLDESSY, 1997).
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 267
Epithermal
Gold Deposit
in
Lahóca:
Mining History and Prospects
Mineral resource of Lahoca The formerly mined enargite-luzonite copper ore and the gold mineralization appear in the same area, although the gold extends well beyond the copper borders. The tickness of the gold-bearing breccia blanket is 30-50 meters, the horizontal extension is about 2 km2. The main part of the ore is between 50-100 m below surface. The new resource estimations presume 35.5 million tons of gold with an average 1.4 g/t Au at 0.5 g/t Au cut-off. In case of higher cut-off the resource decreases: it is 16.5 million tons of gold with 2.01 g/t Au at 1.0 g/t Au cut-off. The average silver content is merely 1-5 g/t, but it can be important in certain parts as a premium over the gold (FOLDESSY, 1997). As concerning the dressing, the ore responds to flotation with low gold recoveries. Heap biooxidation of crushed ore seems to be the best method because of the very fine Au dissemination in the collomorph pyrite. Until now, the Lahoca gold project has demanded about 3 million USD. The completion of the exploration program and the start of mining need a sum of approximately 50 million USD. With an annual production capacity of 2 million tons, the costs would be refunded in five years, with an estimated 4 tons of metal-gold (FOLDESSY, 1997). Although the ore itself is the property of Rhodes Mining NL, it is a great advantage for Hungary that mining activity in the Lahoca area would highly ease the difficulties of unimployment in this part of Heves county, and the central and local budget would be increased by an estimated 1800 million HUF/year by the different taxes.
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 268
Epithermal
Gold
Deposit
in
Lahóca:
Mining
History
and Prospects
References [1] BAKSA, CS. (1974): A recski Lahóca-hegy é-i előterében feltárt, újabb enargitos-luzonitos és pirites ércesedés földtani-érctelepteni vizsgálata. Egyetemi doktori értekezés [2] BAKSA, CS. (1975): A recski mélyszinti szubvulkáni andezittest és telérei. Földt. Közi. v. 105. pp. 612-624 [3] BAKSA, CS., CSILLAG, J., FÖLDESSY, J. (1975): Volcanic Formations of the Mátra Mts., Hungary. Acta Geol. Ac. Sci. Hung. v. 18. pp. 387-400 [4] BAKSA, CS. (1975): Új enargitos-luzonitos ércesedés a recski Lahócahegy É-i előterében. Földt. Közi. v. 105. pp. 58-74 [1] BAKSA, CS., FÖLDESSY, J. (1979): A recski enargitos rézérctermelés tapasztalatainak és a mélyfúrások adatainak elemző földtani értékelése. Földt. Közi. v. 109. pp. 478-487 [2] BAKSA, CS., CSILLAG, J., FÖLDESSY, J., ZELENKA, T. (1981): A hypothesis about the Tertiary volcanic activities of the Mátra Mountains, NE Hungary. Acta Geol.Ac. Sci. Hung. v. 24. pp. 337-349 [3] BAKSA, CS., CSILLAG, J., DOBOSI, G., FÖLDESSY, J. (1981): Rézpala indikáció a Darnó hegyen. Földt. Közi. 111. pp. 59-66 [4] BAKSA, CS., CSEH-NÉMETH, J., FÖLDESSY, J., ZELENKA, T. (1982): A recski bányabeli kutatás földtani, telepteni eredményei és dokumentációs rendszere, módszertana. Földt. Kutatás v. 25. no. 3-4. pp. 52-60 [5] BAKSA, CS. (1984): A recski ércesedés genetikai vázlata. Földt. Közi. v. 114. pp.335-348 [6] BALLA, Z. (1988): A Kárpát-pannon régió nagyszerkezeti képe a felsőeocénben és e kép hatása a mezozóos Tethys-rekonstrukciókra Földt. Közi. v. 118. pp. 11-26 [7] CSEH-NÉMETH, J. (1975): A recski mélyszinti szinesfém-előfordulás és annak teleptani, ércföldtani képe Földt. Közi. v. 105. pp. 692-708 [8] CSEH-NÉMETH, J. (1986): A VI. ötéves tervidőszakban végzett érc- és ásványbányászati kutatás, VII. ötéves terv kutatási feladatai. Földtani Kutatás XXIX. évf. 1. sz. pp. 47-58 [9] CSILLAG, J.: (1975): A recski terület magmás hatásra átalakult képződményei. Földt. Közi. v. 105.pp. 646-671
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 269
Epithermal
Gold
Deposit
in
Lahóca:
Mining
History
and
Prospects
10] CSONGRÁDI, J.: (1975): A recski mélyszinti szinesfém-ércesedés jellemzése ércmikroszkópiai vizsgálatok alapján. Földt. Közi. v. 105. pp. 672-691 11] FÖLDESSY, J. (1975): A recski felső-eocén rétegvulkáni andezit összlet. Földt. Közi. v. 105. pp. 625-645 12] FÖLDESSY, J. (1984): A recski paleogén vulkáni és intruzív képződmények kőzettani és vulkanológiai jellegei. Kandidátusi értekezés. Kézirat 13] FÖLDESSY, J. (1995): Parádfürdö-Recsk körzetének földtani térképe (1:10 000) 14] FÖLDESSY, J. (1996): Lahóca epithermal gold deposit, Recsk-Hungary. Plate Tectonic Aspects of the Alpine Metallogeny... Proceedings of the Annual Meeting. Sofia, 1996. pp. 67-74 15] FÖLDESSY, J. (1997): Final geological report. 16] FÖLDESSY, J. (1997): A recski Lahóca aranyérc előfordulás. Földtani Kutatás. XXXIV. évf. 2. sz. pp. 12-15 17] FÖLDESSYNÉ, JÁRÁNYI K. (1975):A recski mélyszinti alaphegység üledékes képződményei Földt. Közi. 105. pp. 598-611 18] GAGYI-PÁLFFY, A. Sen. (1975): A recski mélyszinti ércesedés megismerése, általános jellemzése és népgazdasági jelentősége. Földt. Kőzi. v. 105. pp. 571-581 19] GAGYI-PÁLFFY, A. Jr.: A recski mélyszinti szinesfémérc-előfordulás gazdasági-műrevalósági értékelése és felismert törvényszerűségei. Földt. Közi. v. 105. pp. 709-723 20] GASZTONYI, É., KATONA, F., POLGÁR, I., SZEBÉNYI, G. (1989): A recski színesfémére előfordulás kutatásának újabb bányaföldtani és ásványvagyongazdálkodási eredményei. Földtani Kutatás. XXXII. évf. 13. sz. pp. 126-134 21] GATTER, I. (1997): A Recsk-parádfiirdői "kovás sapka" aranyérc perspektívái a fluid zárvány vizsgálatok tükrében. Földtani Kutatás XXXIV. évf. 2. sz. pp. 16-19 22] HAIDINGER, T. (1850): Note über das Vorkommen von gediegenem Kupfer zu Recsk bei Erzbau in Ungarn. Jahrb. des K. u. K. Geol. Reichsanst. v. 1. pp. 145-149 23] KISS, J. (1982): Ércteleptan I-II. Tankönyvkiadó
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 270
Epithermal
Gold
Deposit
in
Lahóca:
Mining
History
and Prospects
[24] KITAIBEL, P. (1799): Über das Mátragebirgein topographischnaturhistorischen Rücksicht. Literalischer Anzeiger fiir Ungarn. v. 18. no. 2. pp. 26-32 [25] KOCH, S. (1985): Magyarország ásványai. Akadémiai Kiadó. pp. 245-282 [26] KUBINYI, F. (1852): A recski termésrézről Heves megyében és a diorit képletről, melyben a réz találtatik. Magyar Földt. Társ. munkálatai. III. p. 1-7 [27] KUBOVICS, I., PANTÓ, GY. (1970): Vulkanológiai vizsgálatok a Mátrában és a Börzsönyben. Akadémiai Kiadó. Budapest [28] LÖW, M. (1925): Ércelőfordulások a Mátrában. Földt. Közi. v. 55. pp. 127-143 [29] MAURITZ, B. (1909): A Mátra hegység eruptív kőzetei. Mat. és Term.tud. Közi. v. 30. pp. 1-114 [30] NAGY, B. (1983): Arany-, ezüst- és bizmut telluridok a parádfürdői ércesedés ásványparagenezisében (Gold, silver and bismuth tellurides in the paragenesis of the mineralization at Parádfürdő) MÁFI Évi Jelentése az 1983 évről. pp. 321-357 [31] NOSZKY, J. id. (1912): Adatok a nyugati Mátra geológiájához. MÁFI Évi Jelentése az 1911. évről. pp. 46-60 [32] PANTÓ, G. (1951): A recski Lahóca felépítése és érce. Földt. Közi. v. 81. pp.146-152 [33] PANTÓ, G. (1952): Bányafóldtani felvétel Recsk és Párád környékén. MÁFI Évi Jel. 1949. pp. 67-75 [34] PAPP, F. (1938): A Recsk környéki ércelőfordulásról. Bány Koh. Lapok v. 23. pp. 373-377 [35] ROZLOZSNY1K, P. (1939): Geológiai tanulmányok a Mátra északi oldalán Párád, Recsk és Mátraballa községek között. MÁFI Évi Jel. 1933-35-ről pp. 545-620 [36] SZABÓ, J. (1875): Az enargit újabb előjövetele Párádon. Földt. Közi. v. 5. pp.158-160 [37] SCHRÉTER, F. (1949): A Mátrától ÉK-re eső dombvidék földtani viszonyai. MÁFI Évi Jel. 1948-ról pp. 11-134 [38] SZENTES, F. (1951): Jelentés az 1946. évben Párád környékén végzett földtani felvételről. MÁFI Évi Jel. 1945-47-ről. pp. 151-156 [39] SZTRÓKAY, K. (1940): A recski ércek ásványos összetétele és genetikai vizsgálata. Mat. Term.tud. Ért. v. 49. p. 59
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 271
Epithermal
Gold Deposit
in
Lahóca:
Mining
History
and
Prospects
[40] TELEGDY-RÓTH, K. (1937): Die neuesten Resultaten der Petroleum schhürfungen in Ungarn. Leobener Bergmannstag 1937. pp. 330-336 [41] TÖRÖK, K. (1963): A recski andezittömeg földtani helyzete, a "kék pala" ércgenetikai jelentősége, a Se tartalom kérdése. Egy. dokt. ért. ELTE. Kézirat [42] VARGA, GY. (1974): A Mátra hegység földtana. MÁFI Évkönyv, v. 54. [43] VARRÓK, K. (1962): Recsk-Parádfiirdő környékének földtani viszonyai. MÁFI Évi Jel. 1959-ről. pp. 37-59 [44] ZELENKA, T. (1973): New data on the Darnó megatectonic zone. Acta Geol. Acad. Sei. Hung. v. 17. pp. 155-162 [45] ZELENKA, T. (1975): A recski mélyszinti ércesedés szerkezeti, magmaföldtani helyzete Földt. Közi. v. 105. pp. 582-597 [46] ZELENKA, T., BAKSA CS., BALLA, Z„ FÖLDESSY, J., FÖLDESSYJARANYI, K. (1983): The role of the Darnó line in the basement structure of NE Hungary. Geologica Carpathica. v. 34. pp. 53-69 [47] ZELENKA, T., BAKSA, CS., BALLA, Z, FÖLDESSY, J., FÖLDESSYNÉ JÁRÁNYI, K. (1983): NYI, K. (1983): Mezozóos ősföldrajzi határ-e a Darnó vonal? Földt. Közi. v. 113. pp. 27-37
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 272
Epithermal Gold Deposit in
Lahóca:
Mining History and Prospects
SSE I
NNW l«l«n odomânya-od
%
biolitt-ompNbolt ancWsili L*g«rd«
MOm
, ( 2 3 lU?*I Um
Fig. 1 Vertical section by LOW (1925) showing the adits in Lahoca 1: oxidized ore, 2: lower level of oxidized ore, 3: mineralized parts
Fig. 2 Schematic block diagram of the Recsk area showing the four stages of the Upper Eocene volcanic activity (after BAKSA, 1981) 1: Triassic folded limestone, shale with ophioplites, 2:Triassic limestone, quartzite, shale, 3: Upper Eocene limestone, marl, clay, 4: shallow dioritic intrusion (3. stage), 5: lower biotite-hornblende andesite series (1. stage), 6: quartz-biotite-hornblende andesites, dacites (2. stage) 7: biotite-hornblende andesites (3. stage), 8: biotite-pyroxene-hornblende andesite dykes, extrusions, laccoliths (4. stage), 9: Middle and Upper Oligocene siltstone, clay
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 273
Epithermal
Gold
Deposit
in
Lahóca:
Mining
History
and
Prospects
LEGEND < [ = •
2|H3 3(23 117*71 7EÏD «EB
Fig. 3 Geological sketch of the Lahöca area (after FÖLDESSY, 1996) 1: settlement, 2: Upper Eocene andesite and dacite (1. and 2. stage), 3: Upper Eocene-Oligocene andesite (4. stage), 4: Upper Eocene diorite-porphyry breccia (3. stage), 5: Extreme hydrothermal alteration, 6: Middle and Upper Oligocene siltstone, clay, sandstone, 7; Miocene volcanic and sedimentary series, 8: hidden Upper Eocene diorite-porphyry intrusion
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 274
Epithermal
Gold
Deposit
in
Lahöca:
Mining
History
and Prospects
m 300
200-'
100-
0
0 1
[ + 3
2 [TT\
500 m
3[7v]
4[ÏÏT]
S W M
' S
e E 3
s m
Fig. 4 Section of the Lahoca-type ore deposits (after BAKSA, 1975) 1: pre-ore biotite-hornblende andesite anddacite, 2: mixed volcanic breccia, 3:andesite t u f f , 4: post-ore biotite-hornblende andesite, 5: ore-bearing bodies, veins, 6: hydrothermal centres, 7: Upper Eocene limestone, 8: Middle Oligocene clay, marl, 9: fault
Éva Seres-Hartai Dr.univ.assistant professor
University of Miskolc Department of Geology and Mineral Deposits 275
Epithermal
NORTH
BALA TA VALIÉ*
Gold
Deposit
in
Lahóca:
Mining
History
VERESAGYAGBERC
LEJTAKNA LAHÓCA HILL Hill
HILL
LAHÖCA GOLD ot POSIT
««o
iQ 3EHH3
and
Prospects
SOUTH
SOOm
5
EZ) e « OT
Fig. 5 Schematic cross section of the Recsk complex (after FOLDESSY, 1996) 1: Oligocene clastics, 2: Eocene andesite, 3: gold deposits, 4: Mesosoic basement, 5: mineralized copper porphyry, 6: fault, 1: copper skarn, 8: zinc skarn
Éva Seres-Hartai Dr.univ. assistant professor
University of Miskolc Department of Geology and Mineral Deposits 276