MSc in Mechanical Engineering Modelling, 2N-MW0 compulsory subject
SUBJECT DATA SHEET AND REQUIREMENTS last modified: 5th December 2013
ADVANCED THERMODYNAMICS ALKALMAZOTT TERMODINAMIKA 1
Code
Semester Nr. or fall/spring
Contact hours/week (lect.+semin.+lab.)
Requirements p/e/s
Credit
Language
BME GEENMWAT
spring
2+1+0
e
4
English
2. Subject’s responsible: Name: Title: Dr. Balázs Czél Assistant Professor 3. Lecturer: Name: Dr. Péter Ván
Affiliation (Department): Dept. of Energy Engineering
Title: Affiliation (Department): Senior Research Fellow Dept. of Energy Engineering
4. Thematic background of the subject: classical thermodynamics, calculus 5. Compulsory / suggested prerequisites: Compulsory: Suggested: 6. Main aims and objectives, learning outcomes of the subject: The aim is to introduce the students to the hierarchy of modells (theories) of thermodynamics (classical, ordinary/ homogeneous nonequilibrium and irreversible/continuum nonequilibrium thermodynamics) with selected applications demonstrating the role of the basic concepts in engineering. During the semester the students deepen their understanding of the basic concepts and methods of the subject, like equilibrium, energy/exergy/extropy, material modelling, etc….
7. Method of education: Lecture, calculation and computer excercises, optional homeworks 8. Detailed thematic description of the subject (by topic, min. 800 character): A) Homogeneous systems - Ordinary (equilibrium) thermodynamics 1) Basic thermodynamic concepts. Models, theories and laws. Extensives and intensives. Gibbs relation. Thermodynamic potentials. Thermodynamic stability. Phases and phase equilibrium. Gases, liquids and solids. Math1: partial derivatives, Math2: Legendre transformations, differentials. 2) Zeroth, First and Second Law - statics 3) Laws of thermoDYNAMICS Math3: Differential equations, stability, Liapunov-functions. Gibbs relation and differential equations. Equilibrium. Quasistatic and irreversible processes. Single body in an environment. 4) System of bodies and environments. Heat and work. Reservoirs, extended systems. 5) Exergy analysis. Entropy generation minimization. Heat exchangers, power plants. 6) Multicomponent phase equilibrium, solutions. B) Continua - Non-equilibrium thermodynamics 7) Basics – balances of basic quantities Math4: Tensor analysis, indices. Balances, partial diff. equations, constitutive functions, objectivity and second law. 8) Second law. Entropy production. Linear laws. Onsager reciprocity. Isotropy. Local equilibrium. 9) Heat conduction, diffusion and flow in one component fluids. Cross effects. 10) Heat conduction and flow in isotropic solids. Cross effects. 11) Out of local equilibrium. Internal variables. Heat conduction and flow in isotropic solids. Cross effects. Rheology. PoyntingThomson body. 12) Measurement of parameters, applications, etc., constructal theory, etc.. Fuel cells.
9. Requirements and grading a) in term-period Two tests and 3 obligatory homeworks and optional homeworks in every week. The outcame is an offered grade for everybody. The very best students may obtain a final grade. b) in examination period Written-oral examination. The first part is a short calculation. Those who pass may speak about one of the questions. These questions are preliminarily known. c) Disciplinary Measures Against the Application of Unauthorized Means at Mid-Terms, Term-End Exams and Homework Supplement to 1/2013. (I. 30.) Dean’s Order (Codicil): The following students are subject to disciplinary measures. (a) Those students who apply unauthorized means (book, lecture notes, etc.), different from those listed in the course requirements and/or adopted by the lecturer in charge of the course assessment, in the written mid-term exams taken, and/or invite/accept any assistance of fellow students, with the exception of borrowing authorized means, will be disqualified from taking further mid-term exams in the very semester as a consequence of their action. Further to this, all of their results gained in the very semester will be void, can get no term-end signatures, and will have no access to Late Submission option. Final term-end results in courses with practical mark will automatically become Fail (1), the ones with exam requirements will be labelled Refused Admission to Exams. (b) Those students whose homework verifiably proves to be of foreign extraction, or alternatively, evident results or work of a third party, are referred to as their own, will be disqualified from taking further assessment sessions in the very semester as a consequence of their action. Further to this, all of their results gained in the very semester will be void, can get no term-end signatures, and will have no access to Late Submission options. Final term-end results in courses with practical mark will automatically become Fail (1), ones with exam requirements will be labelled Refused Admission to Exams. (c) Those students who apply unauthorized means (books, lecture notes, etc.), different from those listed in the course requirements and/or adopted by the lecturer in charge of the course assessment, in the written term-end exams taken, and/or invite/accept any assistance of fellow students, with the exception of borrowing authorized means, will immediately be disqualified from taking the term-end exam any further as a consequence of their action, and will be inhibited with an automatic Fail (1) in the exam. No further options to sit for the same exam can be accessed in the very same exam period. (d) Those students who alter, or make an attempt to alter the already corrected, evaluated, and distributed test or exercise/problem, i.) as a consequence of their action, will be disqualified from further assessments in the respective semester. Further to this, all of their results gained in the very semester will be void, can get no term-end signatures, and will have no access to Late Submission options. Final termend results in courses with practical mark will automatically become Fail (1), the ones with exam requirements will be labelled Refused Admission to Exams; ii.) and will immediately be inhibited with an automatic Fail (1) in the exam. No further options to sit for the same exam can be accessed in the very same exam period.
10. Retake and repeat Based on the official study and examination rules of the BME. 11. Consulting opportunities: Consultation hours: By email appointments 12. Reference literature (compulsory, recommended):
Matolcsi, T., Ordinary thermodynamics, 2005, Academic Publishers, Budapest. Bejan, A., Advanced Engineering Thermodynamics, 2006, Wiley. Verhás, J., Thermodynamics and rheology, 1997, Kluwert-Academic, Budapest. Prigogine, I. and Kondepudi, D., Modern Thermodynamics: From Heat Engines to Dissipative Structures, 1998, Wiley. Kjelstrup, S., Bedeaux, D., Johannessen, E. and Gross, J., Non-Equilibrium Thermodynamics for Engineers, World Scientific, New Jersey-etc., 2010.
13. Home study required to pass the subject: Contact hours
42
h/semester
Home study for the courses
28
h/semester
Home study for the mid-semester checks
10
h/check
Preparation of mid-semester homework
10
h/homework
Home study of the allotted written notes
-
h/semester
Home study for the exam
30
h/semester
Totally: 120
h/semester
14. The data sheet and the requirements are prepared by: Name: Peter Ván
Title: PhD
Affiliation (Department): Dept. of Energy Engineering
MAGYARNYELVŰ ADATLAP A KÖVETKEZŐ OLDALTÓL!
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar
gépészeti modellezés mesterszak, 2N-MW0
TANTÁRGY ADATLAP ÉS TANTÁRGYKÖVETELMÉNYEK
Alkalmazott termodinamika (Advanced Thermodynamics) 1.
Tantárgy kódja
GEENMWAT
Szemeszter 2.
Követelmény 2+1+0, v
Kredit 4
Nyelv angol
Tárgyfélév
2. A tantárgy felelőse (személy és tanszék): Név: Dr. Czél Balázs
Beosztás: adjunktus
Tanszék: Energetikai Gépek és Rendsz.
Beosztás: tud. főmunkatárs
Tanszék: Energetikai Gépek és Rendsz.
3. A tantárgy előadója: Név: Dr. Ván Péter
4. A tantárgy az alábbi témakörök ismeretére épít: klasszikus termodinamika, differenciálás, integrálás 5. Kötelező/ajánlott előtanulmányi rend: Nincs. Tematikaütközés miatt a tantárgyat csak azok vehetik fel, akik korábban nem hallgatták a következő tantárgyakat: Neptun-kód Cím 6. A tantárgy célkitűzése: The aim is to introduce the students to the hierarchy of modells (theories) of thermodynamics (classical, ordinary/ homogeneous nonequilibrium and irreversible/continuum nonequilibrium thermodynamics) with selected applications demonstrating the role of the basic concepts in engineering. During the semester the students deepen their understanding of the basic concepts and methods of the subject, like equilibrium, energy/exergy/extropy, material modelling, etc…. 7. A tantárgy részletes tematikája: A) Homogeneous systems - Ordinary (equilibrium) thermodynamics 1) Basic thermodynamic concepts. Models, theories and laws. Extensives and intensives. Gibbs relation. Thermodynamic potentials. Thermodynamic stability. Phases and phase equilibrium. Gases, liquids and solids. Math1: partial derivatives, Math2: Legendre transformations, differentials. 2) Zeroth, First and Second Law - statics Conceptual questions: equilibrium, energy, work, perpetuum mobile, quasistatic "processes". 3) EOS examples: Ideal gas, Van der Waals gas, virial gas Ideal elastic wire, rubber wire, ideal elasticity in 3d. 4) Laws of thermoDYNAMICS
Math3: Differential equations, stability, Liapunov-functions. Gibbs relation and differential equations. Equilibrium. Quasistatic and irreversible processes. Single body in an environment. 5) System of bodies and environments. Heat and work. Reservoirs, extended systems. 6) Exergy analysis. Entropy generation minimization. Heat exchangers, power plants. 7) Multicomponent phase equilibrium, solutions. B) Continua - Non-equilibrium thermodynamics 8) Basics - balances of basic quantities Balances, partial diff. equations, constitutive functions, objectivity. Math4: Tensor analysis, indices. 9) Second law. Entropy production. Linear laws. Onsager reciprocity. Isotropy. Local equilibrium. 10) Heat conduction, diffusion and flow in one component fluids. Cross effects. 11) Heat conduction and flow in isotropic solids. Cross effects. 12) Out of local equilibrium. Internal variables. Heat conduction and flow in isotropic solids. Cross effects. Rheology. Poynting-Thomson body. 13) Measurement of parameters, applications, etc., constructal theory, etc.. Fuel cells. 8. A tantárgy oktatásának módja: angol nyelvű előadás és számítási gyakorlat 9. Követelmények Jelenléti követelmény: a TVSZ szerint. a) A szorgalmi időszakban: 1 zárthelyi (utolsó előtti hét) és 3 kötelező házi feladat, illetve további rendszeres, nem kötelező házi feladatok. Ezek számítási készséget kérnek számon és összességükben egy megajánlott jegyet eredményeznek. b) A vizsgaidőszakban (a vizsgajegy megállapításának módja): Írásbeli-szóbeli vizsga (ennek érdemjegyébe számítanak a házi feladatok, illetve a ZH). A vizsga első része az alapvető számítási ismeretek rövid számonkérése. Amennyiben az első rész sikeres, a tananyag egy adott témakörében rövid felkészülés után szóbeli számonkérés. c) Tantárgyi követelményeket tiltott eszközzel teljesíteni szándékozó hallgatók szankcionálása: A tantárgyi követelményeket tiltott eszközzel teljesíteni szándékozó hallgatókkal szemben az 1/2013. (I. 30.) dékáni utasítás rendelkezésinek értelemszerű alkalmazásával kell eljárni. 10. Pótlási lehetőségek A TVSZ szerint. 11. Konzultációs lehetőségek A hallgatókkal egyeztetett időpontban.
12. Jegyzet, tankönyv, felhasználható irodalom: Kijelölt részek a következő művekből: 1) Matolcsi, T., Ordinary thermodynamics, 2005, Academic Publishers, Budapest. 2) Bejan, A., Advanced Engineering Thermodynamics, 2006, Wiley. 3) Verhás, J., Thermodynamics and rheology, 1997, Kluwert-Academic, Budapest. 4) Prigogine, I. and Kondepudi, D., Modern Thermodynamics: From Heat Engines to Dissipative Structures, 1998, Wiley. 5) Kjelstrup, S., Bedeaux, D., Johannessen, E. and Gross, J., Non-Equilibrium Thermodynamics for Engineers, World Scientific, New Jersey-etc., 2010. 13. A tantárgy elvégzéséhez szükséges tanulmányi munka: A kreditek számának 30-szorosa (kb. 120-130 óra). Házi feladatok: 0-50%, zárthelyire felkészülés: 0-100%, vizsga felkészülés: 0-100%. Ajánlott beosztás rendszeres tanulás esetén: Házi feladatok: 30%, zárthelyire felkészülés: 30%, vizsga felkészülés: 40%.
14. A tantárgy tematikáját kidolgozta: Név: Dr. Ván Péter, Dr. Gróf Gyula
Beosztás: tud. főmunkatárs egyetemi docens
Tanszék: Energetikai Gépek és Rendsz. Energetikai Gépek és Rendsz.