Enhancing Reef Recovery in Komodo National Park, Indonesia Coral Reef Rehabilitation at Ecologically Significant Scales (Mempercepat pemulihan terumbu karang di Taman Nasional Komodo, Indonesia: Rehabilitasi terumbu karang pada skala ekologis)
April 2003
Report from The Nature Conservancy, Southeast Asia Center for Marine Protected Areas In collaboration with the Komodo National Park Authority
Helen E. Fox PhD Peter J. Mous PhD, Science, Training and Partnerships Manager Andreas Muljadi, Monitoring Program Officer Purwanto, Monitoring Officer Jos S. Pet PhD, Program Manager TNC Southeast Asia Center for Marine Protected Areas Jl Pengembak 2, Sanur, Bali, INDONESIA phone +62-(0)361-287272, fax +62-(0)361-270737
Table of contents Acknowledgements ........................................................................................................................................... 3 Abstract ............................................................................................................................................................. 4 Abstrak .............................................................................................................................................................. 4 Background ....................................................................................................................................................... 5 Implementation.................................................................................................................................................. 6 Deployment of rocks ..................................................................................................................................... 6 Extension ....................................................................................................................................................... 6 Monitoring of coral recovery......................................................................................................................... 7 Results ............................................................................................................................................................. 10 Large-Scale treatments (installed 2002) ...................................................................................................... 10 Mid-Scale treatments (installed 2000)......................................................................................................... 10 Material and implementation cost ................................................................................................................... 12 Conclusions ..................................................................................................................................................... 13 Further reading ................................................................................................................................................ 13 Appendix 1 ...................................................................................................................................................... 14 Appendix 2 ...................................................................................................................................................... 18 Appendix 3 ...................................................................................................................................................... 19
2
Acknowledgements The authors wish to express their deep appreciation for the hard work of Komodo National Park rangers M. Saleh, Suprayitno and Yusuf Jenata, and volunteer Nasrul, who positioned 910 truckloads of rocks in ecologically meaningful configurations on the seafloor. The boat crew of the TNC speedboats Cakalang and Tenggiri are thanked for carrying the dive teams safely to their destination and for helping out with the other field activities. The Administration, Finance and Logistical Support Teams of the TNC SEACMPA offices in Bali and Komodo did an excellent job in supporting the fieldwork. The authors of this report wish to thank Dr Mattheus Halim (Head of Komodo National Park) and Rili Djohani, (Director of the TNC Southeast Asia Center for Marine Protected Areas) for their support. This project was funded by the David and Lucile Packard Foundation.
3
Abstract Illegal fishing with homemade bombs or dynamite is rampant throughout Southeast Asia and has devastated many coral reefs in the region. In addition to fish and other organisms being indiscriminately killed, coral skeletons are shattered by the blasts, leaving fields of broken rubble. This rubble shifts in the current, abrading or burying any new coral recruits, thereby slowing or preventing reef recovery. Due to effective management, blast fishing has decreased in Komodo National Park (KNP), Indonesia, making restoration efforts worth investigating. Based on 4 years of pilot data testing three different methods (rock piles, cement slabs, and netting pinned to the rubble) rocks were selected for large-scale rehabilitation. Many more corals per square meter grew on the rock piles compared to untreated rubble. Rocks also provided the most natural, complex substrate, were easiest to scale up, and are relatively inexpensive compared to reef rehabilitation methods being investigated elsewhere. Mid-scale rock piles were installed in 2000; cover by hard corals on the rocks continued to increase as of this most recent visit (March 2003). In 2002, rehabilitation efforts in KNP were further scaled up, testing four rock pile designs at each of four different rubble field sites, covering more than 6,000 m2 total. If the rubble fields have adequate source coral larval supply from nearby live coral, using rocks for simple, low-cost, large-scale rehabilitation could be a viable option to restore the structural foundation of the reefs, thereby facilitating the return of coral, fish, and other reef-associated life.
Abstrak Penangkapan ikan secara ilegal dengan menggunakan bahan peledak buatan sendiri atau dinamit masih sering dilakukan pada sebagian besar wilayah di Asia Tenggara dan telah mengakibatkan kerusakan terumbu karang di kawasan tersebut. Selain menyebabkan kematian ikan dan organisme lain, ledakan dinamit meninggalkan patahan karang yang berserakan di dasar membentuk serpihan karang mati. Serpihan karang ini dibawa oleh arus laut, selanjutnya menggeser atau menutupi karang-karang muda lain yang masih hidup, sehingga menghambat atau mencegah pemulihan karang. Melalui pengelolaan yang efektif, penangkapan ikan dengan peledak telah berkurang di Taman Nasional Komodo, Indonesia, sehingga upaya pemulihan terumbu karang mempunyai peluang untuk memberikan hasil yang bermanfaat. Dari data hasil uji pendahuluan selama empat tahun dengan menggunakan tiga metode yang berbeda (tumpukan batu, lapisan semen, dan jala yang ditancapkan pada serpihan karang), didapatkan bahwa tumpukan batu mendapatkan hasil terbaik dan dilanjutkan untuk melihat rehabilitasi dalam skala besar. Terumbu karang yang tumbuh pada batu (karang per m2) dibandingkan dengan substrat serpihan karang sebagai control (tanpa perlakuan). Sebagai hasilnya, batu juga terbukti merupakan substrat yang lebih alami, lebih komplek dan paling mudah untuk diukur, serta relatif murah dibandingkan metode rehabilitasi karang lainnya yang telah diusahakan pada berbagai tempat yang berbeda. Tumpukan batu skala menengah mulai ditanam pada tahun 2000; hasil pengamatan menunjukkan peningkatan penutupan karang hidup (hard coral) pada substrat batu, sampai pada pengamatan bulan Maret 2003. Pada tahun 2002, upaya rehabilitasi di TNK diperluas, dengan melakukan uji terhadap 4 desain tumpukan batu pada setiap lokasi dari 4 lokasi serpihan karang yang berbeda, meliputi luasan total lebih dari 6000 m2. Jika substrat serpihan karang memiliki cukup sumber larva karang dari dekat terumbu karang yang hidup, dengan menggunakan batu secara sederhana, dan biaya rendah, rehabilitasi skala besar bisa menjadi pilihan yang cukup baik untuk mempertahankan struktur dasar terumbu karang, yang pada akhirnya akan mengembalikan terumbu karang, ikan dan kehidupan lainnya yang berasosiasi dengan terumbu karang.
4
Background The destructive fishing practice of blast fishing dramatically alters the coral reef ecosystem, making natural recovery unlikely despite the presence of early recruits. In order to facilitate reef recovery, the structural foundation of the reef must be rebuilt; therefore we are focusing our rehabilitation efforts on stabilizing the substrate. Since substrate stability and topographic complexity are crucial to survival of coral recruits, we are attempting to accelerate recovery of coral communities by stabilizing loose rubble and creating threedimensional surfaces for coral settlement. As many of the rehabilitation techniques currently used are inappropriate for a developing country’s resources, we are exploring relatively inexpensive and locally available technologies to enhance coral reef recruitment. After conducting pilot studies starting in 1998 with netting, cement slabs, and rock piles, the most successful method (rock piles) was scaled up in 2000 to larger-scale studies. This project is “ecologically-significant” reef rehabilitation at scales of thousands of square meters. Four sites were chosen for large-scale substrate stabilization: Gililawadarat, Karang Makassar, NE Padar, and Papagarang (Figure 1). By testing four rock pile designs at each site, each with the same total volume of
Figure 1. Map of Komodo National Park showing the nine rubble field sites for initial research. (numbered circles). Sites for large-scale rehabilitation have stars overlaid: 3=Papagarang, 5=Karang Makassar, 6=Gililawadarat, 8=Padar. / Gambar 1. Peta Taman Nasional Komodo yang menunjukkan sembilan daerah serpihan karang sebagai penelitian pendahuluan (nomor dilingkari). Lokasi rehabilitasi dengan skala besar diberi tanda bintang sebagai berikut : 3= Papagarang, 5=Karang Makassar, 6= Gililawadarat, 8=Padar.
5
rock, the configuration that best resists rubble encroachment and gives the best ecosystem recovery for the same cost can be determined. The four designs installed at each site are: 1) complete rock coverage, 2) rock piles (used in the larger-scale trials), 3) “spur and groove” morphology parallel to the prevailing current, and 4) spur and groove perpendicular to the current. The different designs have different potential strengths and weaknesses. A relatively high (50-75 cm) solid coverage of rocks (method 1) may keep rubble out, but this method covers the least area per cubic meter of rock. Piles of rock 1-2 m3 in volume spaced every 2-3 m (method 2) cover the most area per cubic meter but leave the most rubble free to move in the stabilized area. The other two designs are based on the fact that on some reefs with high wave energy, spurs and grooves naturally form perpendicular to the waves, with the spurs, or ridges, breaking the force of the waves, and the grooves, or valleys, allowing the channeling of sand. Where rubble motion is fairly unidirectional (as with a steep slope or some currents), a spur and groove system parallel to the direction of flow (method 3) might allow the buildup of coral on the spurs, and the “flushing through” of rubble in the grooves. Alternatively, a spur and groove system perpendicular to the direction of flow (method 4) might generate turbulent flow and eddies as they block the current, enhancing settlement of coral larvae from the water column. The limestone rocks were quarried from nearby sources in western Flores, and then loaded onto a local cargo boat. The boat anchored over a pre-selected rubble site with little live coral nearby. The site was marked with a small, temporary buoy, rocks were thrown overboard, and were then consolidated to form piles by divers using SCUBA. Ideally, the mass of the rocks should be large enough to effectively resist the currents, while still be small enough to handle. Were this method to be scaled up still further and use machinery instead of human labor to quarry, load, unload, and arrange the rocks, the size of the rocks could be increased.
Implementation Deployment of rocks After the initial planning visit in November-December 2001, most installation of the rock piles took place over the course of seven months: March-September 2002. A total of 910 truckloads of rocks 2.5 m3 each, for a total of 2,275 m3 were installed with 76 trips to the four sites, with 45-78 truckloads for each design (see Table 1). Pak Yusuf from Taman Nasional Komodo (TNK) and Pak Purwanto from TNC were primarily responsible for the implementation. The speedboat crew and Nasrul, a volunteer, also participated in building the rock structures underwater. The monitoring staff kept detailed records of the cargo and speedboat schedules and the process of installation. Extension The rehabilitation project was often shown to visitors to TNC-KFO. H. Fox gave a presentation on the project to a group of reporters from a variety of Indonesian mass media in Labuan Bajo on March 19. According to some TNC staff, there is sufficient local interest in this method that rocks have been installed for rehabilitation efforts in Bidadari, although this was not confirmed during this visit. This project also provides potential research topics for marine biology students. Possible research topics could be to compare ecosystem recovery (coral recruitment, abundance of fish and other economically important species, etc.) between the rock treatments and on nearby rubble, between the different treatments, or at different depths on the treatments. It would also be valuable to conduct more detailed fish and invertebrate biodiversity surveys to document the succession and recovery of a reef community. Komodo Field Office and the Park authority should work together to explain this project to the local communities. An information sheet has been provided to the Community Awareness team.
6
Table 1. Dates and numbers of truckloads of rocks installed in each design at each location. / Tabel 1. Tanggal dan jumlah (truk) muatan batu yang dipasang pada tiap desain pada tiap lokasi Design:
Location Papagarang
Complete Coverage
Date 8-Dec-01 10-Mar-02 22-Mar-02 28-Mar-02 9-Apr-02
Totals Karang Makassar
17-Apr-02 19-Apr-02 3-May-02 16-May-02
4 13 13 13 13
Date 28-May-02 5-Jun-02 7-Jun-02 27-Jun-02
13 12 13 13
11-Jul-02 13-Jul-02 13-Aug-02 20-Aug-02
13 12 12 13
30-May-02 15-Jun-02 25-Jun-02 26-Jul-02 29-Jul-02
Totals
13 12 13 13 13
64
# Trucks 13 12 12 12
Date 29-Jun-02 3-Jul-02 5-Jul-02 3-Aug-02 5-Aug-02
13 12 13 13 12
15-Apr-02 29-Apr-02 14-May-02 13-Jun-02 21-Jun-02
13 13 13 12 13
6-Dec-01 14-Dec-01 6-Mar-02 18-Mar-02 3-Apr-02
4 12 13 12 12
53
# Trucks 13 12 12 12 12
Date 22-Apr-02 6-May-02 8-May-02 26-May-02
4 4 12 12 13
11-Sep-02 2-Sep-02 15-Sep-02 19-Sep-02
12 12 12 13
31-Jul-02 10-Aug-02 23-Aug-03 22-Sep-02
13 13 13 13 13 13 78
13 13 13 15
12 12 13 13
50 4-Dec-01 10-Dec-01 4-Mar-02 16-Mar-02 5-Apr-02
49 17-Jul-02 19-Jul-02 15-Aug-02 26-Aug-02 28-Aug-02 30-Sep-02
# Trucks
54
45
64 12-Dec-01 8-Mar-02 20-Mar-02 25-Mar-02 7-Apr-02
Rows perpendicular
61
63
50 30-Aug-02 17-Sep-02 24-Sep-02 26-Sep-02 28-Sep-02
Rows parallel
49
51
Totals Padar
# Trucks
56
Totals Gililawadarat
Rock Piles
4 4 12 13 12 45
18-May-02 20-May-02 22-May-02 17-Jun-02 19-Jun-02 15-Jul-02
13 13 13 13 13 13 78
Monitoring of coral recovery At each of the four large-scale sites, the area covered by the rehabilitation treatments was measured (Table 2). Detailed measurements and maps are in the Appendices. Video transects were filmed to record landscape and coral cover (downward-filmed transects) over each treatment at each site, plus a rubble field control (Figure 2). Non-diver stationary video was taken to assess fish populations at each treatment at each site, plus a rubble field control (Figure 3). Yusuf surveyed coral recruitment in six m2 quadrats at the oldest design at each site (Gililawadarat- perpendicular to current; Karang Makassar- parallel to current; Padarrock piles; Papagarang- complete coverage) (Table 3). The rock piles from 2000 were also surveyed for
7
coral recruitment. The number, size, lifeform, and taxon of scleractinian coral recruits were recorded for six 1 x 1 m quadrats per site (1-3 per rock pile). Cover of soft coral and other prominent benthic colonizers was also noted. Control rubble quadrats were also surveyed. Size of the rock piles (length, width, height, and circumference) was measured in order to calculate rock pile volume and thus measure persistence.
Table 2. Summary of area covered by each design at each site. / Tabel 2. Ringkasan daerah dengan tiap desain pada tiap lokasi Square meters per design Parallel Perpendicular Rows Rows Location Papagarang 350 350 Karang Makassar 380 385 Gililawadarat 270 515 Padar 490 535 Total
Complete Coverage 90 100 130 115
Pile Extent 645 650 650 775
Total 1435 1515 1565 1915 6430 m2
Figure 2. Comparison coral transects over rocks (left) and rubble (right). Note purple coralline algae colonizing rocks. / Gambar 2. Perbandingan transek karang terhadap batu (kiri) dan serpihan karang (kanan). Perhatikan algae coralline berwarna ungu yang menutupi dan tumbuh pada batu.
8
Complete coverage
Parallel Rows
Perpendicular Rows
Piles
Rubble--No Rehabilitation
Figure 3. Frames from non-diver stationary video from each of the four rehabilitation designs, plus rubble control. Note differences in structure and fish abundance and diversity between the rock treatments and untreated rubble. / Gambar 3. Bingkai dari video tanpa penyelaman pada setiap lokasi dari empat desain rehabilitasi, ditambah serpihan karang sebagai kontrol. Perhatikan perbedaan dalam struktur dan kelimpahan ikan dan keanekaragaman antar perlakuan batuan dan dengan serpihan tanpa perlakuan sebagai kontrol.
9
Table 3. Mean number and size of hard coral recruits to the oldest rock structures at each site (Gililawadarat- perpendicular to current; Karang Makassar- parallel to current; Padar- rock piles; Papagarang- complete coverage), based on 6 m2 quadrats. / Tabel 3. Rata-rata jumlah dan ukuran karang hidup muda yang tumbuh pada struktur batu tertua pada tiap lokasi (Gililawadarat - tegak lurus terhadap arus ; Karang Makassar - paralel terhadap arus ; Padar - tumpukan batuan; Papagarang - penutupan lengkap) pada 6 x 6 m2 Location Papagarang Karang Makassar Gililawadarat Padar
Mean # hard coral recruits/m2 14.2 6.5 5.2 3.5
Mean area (cm2) per recruit 10.6 2.7 5.8 10.7
7.3
7.5
Grand Average
Results Large-Scale treatments (installed 2002) The large rock rehabilitation treatments, designed to minimize the problems of burial or scattering encountered in the pilot studies, have transformed large areas of rubble into more functional habitats. The rocks quickly developed a “biofilm” and were colonized by coralline algae and other encrusting organisms (Figure 2). Scleractinian recruits settled on the rock piles within a few months of installation and there is considerable recruitment of hard corals after only 6 months, with 3-14 recruits per square meter (Table 3). A total of approximately 6,430 m2 of dead coral rubble has been covered with the four designs at the four locations (Table 2). More detailed measurements of the pile sizes are provided in Appendix 1, while maps of the installed treatments are shown in Appendices 2 and 3. Rock piles were constructed larger and closer together than originally anticipated, so the total area covered by rocks is considerably smaller than projected. However, these larger, closer piles will better resist rubble encroachment than would smaller piles. There are clearly many more fish on the rehabilitation treatments compared to the untreated rubble (Figure 3). At this early stage, it is too early to tell differences in coral recruitment or fish abundance to the different designs, so conclusions on the best performing treatment cannot yet be reached. Mid-Scale treatments (installed 2000) The total area covered by hard corals on the mid-scale rock piles installed in 2000 continues to increase over time, with total area increasing at each survey at most sites (Figure 4). At some high current sites, however, there was a decrease in area, suggesting that rehabilitation in high current rubble areas is likely to be especially challenging. The total number of recruits per square meter remains high at most sites, although the range in numbers of recruits across the sites was wide, from an average of 1 colony/m2 (site 7) to over 40/m2 (site 6, Gililawadarat in North Komodo) (Figure 5).
10
North Komodo (NK)
Back of Papagarang (BP) 2000
2000
1500
1500
1500
1000
1000
1000
500
500
500
0
Hard coral area (cm2) per m2 (6 quadrats)
Buffer Zone (BZ)
2000
0 0
1
2000
2
3
2001
4
5
2002
6
7
2003
8
0 0
1
2
2000
Mid Padar (MP)
3
4
2001
5
6
2002
7
8
0
2003
Sand Spit (SS) 1500
1500
1000
1000
1000
500
500
500
0 0
1
2
2000
3
4
2001
5
6
2002
7
8
1
2
2000
Mengyatan Island (MI)
3
4
2001
5
6
2002
7
8
0
2003
800
600
600
600
400
400
400
200
200
200
0 1
2
2000
3
4
2001
5
6
2002
7
8
2003
4
5
6
2002
7
8
2003
2
3
4
2001
5
6
2002
7
8
7
8
2003
North Padar (NP)
800
0
1
2000
Rinca-Sarai (RS)
800
0
3
2001
0 0
2003
2
Karang Makassar (KM)
1500
0
1
2000
0 0
1
2
2000
3
4
2001
5
6
2002
7
8
2003
0
1
2
2000
3
4
2001
5
6
2002
2003
Figure 4. Box-and-whisker plots showing increasing hard coral area (in cm2) in six 1x1 m quadrats from spring 2000 (installation date, thus zero hard coral area) to spring 2003. Plots are arranged from low current (top row), to medium current (middle row), to high current (bottom row) (note the changing scale on the y-axis). / Gambar 4. Box-and-whisker plots yang menunjukkan pertambahan penutupan terumbu karang hidup (dalam cm2) dalam enam quadrant ukuran 1x1 m2 dari awal tahun 2000 (tanggal pemasangan, dan daerah terumbu karang hidup nol) hingga awal tahun 2003. Plots diatur dari arus rendah (baris teratas), arus menengah (baris tengah), arus tinggi (baris bawah) (perhatikan perubahan skala pada aksis-y).
11
60 Fall 2000 Spring 2001 Fall 2001 Spring 2002 Spring 2003
Mean # counts (and S.E.M.)
50
40
30
20
10
0 NK
BP
BZ
KM
SS
MP
MI
RS
NP
Site (low to high current) Figure 5. Mean (and SEM) number coral recruits/m2 onto the large rock piles from fall 2000 to spring 2003. Piles were installed spring 2000. / Gambar 5. Rata rata (dan SEM) jumlah karang muda/m2 pada tumpukan batuan besar dari tahun 2000 hingga 2003. Tumpukan batuan dipasang pada tahun 2000.
Material and implementation cost Material and implementation costs are presented in Table 4, and exclude the consultancy fee (10K) and costs for TNC staff time, travel, office supplies etc. (estimated 10K). In this project, 6,430 m2 of coral rubble were stabilized at a cost of USD 4.80/m2. These costs could be reduced in larger scale application through economy-of-scale, potentially decreasing these costs by half or more (e.g. negotiating a better rate or by having a boat built and crew hired specifically for the project).
Table 4. Final project expenses in Rupiah and USD equivalent. / Tabel 4. Pengeluaran proyek sampai akhir, dalam Rupiah dan kurs USD Item rock
KNP fee fuel meals boat
# Trucks 910
Cost per truck 70,000
Total in Rupiah 63,700,000
Total in US$ $ 7,077.78
# trips (~10/month x 7 months) 76 76 76 76
Cost per trip 300,000 400,000 120,000 2,000,000
Total in Rupiah 22,800,000 30,400,000 9,120,000 152,000,000
Total in US$ $ 2,533.33 $ 3,377.78 $ 1,013.33 $16,888.89
214,320,000
$30,891.11
Grand Total
12
Conclusions Thus far, results from this large-scale reef rehabilitation project are very encouraging. The large numbers of rock features provide surface area for coral settlement and recruitment, as well as countless small refuges for juvenile fish and invertebrates. Coral cover continues to increase on rocks installed in 2000, suggesting that over time, the growing coral, coralline algae, and other encrusting organisms will cement the individual rocks together. Furthermore, the large sections of stabilized rubble provide obstacles for the fast current, creating turbulent flow. This should further enhance coral settlement and reduce overall rubble movement, allowing coral to grow more quickly over the rubble in between the rock piles. Monitoring should continue annually, as the real measure of success will be results after 10 or 20 years. Marine reserves are widely accepted as one of the most practical and effective method to manage coral reef fisheries and preserve coral reef resources. Although blast fishing continues to devastate reefs throughout Southeast Asia and beyond, there are other success stories like that in KNP where blasting has been halted and the surviving reefs protected. It makes sense to concentrate efforts to rehabilitate damaged areas in existing parks, since even in these protected areas, large tracts of destroyed reef remain as a legacy of destructive fishing. If the rubble fields have adequate source coral larval supply from nearby live coral, using rocks for simple, low-cost, large-scale rehabilitation could be a viable option to restore the structural foundation of the reefs, thereby facilitating the return of coral, fish, and other reef-associated life. This inexpensive and effective method for enhancing coral reef recovery could be incorporated in reef management programs in other regions worldwide with damaged reefs but successful enforcement and alternative livelihood programs, thereby restoring economic and ecological value to these remarkable ecosystems.
Further reading For background and a brief literature review, please refer to the Proposal. Further information can be found in the Work Plan and Interim Reports of December 2001 and May 2002. These, as well as other published papers, are downloadable from the Reports section of the Komodo National Park website, www.komodonationalpark.org.
13
Appendix 1 Detailed measurements of the different rock treatment pile sizes at the different site locations. / Rincian pengukuran pada perlakuan dengan ukuran tumpukan batuan yang berbeda pada lokasi yang berbeda.
NB: MEASUREMENTS IN CM; TOTAL APPROX AREA IN METERS SQUARED ID LETTERS CORRESPOND TO THOSE ON MAPS IN APPENDICES 2 and 3
Location
Design
ID
Gililawa
Perpend. Rows
A B C D E F G H I J sum average ~m2 area
Location
Design
ID
Gililawa
Parallel Rows
A B C D sum average ~m2 area
Length
Width Width Height (top) (bottom) (top)
Dist to Dist to Height next pile next pile (bottom) (top) (bottom) 70 260 270 65 250 235 50 330 410 40 430 390 55 450 450 55 390 350 80 220 180 80 240 210 70 300 410 85 650 2870 2905 65 318.8889 322.778
1100 175 1340 190 890 210 1020 170 880 190 1030 210 1280 250 1240 190 1070 200 710 210 10560 1995 1056 199.5 513.7
135 150 210 140 190 210 230 245 190 250 1950 195
90 65 60 50 45 70 85 85 75 65 690 69
Width (left)
Width (right)
Height (left)
Height (right)
90 70 50
75 75 60 25 235 70
Length
2740 330 290 2520 230 240 2060 180 230 440 110 7760 740 870 2440 246.67 253.333 269.6
Design
Gililawa
Complete cover
Location Gililawa
Design Piles
Length Width Height Depth (feet)
A 235 165 85 14
B 260 240 85 17
C 265 210 85 17
K 280 270 75 18
L 240 180 70 20
M 170 170 70 19
1300 average 1225 ~m2 area 128.6
240 120
235 78.3333
Height (upper right) 55
Height (lower left) 50
Height (low right) 45
J 290 270 95 18
Width (top)
Width (bottom)
1020 1050
1080
Height (upper left) 85
D 280 180 110 13
E 240 270 90 14
F 300 390 140 14
G 290 270 95 20
H 130 390 110 20
I 300 240 70 30
N 230 210 70
O 330 310 90
P 360 320 85 21
Q 240 210 70 29
R 240 170 60 21
avg 260 248.056 86.3889
Length Length (left) (right)
Location
210 70
Dist to Dist to next pile next pile (left) (right) 180 55 60 70 110
1150
MANY-- subsample only
14
Location Karang Makassar subsample only
Design Piles
Location Design Karang Makassar Piles-R of 2000 avg ~m2 area total extent
Location
ID A B C D E F G H I
AVG
288.9 214.47 62.3684
L side 1020 1345 322.8
R side Top side Bottom side 1670 2160 2640 2400
Piles-L of 98 plot 1550 avg 1225 ~m2 area 324.625 SUM 647.425
Design
Karang Makassar Perpend. Rows
Length
A B C D E F sum average ~m2 area
1350 1380 1540 1370 1670 1510 8820 1470 382.2
Length
Design
ID
Karang Makassar
Parallel Rows
A B C D E F sum average ~m2 area
Design
Karang Makassar
Complete
900
ID
Location
Location
L (cm) W (cm) H (cm) t Pile to R 210 200 55 120 250 190 45 150 250 250 75 70 340 185 60 85 280 165 60 170 300 155 40 100 320 285 70 50 360 190 75 120 310 260 80 330
2500 2650
1020 255
55 55 55 85 95 60 405 67.5
Width (left)
Width (right)
1680 170 140 1560 220 310 1910 270 180 1740 240 170 2300 240 240 680 250 200 9870 1390 1240 1645 231.67 206.667 380
900 avg 1000 ~m2 area 96.5
1100
W (cm) H (cm) Next 200 70 750 250 55 110 165 50 80 200 80 110 270 70 75 310 75 110 240 60 320 270 70 70 100 40 240 190 55
2800
130 190 270 210 290 210 1300 216.667
Length Length (left) (right)
L (cm) 250 320 270 235 330 330 315 430 160 230
170
Width Width Height (top) (bottom) 270 250 250 250
ID J K L M N O P Q R S
Dist to Dist to next pile next pile (bottom) (top) 140 220 300 470 160 170 170 290 150 770 192.5
1300 260
NN (left)
NN (right)
Ht NOT measured
180 120 130 120 120 0 670 134
170 140 190 70 500 0 1070 214
Width (top)
Width (bottom)
890 965
1040
Height (upper left) 40
Notes 7 ft deep
merging together 41 ft deep
Height (upper right) 0.9
15
Location Papagarang total extent
Design Piles average ~m2 area
L side R side Top side Bottom side 2350 1500 2900 3800 1925 3350 644.875
Location
Design
ID
Length
Papagarang
Parallel Rows
A B C D E F G H I sum average ~m2 area
1250 1240 1040 930 1380 1400 1590 1130 540 10500 1167 350
Location
Design
Papagarang
Perpend. Rows
Location
Design
Papagarang
Complete Cover
Length A B C D E F sum average ~m2 area
1380 1370 1320 1570 1210 1260 8110 1352 351.4
Length 1300 average 1300 ~m2 area 89.05
Dist to Dist to Width Width next pile next pile Height (left) (right) (left) (right) 240 220 220 100 200 250 100 170 190 75 130 130 150 80 150 110 120 70 75 220 200 220 210 90 220 170 200 210 85 160 120 130 80 120 30 1610 1390 1040 490 715 178.89 173.75 173.333 163.333 79.44444
Dist to Dist to Width Width next pile next pile (top) (bottom) (top) (bottom) 210 160 170 140 170 200 1050 175
180 150 180 130 170 140 950 158.333
210 350 350 160 190 0 1260 210
390 350 290 240 380 0 1650 275
Height (est) 75 75 75 75 100 100 0
Width Width Height (top) (bottom) (est) 720 650 75 685 0 0
16
Location
Design
ID
Length
NE Padar
Perpend. Rows
A B C D E sum average ~m2 area
1930 2560 2660 2180 1620 10950 2190 439.1
Location
Design
NE Padar
Complete cover
Location NE Padar
Width Width Height (top) (bottom) (top) 175 200 230 360 175 1140 228
Length Length (left) (right) 1300 average 1330 ~m2 area 114.4
1360
250 200 280 250 200 1180 236
70 65 65 100 60 360 72
Width (top)
Width (bottom)
820 860
900
Dist to Dist to Height next pile next pile (bottom) (bottom) (top) 65 160 215 80 140 180 75 80 240 60 195 230 55 335 575 865 67 143.75 216.25
Height (upper left) 60
Dist to Dist to Width Width next pile next pile (left) (right) (left) (right) Parallel Rows A 600 120 150 B 2150 120 150 120 130 C 2680 140 200 120 60 D 2520 150 120 180 80 E 2500 130 160 180 120 F 2250 140 420 160 450 G 1700 130 150 100 160 H 1500 190 140 sum 15900 1120 1350 1000 1000 average 1988 140 192.857 142.857 166.667 ~m2 area 490.9 Design
ID
Location NE Padar
Design Oblique Rows
ID A B C sum average ~m2 area
Location NE Padar
Design Piles area
L side 2000 775
Length
Height (upper right) 75
Height (lower left) 90
Height (LR) 105
Height 50 80 55 90 85 70 50 65
Length Width Height Dist to NN 550 170 55 110 980 230 60 380 940 230 70 2470 630 185 490 823.3 210 61.6667 245 92.21 R side Middle (w/current) 3000 3100
17
Appendix 2 Maps of rocks installed in Gililawadarat (top) and Karang Makassar (bottom). Note ID letters associated with sizes in Appendix 1. / Peta pemasangan batu di Gililawadarat (atas) dan Karang Makassar (bawah). Perhatikan tulisan ID yang berasosiasi dengan ukuran pada Lampiran 1.
18
Appendix 3 Maps of rocks installed in Papagarang (top) and Padar (bottom). Note ID letters associated with sizes in Appendix 1. / Peta pemasangan batu di Papagarang (atas) dan Padar (bawah). Perhatikan tulisan ID yang berasosiasi dengan Lampiran 1.
19