5.
Di bawah ini merupakan matriks-matriks singular, tentukan nilai x, y dan z yang memenuhi. a. b.
È -3 - x ˘ Í ˙ 1˚ Î2 È2 y 5˘ Í ˙ 2˚ Î4
c.
È3 2 8 ˘ Í ˙ 1˚ Î 6
6.
Diketahui matriks-matriks berikut. È -2 5 ˘ È 7 1˘ P= Í Q= Í ˙ ˙ Î 3 1˚ Î2 1 ˚ Tentukan: a. (PQ)–1 b. P–1Q–1
E. Penggunaan Matriks untuk Menyelesaikan Sistem Persamaan Linear Dua Variabel Pada bagian ini, Anda akan mempelajari lebih lanjut tentang penyelesaian sistem persamaan linear dua variabel. Namun sebelumnya, pelajarilah terlebih dahulu bagaimana mencari matriks dari persamaan AX = B dan XA = B. Misalkan A, B, dan X adalah matriks persegi berordo 2 × 2 dan A matriks non singular. Persamaan AX = B dan XA = B dapat diselesaikan dengan menggunakan konsep invers matriks yang Anda pelajari pada subbab D sebelumnya. Dalam hal ini, konsep yang digunakan adalah A–1A = AA–1 = I. Kasus 1 untuk AX = B AX = B A–1AX = A–1B Kedua ruas dikalikan invers matriks A yaitu A–1 dari kiri. Oleh karena A–1A = I maka diperoleh IX = A–1 B X = A–1 B karena I X = X Jadi, jika A X = B, maka X = A–1 B Kasus 2 untuk XA = B XA = B XA A–1 =B A–1 Kedua ruas dikalikan invers matriks A yaitu A–1 dari kanan. Oleh karena A A–1 = I maka diperoleh XI = B A–1 X = B A–1 karena XI = X Jadi, jika XA = B, maka X = B A–1
Contoh Soal 2.23
1 È1 Í det A Î -6
1˘ 1 È 1 ˙ = Í 7 ˚ 1 Î -6
È1 2 ˘ Jika B = Í ˙ dan Î3 5 ˚ È2 1˘ AB–1 = Í ˙ , maka A = .... Î 4 3˚ a.
È5 9˘ Í ˙ Î13 23 ˚
È5 3 ˘ b. Í ˙ Î9 13 ˚
È13 5 ˘ d. Í ˙ Î 2 10 ˚ È 9 5˘ Í ˙ Î13 3 ˚
e.
È3 5 ˘ Í ˙ Î9 23 ˚ Jawab:
c.
È -3 2 ˘ È ˘ Misalkan A = Í ˙ dan B = Í -1 0 ˙ , tentukanlah matriks X yang berordo Î ˚ Î 6 1˚ 2 × 2 yang memenuhi persamaan a. AX = B b. XA = B Jawab: È 7 1˘ 7 1 = 7 (1) – 6 (1) = 1 A= Í ˙ maka det A = 6 1 Î 6 1˚ A–1 =
Pembahasan Soal
1˘ ˙= 7˚
È1 Í Î -6
1˘ ˙ 7˚
È2 1˘ Misalkan C = Í ˙ maka –1 Î 4 3˚ AB = C AB–1 B = CB AI = CB karena B–1 B = I A = CB È 2 1 ˘ È1 2 ˘ = Í ˙Í ˙ Î 4 3 ˚ Î3 5 ˚ È5 9˘ = Í ˙ Î13 23 ˚
Jawaban: a
Sumber: UMPTN, 1990
Matriks
57
a.
AX = B ¤ X = A–1B È1 1˘ È -3 2 ˘ È -2 2 ˘ X= Í ˙Í ˙ = Í 11 -12 ˙ 6 7 1 0 ˚ Î ˚Î ˚ Î
b.
XA = B ¤ X = BA–1 È -3 2 ˘ È 1 X= Í ˙Í Î -1 0 ˚ Î -6
1˘ È -15 17 ˘ ˙=Í ˙ 7 ˚ Î -1 1 ˚
Sebelumnya Anda pasti telah mengenal beberapa metode yang digunakan dalam menyelesaikan sistem persamaan linear dua variabel, di antaranya adalah metode grafik, metode subtitusi, metode eliminasi, dan gabungan antara metode subtitusi eliminasi. Pada subbab ini akan dibahas dua metode lagi untuk mencari penyelesaian sistem persamaan linear dua variabel. Dua metode tersebut adalah 1. metode Invers Matriks, 2. metode Determinan.
1. Menyelesaikan Sistem Persamaan Linear Dua Variabel dengan Invers Matriks
Catatan Jika det A = 0 maka sistem persamaan linear AX = B ataupun XA = B tidak memiliki penyelesaian
Untuk memahami penggunaan invers matriks dalam mencari penyelesaian dari sistem persamaan linear dua variabel, pelajari uraian berikut. Misalkan diketahui sistem persamaan linear berikut. 3 x 4 y = 10 ¸ ˝ ... (1) 2x 3 y = 7 ˛ Sistem persamaan (1) akan diselesaikan dengan menggunakan invers matriks. Adapun langkah-langkahnya adalah sebagai berikut. a. Nyatakan sistem persamaan linear tersebut ke dalam bentuk matriks sehingga diperoleh È3 x 4 y ˘ È10 ˘ È 3 4 ˘ È x ˘ È10 ˘ Í ˙=Í ˙ ¤Í ˙Í ˙ = Í ˙ Î2x 3 y ˚ Î 7 ˚ Î2 3˚ Î y ˚ Î 7 ˚ b. Tentukan matriks koefisien serta nilai determinannya. Misalkan matriks koefisien dari sistem (1) diberi nama A, maka È3 4˘ È3 4˘ A=Í ˙ dan det A = Í ˙ = 9 – 8 =1 Î2 3˚ Î2 3˚ Èx ˘ È10 ˘ dan misalkan X = Í ˙ , B = Í ˙ Î y˚ Î7˚ c. Tentukan invers dari matriks koefisiennya. Invers dari matriks A adalah 4˘ È 3 4˘ 1È3 A–1 = Í ˙=Í ˙ 1 Î -2 3 ˚ Î -2 3 ˚ d. Gunakan konsep jika AX = B maka X = A–1B dan jika XA = B maka X = BA–1. Dalam hal ini, sistem (1) memenuhi persamaan AX = B maka X = A–1B È x ˘ È 3 -4 ˘ È10 ˘ È 2 ˘ X= Í ˙=Í ˙Í ˙ = Í ˙ Î y ˚ Î -2 3 ˚ Î 7 ˚ Î 1 ˚ Jadi, penyelesaian sistem persamaan linear pada sistem (1) adalah x = 2 dan y = 1.
58
Mahir Matematika untuk Kelas XII Program Bahasa
Contoh Soal 2.24 Tentukan himpunan penyelesaian dari sistem persamaan linear berikut dengan menggunakan metode invers matriks 5x – 3y = 3 4x – 2y = 4 Jawab: Untuk mencari penyelesaian sistem persamaan linear dua variabel tersebut dengan menggunakan metode invers matriks, terapkanlah langkah-langkah yang telah dibahas sebelumnya. Langkah 1: È5 3˘ È x ˘ È3˘ È 5 -3 ˘ È3˘ Èx ˘ Í ˙ Í ˙ = Í ˙ , misal A = Í ˙ , B = Í ˙ , dan X = Í ˙ Î4 2˚ Î y ˚ Î4˚ Î 4 -2 ˚ Î4˚ Î y˚ Langkah 2: È 5 -3 ˘ È 5 -3 ˘ A=Í ˙ , maka det A = Í ˙ = –10 – (–12) = 2 Î 4 -2 ˚ Î 4 -2 ˚ Langkah 3: 1 È -2 3 ˘ A–1 = Í ˙ 2 Î -4 5 ˚ Langkah 4: 1 È -2 3 ˘ È 3 ˘ 1 È6 ˘ X= Í ˙Í ˙ = Í ˙ 2 Î -4 5 ˚ Î 4 ˚ 2 Î8 ˚
Cobalah Perhatikan SPL berikut. a1 x + b1 y = c1 a2 x + b2 y = c2 Jika D = a1b2 – a2b1 ≠ 0, gunakan matriks untuk menunjukkan bahwa penyelesaiannya adalah 1 x= c b -c b D
(
)
(
)
1 a c -a c D Tunjukkan pula SPL tidak punya penyelesaian jika a1c2 ≠ a2c1, dan punya banyak penyelesaian jika a1c2 = b1c2 dan b1c2 = b2c1 y=
Sumber: Ebtanas, 1998
È x ˘ È3˘ Í ˙=Í ˙ Î y ˚ Î4˚ x = 3 dan y = 4 Jadi, himpunan penyelesaiannya adalah {(3, 4)}.
Contoh Soal 2.25 Imas dan Dewi pergi belanja ke pasar. Imas membeli 3 kg kentang dan 2 kg wortel, untuk itu Imas harus membayar Rp13.500,00. Adapun Dewi membeli 2 kg kentang dan 1 kg wortel. Dewi diharuskan membayar Rp8.500,00. Misalkan harga 1 kg kentang adalah a rupiah dan harga 1 kg wortel b rupiah. a. Buatlah model matematika dari masalah tersebut dalam bentuk sistem persamaan linear dua variabel dalam variabel a dan b. b. Tentukan penyelesaian dari model matematika pada soal a dengan menggunakan metode invers matriks. c. Berdasarkan jawaban pada soal b jika Rani membeli 4 kg kentang dan 5 kg wortel, berapakah besarnya uang yang harus dibayar oleh Rani? Jawab: a. Permasalahan tersebut dapat disusun dalam bentuk tabel berikut. Kentang
Wortel Harga yang Dibayar
Imas
3
2
13.500
Dewi
2
1
8.500
Misalkan harga 1 kg kentang = a rupiah Dan misalkan pula harga 1 kg wortel = b rupiah
Matriks
59
b.
Sistem persamaan linear dari model tersebut adalah 3a 2b = 13.500 ¸ ˝ ...(1) 2 b 8.500 ˛ Penyelesaian dari sistem persamaan linear (1) dengan menggunakan metode invers matriks adalah sebagai berikut. Bentuk matriks dari sistem persamaan linear (1) adalah È3 2˘ Èa ˘ È13.500 ˘ Í ˙Í ˙ = Í ˙ Î 2 1 ˚ Îb ˚ Î 8.500 ˚ A X B 3 2 = 3 – 4 = –1 det A = 2 1 1 È1 È1 2˘ 2˘ 1 È1 2˘ A–1 = = Í ˙ = –1 Í ˙ Í ˙ 1 det A Î -2 3 ˚ Î -2 3 ˚ Î -2 3 ˚ È -1 2 ˘ = Í ˙ Î 2 -3 ˚
c.
X = A–1B È -1 2 ˘ È13.500 ˘ È -13.500 500 + 17.000 ˘ È 2.500 ˘ X= Í ˙Í ˙ = Í ˙ = Í ˙ Î 2 -3 ˚ Î 8.500 ˚ Î 27.000 - 25.500 ˚ Î1.500 ˚ Èa ˘ Oleh karena X = Í ˙ maka Îb ˚ a = 2.500 b = 1.500 Besarnya uang yang harus dibayar Rani = 4a + 5b = 4 (2.500) + 5 (1.500) = 10.000 + 7.500 = 17.500 Jadi, besarnya uang yang harus dibayar Rani adalah Rp17.500,00.
2. Menyelesaikan Sistem Persamaan Linear Dua Variabel dengan Determinan Cobalah Diketahui sistem persamaan berikut. Ï 3x 2 y - z = 3 Ô 4 = -3 Ì- x + 2 y 4z Ô x 2 y 3z = 4 Ó Tentukanlah penyelesaian sistem persamaan linear berikut dengan aturan cramer Sumber: Ebtanas, 1995
Selain digunakan dalam mencari nilai invers dari suatu matriks, determinan dapat pula digunakan dalam mencari penyelesaian sistem persamaan linear. Perhatikan sistem persamaan linear berikut. a1 x + b1 y = c1 ¸ ˝ a2 x + b2 y = c 2 ˛ Sistem persamaan linear tersebut, jika diselesaikan akan diperoleh nilainilai x dan y sebagai berikut: cb -c b x= 1 2 2 1 a1b2 - a2b1 a c - a2c1 y= 1 2 a1b2 - a2b1 Bentuk-bentuk (c1b2 – c2b1), (a1b2 – a2b1), dan (a1c2 – a2c1) jika dinyatakan dalam bentuk determinan adalah sebagai berikut: c b • c1b2 – c2b1 = 1 1 c 2 b2
60
Mahir Matematika untuk Kelas XII Program Bahasa
•
a1b2 – a2b1 =
a1 a2
c1 c2
a1 c1 a2 c 2 Dengan demikian, nilai x dan nilai y jika dinyatakan dalam bentuk determinan adalah sebagai berikut •
a1c2 – a2c1 =
c1
b1
c 2 b2
x=
a1
b1
dan y =
a2 b2 atau x=
Dx
•
D=
•
Dx =
•
Dy =
D dengan:
dan y =
a1
c1
a2
c2
a1 b1 a2 b2
Dy D
a1 a2
b1 , yaitu determinan dari matriks koefisien x dan y b2
c1
b1
c 2 b2 a1 a2
, yaitu determinan dari matriks koefisien x dan y yang kolom pertamanya diganti oleh konstanta c1 dan c2
c1
, yaitu determinan dari matriks koefisien x dan y yang c 2 kolom keduanya diganti oleh konstanta c dan c 1 2
Berdasarkan uraian tersebut, dapat diambil kesimpulan sebagai berikut. Misalkan diberikan sistem persamaan linear dua variabel a1x + b1y = c1 a2x + b2y = c2 Penyelesaian dari sistem persamaan linear tersebut adalah D D x = x dan y = y , dengan D ≠ 0 D D
Catatan Penyelesaian sistem persamaan linear dua variabel dengan metode determinan, tidak akan didapat penyelesaiannya jika nilai determinannya sama dengan nol.
Metode penyelesaian sistem persamaan linear dua variabel cara tersebut dikenal sebagi metode Cramer.
Contoh Soal 2.26 Tentukan penyelesaian sistem persamaan linear variabel berikut dengan menggunakan metode determinan 3x – y = –2 –2x + 5y = –12 Jawab: Misalkan, A matriks koefisien dari sistem persamaan linear tersebut È 3 -1˘ A=Í ˙ Î -2 5 ˚ È 3 -1˘ D = det A = Í ˙ = 15 – 2 = 13 Î -2 5 ˚
Matriks
61
Oleh karena det A ≠ 0 maka metode determinan bisa digunakan 5 -1 D -12 5 13 x= x = = =1 D 13 13 3 5 Dy -2 -12 -26 y= = = = -2 D 13 13 Jadi, penyelesaian sistem persamaan linear tersebut adalah x = 1 dan y = –2
Contoh Soal 2.27 Dani dan Firman bekerja di perusahaan yang sama. Dalam seminggu, Dani bekerja 5 hari dan 4 hari lembur, untuk itu upah yang diterimanya dalam seminggu itu Rp260.000,00. Adapun Firman bekerja 6 hari dan 3 hari lembur, upah yang diterimanya Rp285.000,00. Jika Ade bekerja di perusahaan yang sama, berapakah upah yang diterima Ade jika Ade bekerja 4 hari dan 4 hari lembur? Jawab: Permasalahan tersebut dapat disusun dalam bentuk tabel berikut. Kerja
Lembur
Besarnya Upah
Dani
5
4
260.000
Firman
6
3
285.000
Misalkan kerja per harinya dinyatakan dengan x, dan lembur per harinya dinyatakan dengan y Sistem persamaan linear dari model tersebut adalah 5x + 4y = 260.000 6x + 3y = 285.000 Misalkan, A matriks koefisien dari sistem persamaan linear tersebut È5 4 ˘ A= Í ˙ Î6 3 ˚ 5 4 = 15 – 24 = –9 det A = 6 3 Oleh karena det A ≠ 0 maka metode determinan bisa digunakan 26.0000 4 28.5000 3 -36.0000 = = 40.000 x= -9 -9 5 26.0000 6 28.5000 = -13.5000 = 15.000 y= -9 -9 Diperoleh x = 40.000 dan y = 15.000 Model matematika dari masalah Ade adalah 4x + 4y 4x + 4y = 4 (40.000) + 4 (15.000) = 160.000 + 60.000 = 220.000 Jadi, upah yang diterima Ade setelah bekerja 4 hari dan 4 hari lembur adalah Rp220.000,00.
62
Mahir Matematika untuk Kelas XII Program Bahasa
Metode determinan dapat pula digunakan dalam menyelesaikan sistem persamaan linear tiga variabel. Perhatikan uraian berikut. Misalkan terdapat sistem persamaan linear tiga variabel berikut. a1x + b1y + c1z = d1 a2x + b2y + c2z = d2 a3x + b3y + c3z = d3 Dengan melakukan cara yang sama seperti pada sistem persamaan linear dua variabel, diperoleh penyelesaian sebagai berikut. x=
Dx D
,y=
Dy
,z=
D
Dz D
dengan a1 •
•
•
•
b1
c1
D = a2 b2 a3 b3
c 2 , yaitu determinan dari matriks koefisien x, y, dan z. c3
d1 b1 Dx = d 2 b2 d 3 b3
c1 c 2 , yaitu determinan dari matriks koefisien x, y, dan z c3 yang kolom keduanya diganti dengan konstanta d1, d2, dan d3.
a1
d1
c1
Dy = a2 a3
d2 d3
c 2 , yaitu determinan dari matriks koefisien x, y, dan z c3 yang kolom keduanya diganti dengan konstanta d1, d2, dan d3.
a1 b1 Dz = a2 b2 a3 b3
d1 d 2 , yaitu determinan dari matriks koefisien x, y, dan z d 3 yang kolom ketiganya diganti dengan konstanta d1, d2, dan d3.
Contoh Soal 2.28 Tentukan penyelesaian sistem persamaan linear variabel berikut dengan menggunakan metode determinan 2x – y + 2z = –2 3x + 2y – z = 0 –x + y + z = 4 Jawab: Misalkan A matriks koefisien dari sistem persamaan linear tersebut 2 1 2 A = 3 2 -1 -1
1
Pembahasan Soal Jika (a, b, c) adalah solusi sistem persamaan linear x + y + 2z = 9 2x + 4y – 3z = 1 3x + 6y – 5z = 0 maka a + b + c = .... a. 6 d. 9 b. 7 e. 10 c. 8 Jawab: Misalkan A matriks koefisien dari sistem persamaan linear tersebut. È1 1 2 ˘ Í ˙ A = Í2 4 -3 ˙ Í3 6 -5 ˙ Î ˚ È1 1 2 ˘ 1 1 Í ˙ det A = Í2 4 -3 ˙ 2 4 = -1 Í3 6 -5 ˙ 3 6 Î ˚ È9 1 2 ˘ 9 1 Í ˙ Dx = Í1 4 -3 ˙ 1 4 = -1 Í0 6 -5 ˙ 0 6 Î ˚ È1 9 2 ˘ 1 9 Í ˙ D y = Í2 1 -3 ˙ 2 1 = -2 Í3 0 -5 ˙ 3 0 Î ˚ È1 1 9 ˘ 1 1 Í ˙ Dz = Í2 4 1 ˙ 2 4 = -3 Í3 6 0 ˙ 3 6 Î ˚ Dx -1 x= = =1 D -1 D y -2 y= = =2 D -1 D -3 z= z = =3 D -1 Dengan demikian, diperoleh penyelesaian (a, b, c) = (x, y, z) = (1, 2, 3) Jadi, nilai a+b+c=1+2+3=6 Jawaban: a Sumber: SPMB, 2007
1
2 D = det A = 3 -1
1 2 2 2 -1 3
1 2 = 4 – 1 + 6 + 4 + 2 + 3 = 18
1
1
1 -1
-2 -1 2 -2 -1 Dx = 0 2 -1 0 2 = –4 + 4 + 0 – 16 – 2 + 0 = –18 4
1
1 4
1
Matriks
63
2
2
2 2
2
Dy = 3
0
-1 3
0 = 0 – 2 + 24 + 0 + 8 + 6 = 36
-1 2 Dz = 3 -1
4
1 -1
1 -2 2 2 0 3 1 4 -1
4 1 2 = 16 + 0 – 6 – 4 + 0 + 12 = 18 1
-18 = –1 D 18 D 36 y= y = =2 D 18 D 18 z= z = =1 D 18 Jadi, penyelesaian dari sistem persamaan linear tersebut adalah x = –1, y = 2, dan z = 1. x=
Dx
=
Tugas 2.2 Bersama teman sebangkumu, carilah masalah dalam kehidupan seharihari yang bisa dimodelkan ke dalam bentuk sistem persamaan linear tiga variabel, kemudian tentukan penyelesaiannya dengan menggunakan metode determinan. Presentasikan hasilnya di depan kelas.
Tes Pemahaman 2.4 Kerjakanlah soal-soal berikut di buku latihan Anda. 1.
Jika X matriks berordo 2 × 2, tentukan matriks X yang memenuhi persamaan berikut. È 1 2˘ È1 5 ˘ a. Í ˙ X =Í ˙ Î -1 0 ˚ Î 4 1˚ È4 2 ˘ È 8 1˘ X Í ˙ =Í ˙ Î 0 1˚ Î -12 -1˚ Tentukan himpunan penyelesaian dari sistem persamaan linear berikut dengan menggunakan metode invers mariks dan metode determinan. a. 3x – 2y = –8 4x + 2y = 2 b. 2x + y = 1 3x + 4y = 14 c. –2x + 6y = –12 4x – 5y = 17 d. –2x – y = –5 5x + 3y = 11 Diketahui a dan b memenuhi persamaan È 3 1˘ È a ˘ È 11 ˘ Í ˙Í ˙ = Í ˙ Î 4 2 ˚ Îb ˚ Î -2 ˚
4.
b. 2.
3.
Tentukan nilai-nilai dari: a. x + y b. 2x2 + y
64
Mahir Matematika untuk Kelas XII Program Bahasa
5.
Rian dan Anwar bekerja pada perusahaan yang sama. Minggu kemarin mereka melaksanakan pertemuan selama seminggu di luar kota sehingga keduanya harus menginap di hotel. Selama seminggu tersebut mereka menginap di dua hotel. Rian menginap di hotel A selama 4 hari dan di hotel B selama 3 hari, sedangkan Anwar menginap di hotel A selama 2 hari dan sisanya dari 1 minggu tersebut Anwar menginap di hotel B. Jika biaya penginapan yang dihabiskan Rian selama seminggu tersebut Rp2.250.000,00 dan biaya penginapan Anwar Rp2.000.000,00, tentukan tarif dari masing-masing penginapan per harinya. Tentukan penyelesaian dari sistem persamaan linear tiga variabel berikut dengan menggunakan metode determinan. a. –a + 7b + c = –6 4a + b – 2c = 1 3a – 2b + 4c = 20 b. 3a – b – 2c = –9 a + 5b – 3c = –7 –2a + 3a + 4c = 32
Rangkuman 1.
2. 3.
4.
5.
6.
Matriks adalah sekelompok bilangan yang disusun menurut baris dan kolom dalam tanda kurung dan berbentuk seperti sebuah persegipanjang. Ordo matriks menyatakan banyaknya baris dan banyaknya kolom yang dimiliki suatu matriks. Jenis-jenis matriks di antaranya matriks nol, matriks baris, matriks kolom, matriks persegi, matriks segitiga, matriks diagonal, matriks skalar, dan matriks identitas. Transpos matriks A adalah matriks baru yang disusun dengan menuliskan elemen setiap baris matriks A menjadi elemen setiap kolom pada matriks baru. Notasi transpos mastriks A adalah At. Dua buah matriks dikatakan sama jika dan hanya jika keduanya memiliki ordo yang sama dan elemen-elemen yang seletak (bersesuaian) pada kedua matriks tersebut sama. Jika A dan B adalah dua matriks yang berordo sama, maka jumlah dari matriks A dan B ditulis (A + B) adalah sebuah matriks baru yang
7.
8.
9.
10.
diperoleh dengan cara menjumlahkan setiap elemen matriks A dengan elemen-elemen matriks B yang seletak. Hal ini berlaku pula pada pengurangan matriks. Perkalian antara sebarang bilangan real k dengan matriks A adalah matriks baru yang diperoleh dari hasil perkalian k dengan setiap elemen matriks A. Perkalian antara dua matriks terdefinisi apabila banyaknya kolom matriks pengali sama dengan banyaknya baris matriks yang dikalikan. Determinan adalah selisih antara perkalian elemen-elemen pada diagonal utama dengan perkalian elemen-elemen pada diagonal sekunder. Jika Èa b ˘ A =Í ˙ maka Îc d ˚ A–1 =
1 det
Èd Í Î -c
b˘ ˙ , det A ≠ 0 a ˚
Peta Konsep Matriks
Jenis-Jenis Matriks • • • • • • • •
Matriks Nol Matriks Baris Matriks Kolom Matriks Persegi Matriks Segitiga Matriks Diagonal Matriks Skalar Matriks Identitas
Transpos Matriks
Kesamaan Operasi pada Dua Matriks Matriks
Invers Matriks
• Penjumlahan Matriks • Pengurangan Matriks • Perkalian Bilangan Real dengan matriks • Perkalian Matriks • Perpangkatan Matriks Persegi
Aplikasi
Penyelesaian Sistem Persamaan Linear Dua Variabel
Memiliki Invers jika Determinan D ≠ 0
Tidak Memiliki Invers jika Determinan D = 0
disebut
disebut
Matriks Non Singular
Matriks Singular
Penyelesaian Sistem Persamaan Linear Tiga Variabel
Matriks
65
Tes Pemahaman Bab 2 Kerjakanlah di buku latihan Anda. I. Pilihlah satu jawaban yang benar. 1. Di antara bentuk berikut, manakah yang memenuhi definisi matriks? a a a. d. bcd b c b. c. 2.
3.
a c
b d
a e.
d
c
b
Èa b ˘ Í ˙ Îc d ˚
È11 0 ˘ Diketahui G = Í ˙ , matriks G merupakan Î 0 11˚ matriks .... a. skalar d. persegi b. diagonal e. kuadrat c. Identitas È -1 3 ˘ Transpos dari matriks K = Í ˙ adalah .... Î 2 1˚ È3 1˘ È1 3˘ a. Í d. Í ˙ ˙ 2 1˚ Î1 2 ˚ Î -2
È -1 2 ˘ È -1 2 ˘ e. Í Í ˙ ˙ Î 3 1˚ Î 1 3˚ È 2 1˘ c. Í ˙ Î -1 3 ˚ È 7 2˘ È 3 1˘ Jika L = Í ˙ dan M = Í ˙ maka nilai L – 2M Î -1 4 ˚ Î -2 2 ˚ adalah .... È 1 0˘ È2 1˘ a. Í d. Í ˙ ˙ Î -5 0 ˚ Î1 2˚ È1 0 ˘ È 4 1˘ b. Í e. Í ˙ ˙ Î3 0 ˚ Î -3 2 ˚ È4 1˘ c. Í ˙ Î1 2˚ Matriks-matriks berikut dapat dikalikan dengan Èa b ˘ matriks A = Í ˙ , kecuali .... Îc d ˚ Èe f ˘ a. Í d. ÈÎ a b ˘˚ ˙ Îg h ˚ Èe f ˘ Í ˙ Èe f g ˘ g h˙ Í b. Í e. ˙ Íi j ˙ Îh i j ˚ Í ˙ Îk l ˚ Èe f ˘ c. ÍÍ g h ˙˙ ÍÎ i j ˙˚ b.
4.
5.
66
Mahir Matematika untuk Kelas XII Program Bahasa
È3b 4a + b ˘ È9 3 ˘ 6. Diketahui A = Í ˙ dan B = Í ˙ . Jika 4 ˚ Îc Î2 4˚ A = B maka nilai a + b + c = .... a. 5 d. 8 b. 6 e. 9 c. 7 È1 2˘ 2 7. Jika A = Í ˙ maka A = .... 2 3 Î ˚ È -2 4 ˘ È -3 -8 ˘ d. Í a. Í ˙ ˙ Î -4 -6 ˚ Î8 5˚ b. c.
È2 4˘ Í ˙ Î4 6 ˚ È3 8˘ Í ˙ 8 5˚ Î -8
e.
È4 8. Invers dari matriks P = Í Î3 È4 3˘ d. a. Í ˙ Î5 4˚ È4 3˘ b. Í e. ˙ Î -5 4 ˚ È -4 5 ˘ c. Í ˙ Î 3 -4 ˚ È5 9. Jika Q = Í Î -1 a. –7 b. 3 c. 7 10. Jika a. b. c.
È 1 2˘ Í ˙ Î -2 3 ˚
5˘ ˙ adalah .... 4˚
È4 5˘ Í ˙ Î -3 4 ˚ È -4 3 ˘ Í ˙ Î 5 -4 ˚
2˘ ˙ maka Q = .... 1˚ d. 8 e. 10
x -3 = 6 maka nilai x = .... -2 x - 1 –2 dan 6 –6 dan 2 –3 dan 4
d. e.
–4 dan 3 –4 dan –3
È3 1 ˘ È1 11. Matriks P yang memenuhi Í ˙ P= Í Î5 2 ˚ Î1 adalah .... a. b. c.
È3 Í Î2
1˘ ˙ 8˚
È 3 0˘ Í ˙ Î -4 2 ˚ È -1 3 ˘ Í ˙ Î -2 -8 ˚
d. e.
È1 Í 2 Î -2 È2 Í Î -5
3˘ ˙ 8˚ 1˘ ˙ 3˚
1˘ ˙ 1˚
È -1 2 ˘ È x ˘ È9˘ 12. Jika Í ˙ Í ˙ = Í ˙ maka nilai x dan y Î 5 -8 ˚ Î y ˚ Î -9 ˚ berturut-turut adalah .... a. –5 dan –2 d. 2 dan –5 b. –2 dan 5 e. 5 dan –2 c. –5 dan 2 13. Diketahui sistem persamaan linear berikut. 2x – 3y = –18 4x + y = –8 Nilai x dan y yang memenuhi sistem persamaan linear tersebut adalah .... a. x = 3 dan y = –4 d. x = –3 dan y = –4 b. x = 3 dan y = 4 e. x = 4 dan y = 3 c. x = –3 dan y = 4 14. Nilai x dan y yang memenuhi persamaan È x 5˘ È y -2 ˘ È 5 1˘ Í ˙+3Í ˙ = Í ˙ adalah .... Î -2 y ˚ Î 2 3 ˚ Î 4 12 ˚ a. x = 2 dan y = –3 d. x = –3 dan y = 4 b. x = 3 dan y = –4 e. x = 2 dan y = –4 c. x = –2 dan y = 3 È ˘ 15. Diketahui matriks A = Í ˙ , nilai k yang meÎ1 0 ˚ menuhi persamaan det At = k det A–1 adalah .... a. 1 d. 4 b. 2 e. 5 c. 3 È2 x 1 3˘ 16. Jika matriks A = Í ˙ tidak memiliki invers, Î6 1 5˚ maka nilai x adalah .... a. –2 d. 1 b. –1 e. 2 c. 0
17. Diketahui persamaan
x
4
=
-3 3
9
. Nilai x 3 2x 4 8 yang memenuhi persamaan tersebut adalah .... a. 6 dan –6 d. 9 dan –9 b. 7 dan –7 e. 5 dan –5 c. 8 dan –8
18. Jika ABX = C maka X = .... a. CB–1A–1 d. B–1A–1C b. CA–1B–1 e. A–1B–1C c. B–1CA–1 È1 4˘ 19. Jika A–1= Í ˙ dan B = Î2 3˚ maka (A – B–1)–1 = .... a. b. c.
È Í Î7 È7 Í Î 23 È7 Í Î13
3˘ ˙ 13 ˚
7˘ ˙ 13 ˚ 7˘ ˙ 23 ˚
d. e.
È5 1˘ Í ˙ Î1 3 ˚ È9 Í Î13 È9 Í Î13
1 20. Jika D adalah invers dari matriks 2 È -1˘ nilai D Í ˙ adalah .... Î2˚ È -2 ˘ d. ÈÎ 2 a. Í ˙ Î7˚ È -7 ˘ È2˘ b. Í ˙ e. Í ˙ Î2˚ Î7 ˚ È -2 ˘ c. Í ˙ Î -7 ˚
13 ˘ ˙ 11˚
11˘ ˙ 13 ˚
È6 Í Î -5
2˘ ˙ maka 2˚
7 ˘˚
II. Kerjakan soal-soal berikut. 1.
2.
È5 7 ˘ È -2 6 ˘ Jika A = Í ˙, B = Í ˙ , dan Î4 2 ˚ Î 1 4˚ È3 2˘ Í ˙ C = Í 1 0 ˙ , tentukan: ÍÎ 4 2 ˙˚ a. BC b. Ct B c. AB – (AB)–1 Diketahui sistem persamaan linear 4x + 3y = 17 2x – 5y = 15 Gunakan metode invers dan determinan untuk menyelesaikan sistem persamaan linear tersebut.
3.
4. 5.
È0 1˘ Jika matriks A = Í ˙ dan Î 2 3˚ È 5 1˘ –1 t B= Í ˙ tentukan (AB) – A . 2 1 Î ˚ È -1 2 ˘ 2 Jika A = Í ˙ dan f(x) = x + 2x, 3 4 Î ˚ tentukan f(A). Pada liburan semester, sekolah A dan sekolah B mengadakan karyawisata ke Bali. Sekolah A menyewa 10 bus dan 5 mobil. Sekolah B menyewa 7 bus dan 3 mobil. Biaya sewa kendaraan sekolah A sebesar Rp41.250.000,00, sedangkan sekolah B Rp28.250.000,00. Jika diasumsikan biaya sewa per bus dan per mobil kedua sekolah tersebut sama, tentukan harga sewa 1 bus dan 1 mobil.
Matriks
67
Refleksi Akhir Bab Berilah tanda √ pada kolom yang sesuai dengan pemahaman Anda mengenai isi bab ini. Setelah mengisinya, Anda akan mengetahui pemahaman Anda mengenai isi bab yang telah dipelajari.
No
Pertanyaan
1.
Apakah Anda memahami pengertian, ciri-ciri, jenis-jenis, dan transpos matriks? Apakah Anda memahami caracara menuliskan informasi dalam bentuk matriks? Apakah Anda mamahami cara-cara menjumlahkan, mengurangkan, mengalikan, dan memangkatkan matriks? Apakah Anda memahami langkahlangkah menentukan determinan martis berordo 2 × 2 dan 3 × 3? Apakah Anda memahami cara menentukan invers matriks berordo 2 × 2 dan 3 × 3? Apakah Anda menguasai cara menyelesaikan sistem pertidaksamaan linear dua variabel dengan menggunakan invers matriks dan metode cramer? Apakah Anda menguasai cara menyelesaikan sistem pertidaksamaan linear tiga variabel dengan metode cramer? Apakah Anda mengerjakan soalsoal pada bab ini? Apakah Anda melakukan Kegiatan dan mengerjakan Tugas pada bab ini? Apakah Anda berdiskusi dengan teman-teman Anda apabila ada materi-materi yang belum Anda pahami?
2.
3.
4.
5.
6.
7.
8. 9.
10.
68
Jawaban Tidak
Mahir Matematika untuk Kelas XII Program Bahasa
Sebagian Kecil
Sebagian Besar
Seluruhnya
Evaluasi Semester 1 Kerjakanlah di buku latihan Anda. I. Pilihlah satu jawaban yang benar. 1.
4.
y
5 2 x
–4
3
0
Daerah himpunan yang diarsir menunjukkan daerah .... a. –x + 2y ≤ 4 d. x – 2y > 4 b. –x + 2y > 4 e. x – 2y ≥ 4 c. x – 2y < 4
0
(0, 3)
5.
0
(7, 0)
y
(0, 40)
(60, 0) 0
y
6.
5 4
0
5
6
Nilai maksimum dari fungsi objektif z = x + 3y pada daerah yang diarsir di bawah ini adalah ....
x
Sistem pertidaksamaan yang menunjukkan himpunan penyelesaian dari daerah yang diarsir pada gambar di atas adalah .... a. 7x + 3y ≥ 21, x ≥ 0, y ≥ 0 b. 7x + 3y ≤ 21, x ≥ 0, y ≥ 0 c. 3x + 7y ≥ 21, x ≥ 0, y ≥ 0 d. 3x + 7y ≤ 21, x ≥ 0, y ≥ 0 e. 3x + 7y ≤ 21, x ≤ 0, y ≥ 0 3.
x
Sistem pertidaksamaan yang memenuhi himpunan penyelesaian pada gambar di atas adalah .... a. x + y ≤ 5, 2x + 3y ≤ 12, x ≥ 0, y ≥ 0 b. x + y ≥ 5, 2x + 3y ≥ 12, x ≥ 0, y ≥ 0 c. x + y ≤ 5, 3x + 2y ≤ 12, x ≥ 0, y ≥ 0 d. x + y ≤ 5, 3x + 2y ≥ 12, x ≤ 0, y ≤ 0 e. x + y ≤ 5, 3x + 2y ≤ 12, x ≤ 0, y ≥ 0
x
5
Daerah yang diarsir pada gambar di atas, ditunjukkan oleh sistem pertidaksamaan .... a. 5x + 3y ≤ 15, 3x + 5y ≤ 15, x ≥ 0, y ≥ 0 b. 5x + 3y ≥ 15, 3x + 5y ≥ 15, x ≥ 0, y ≥ 0 c. 5x + 3y ≤ 15, 3x + 5y ≥ 15, x ≥ 0, y ≥ 0 d. 5x + 3y ≥ 15, 3x + 5y ≤ 15, x ≥ 0, y ≥ 0 e. 5x + 3y ≤ 15, 3x + 5y < 15, x ≥ 0, y ≥ 0
y
2.
3
x
a. 220 d. 60 e. 40 b. 180 c. 120 Himpunan penyelesaian dari sistem pertidaksamaan 2y – x ≤ 2 4x + 3y ≤ 12 x≥0 y≥0 terletak di daerah .... y
4 III V 1 –2
II I
IV 3
x
Evaluasi Semester 1
69
a. b. c.
d. e.
I II III
I dan IV II dan III
7. Nilai minimum fungsi f(x, y) = 40x + 10y dengan syarat 2x + y ≥ 12, x + y ≥ 10, x ≥ 0, y ≥ 0 adalah .... a. 100 d. 240 b. 120 e. 400 c. 160 8. Diketahui (x, y) yang memenuhi pertidaksamaan 2x + 3y ≥ 6, 5x + 2y ≥ 10, x ≥ 0, y ≥ 0. Nilai maksimum fungsi tujuan f(x, y) = x + 2y adalah .... a. 3 d. 16 b. 7 e. tidak ada c. 11 y
9.
x=3
x=8
y=5
y=2 x
0
Daerah yang diarsir pada gambar tersebut merupakan himpunan penyelesaian dari sistem pertidaksamaan 3 ≤ y ≤ 8 dan 2 ≤ y ≤ 5, x, y ŒR. Nilai maksimum fungsi tujuan f(x, y) = 3x – y dari himpunan penyelesaiannya adalah .... a. 4 d. 22 b. 7 e. 29 c. 19 10. Nilai maksimum fungsi z = 3x + 4y terletak pada titik y 5x + 2y = 10
x
0
a. b. c. d. e.
2x + 3y = 6
{z˙ 0 ≤ z ≤ 2} {z˙ –2 ≤ z ≤ 0} {z˙ –4 ≤ z ≤ 4} {z˙ 2 ≤ z ≤ 11} {z˙ 4 ≤ z ≤ 13}
11. Dengan persediaan kain polos 20 m dan kain bergaris 10 m seorang penjahit akan membuat pakaian jadi. Model I memerlukan 1 m kain polos dan 1,5 m kain bergaris. Model II memerlukan 2 m kain polos dan 0,5 m kain bergaris. Jumlah total pakaian jadi akan maksimum jika model I dan model II masing-masing .... a. 4 dan 8 d. 7 dan 5 b. 5 dan 9 e. 8 dan 6 c. 8 dan 4 12. Suatu tempat parkir luasnya 200 m2. Untuk memarkir sebuah mobil, rata-rata diperlukan tempat seluas 10 m2 dan untuk bus rata-rata 20 m2. Tempat parkir itu tidak dapat menampung lebih dari 12 mobil dan bus. Jika di tempat parkir itu akan di parkir x mobil dan y bus, maka x dan y harus memenuhi syarat-syarat .... a. x + y ≤ 12, x + 2y ≤ 20, x ≥ 0, y ≥ 0 b. x + y ≤ 12, x + 2y ≥ 20, x ≥ 0, y ≥ 0 c. x + y ≤ 12, x + 2y ≤ 20, x ≤ 0, y ≤ 0 d. x + y ≤ 12, x + 2y ≥ 20, x ≥ 0, y ≥ 0 e. x + y ≥ 5, x + 2y ≤ 20, x ≥ 0, y ≥ 0 13. Diketahui È3 p Èp+8 2 ˘ 2 ˘ A= Í ˙ dan B = Í ˙ 5q ˚ 30 ˚ Î 4 Î4 Jika A = B maka .... a. p = 3, q = 6 d. p = –3, q = 6 b. p = 4, q = 6 e. p = 4, q = –6 c. p = 3, q = –6 È2 3˘ È1 0 ˘ 14. P = Í ˙ dan Q = Í ˙ Î2 4˚ Î3 1 ˚ maka P + Q = .... È3 3 ˘ È -3 a. Í d. Í ˙ Î5 5 ˚ Î5 È -3 3 ˘ È3 e. Í b. Í ˙ 5 Î 5 5˚ Î -5 È3 3˘ c. Í ˙ Î -5 5 ˚ 15. Diketahui È2 1 ˘ È -1 1 ˘ A= Í ˙ dan B = Í ˙ Î 0 1˚ Î 0 2˚ Nilai A – 2B = .... È0 È 4 1˘ d. Í a. Í ˙ Î0 Î0 5˚ b. c.
70
Mahir Matematika untuk Kelas XII Program Bahasa
È4 Í Î0 È0 Í Î0
1˘ ˙ 5˚
1˘ ˙ 5˚
e.
È0 Í Î0
-3 ˘ ˙ 5˚ 3˘ ˙ 5˚
3˘ ˙ 3˚
1˘ ˙ 3˚
16. Diketahui È 2 3˘ A= Í ˙ dan B = Î0 1˚ Nilai B · A = .... È 7 19 ˘ a. Í ˙ Î1 3 ˚ È4 8 ˘ b. Í ˙ Î1 4˚ È 2 11˘ c. Í ˙ Î4 6 ˚
È 2 5˘ Í ˙ Î 1 3˚ d. e.
È 4 11˘ Í ˙ Î2 6 ˚ È2 6 ˘ Í ˙ Î 4 11˚
17. Diketahui È 2 3˘ È6 2˘ È -1 -5 ˘ A= Í ˙ B= Í ˙ , dan C = Í 3 5 ˙ 3 2˚ Î ˚ Î -3 Î 0 3k + 1˚ Nilai k yang memenuhi A + B = C–1 adalah .... a. –1 b. –3 c. 2 d. 1 e. 3 18. Ditentukan È6 ˘ È2˘ È1˘ È7 ˘ Í ˙ Í ˙ Í ˙ Í ˙ A = Í 3 ˙ , B = Í 2 ˙ , C = Í 2 ˙ dan D = Í 3 ˙ ÍÎ 1 ˙˚ ÍÎ 2 ˙˚ ÍÎ 1 ˙˚ ÍÎ 2 ˙˚ Pernyataan berikut yang benar adalah .... a. A + B + C = 2D b. (A + B) – C = D – C c. A – B = D – C d. D – B = A – C e. A + C = B + D È 4 3˘ Èx 2 ˘ 19. Diketahui matriks P = Í ˙ dan Q = Í -3 x ˙ . Î ˚ Î3 2x ˚ Agar determinan matriks P sama dengan dua kali determinan matriks Q, maka nilai x adalah .... a. x = –6, x = –2 b. x = 6, x = –2 c. x = 6, x = 2 d. x = 3, x = –4 e. x = 3, x = 4 Èa b ˘ 20. Diketahui A = Í ˙ Îc d ˚ Jika At = A–1, maka ad – bc = .... a. –1 atau – 2 b. 1 atau 2 c. – 2 atau 2 d. –1 atau 1 e. 1 atau – 2
È1 2 ˘ È 4 1˘ 21. Jika A = Í ˙, B = Í ˙ , dan matriks C Î1 3 ˚ Î 1 3˚ memenuhi AC = B, maka det C = .... a. 1 b. 6 c. 9 d. 11 e. 12 È1 2 ˘ È3 2˘ –1 22. Jika A = Í ˙ dan B = Í ˙ maka A B Î1 3 ˚ Î2 2˚ adalah .... È 3 1˘ È0 2 ˘ a. Í d. Í ˙ ˙ Î 2 1˚ Î1 3 ˚ È 5 2˘ È5 1˘ b. Í e. Í ˙ ˙ Î -1 0 ˚ Î1 3 ˚ È1 2 ˘ c. Í ˙ Î0 1˚ È 3 2 ˘ È x ˘ È12 ˘ 23. Jika Í ˙ Í ˙ = Í ˙ maka 5x – y = .... Î -1 4 ˚ Î y ˚ Î10 ˚ a. 7 b. 8 c. 9 d. 10 e. 11 24. Determinan matriks B yang memenuhi persamaan È 7 5 ˘ È1 11˘ B= Í ˙=Í ˙ adalah .... Î 2 1 ˚ Î1 2 ˚ a. 3 b. 4 c. 5 d. 6 e. 7 È ˘ È4 7 ˘ –1 25. Diketahui A = Í ˙ dan B = Í ˙ maka Î 4 1˚ Î1 2 ˚ (B–1 A)–1 = .... È36 -3 ˘ È36 -3 ˘ a. Í d. Í ˙ ˙ Î -1 10 ˚ Î10 -1˚ b. c.
È 9 16 ˘ Í ˙ Î15 26 ˚ È 9 26 ˘ Í ˙ Î15 16 ˚
e.
È36 -1˘ Í ˙ Î10 -3 ˚
Evaluasi Semester 1
71
II. Kerjakan soal-soal berikut. 28. Diketahui matriks È2 k ˘ È1 2 ˘ È -1 -8 ˘ A= Í ˙, B = Í ˙ , dan C = Í ˙. Î1 0 ˚ Î3 4 ˚ Î 1 -2 ˚ Jika A × B = C, tentukan nilai k yang memenuhi persamaan tersebut.
26. Perhatikan gambar berikut. y (2, 3)
(1, 1)
(5, 1) x
0
Tentukan sistem pertidaksamaan yang menunjukkan himpunan penyelesaian dari daerah yang diarsir pada gambar di atas. 2
27. Tanah seluas 10.000 m akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A, diperlukan 100 m2 dan tipe B diperlukan 75 m2. Jumlah rumah yang dibangun paling banyak 125 unit. Keuntungan rumah tipe A adalah Rp6.000.000,00/unit dan tipe B adalah Rp4.000.000,00/unit. Tentukan keuntungan maksimum yang dapat diperoleh dari penjualan rumah tersebut.
72
Mahir Matematika untuk Kelas XII Program Bahasa
È x 3˘ 29. Jika matriks A = Í ˙ tidak memiliki invers, Î6 1 5˚ tentukan nilai x dari matriks tersebut. Ï x + y + z = 12 Ô 30. Sistem persamaan linear Ì2 x - y + 2 z = 12 Ô 3x + 2 y - z = 8 Ó memiliki himpunan penyelesaian {(x, y, z)} Tentukan nilai: a. x y z b. x2 + 2yz