Uji Hipotesis Latihan
613.123.15 Statistika Farmasi Bab 4: Uji Hipotesis
Atina Ahdika, S.Si, M.Si
Statistika FMIPA Universitas Islam Indonesia
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Definisi
Hipotesis Suatu pernyataan tentang besarnya nilai parameter populasi yang akan diuji. Pernyataan tersebut masih lemah kebenarannya dan perlu dibuktikan. Dengan kata lain, hipotesis adalah dugaan yang sifatnya masih sementara. Pengujian Hipotesis Suatu prosedur pengujian yang dilakukan dengan tujuan memutuskan apakah menerima atau menolak hipotesis mengenai parameter populasi.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Pengujian Hipotesis
Hipotesis Nol H0 Hipotesis yang diartikan sebagai tidak adanya perbedaan antara ukuran populasi dan ukuran sampel. Hipotesis Alternatif H1 Lawannya hipotesis nol, adanya perbedaan data populasi dengan sampel. Hipotesis alternatif ini biasanya merepresentasikan pertanyaan yang harus dijawab atau teori yang akan diuji
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Pada pengujian hipotesis, terdapat empat kemungkinan keadaan yang menentukan apakah keputusan kita benar atau salah. Kemungkinan keadaan tersebut adalah sebagai berikut Tidak menolak H0 Menolak H0
H0 benar √ Eror tipe I (α)
Atina Ahdika, S.Si, M.Si
H0 salah Eror tipe II (β) √
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Langkah Pengujian Hipotesis
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Formulasi Hipotesis Hipotesis nol H0 dirumuskan sebagai pernyataan yang akan diuji, hendaknya dibuat pernyataan untuk ditolak. Hipotesis alternatif H1 dirumuskan sebagai lawan/tandingan hipotesis nol. Jenis uji hipotesis: Uji hipotesis satu arah (one-tailed): H0 : µ = µ 0 H1 : µ > µ0 atau H1 : µ < µ0 Uji hipotesis dua arah (two-tailed): H0 : µ = µ 0 H1 : µ 6= µ0 Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
A manufacturer of a certain brand of rice cereal claims that the average saturated fat content does not exceed 1.5 grams per serving. State the null and alternative hypotheses to be used in testing this claim.
H0 : µ = 1.5 H1 : µ > 1.5
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Taraf Nyata (Significance Level)
Taraf nyata adalah besarnya toleransi dalam menerima kesalahan hasil hipotesis terhadap nilai parameter populasinya. Taraf nyata (significant level) disimbolkan dengan α Tingkat kepercayaan (confident level) disimbolkan dengan 1−α Pemilihan taraf nyata tergantung pada bidang penelitian masing-masing. Biasanya di bidang sosial menggunakan taraf nyata 5%10%, di bidang eksakta menggunakan 1%2%. Besarnya kesalahan disebut sebagai daerah kritis pengujian (daerah penolakan)
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Daerah penolakan uji hipotesis satu arah
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Daerah penolakan uji hipotesis dua arah
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Kriteria Pengujian dan Statistik Uji
Bentuk keputusan menerima/menolak H0 Ada banyak jenis pengujian, dalam materi ini yang akan dipelajari adalah: a. b. c. d. e.
Uji Uji Uji Uji Uji
hipotesis hipotesis hipotesis hipotesis hipotesis
satu rata-rata dua rata-rata data berpasangan satu variansi dua variansi populasi
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Uji Hipotesis Satu Rata-Rata Kriteria Pengujian
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Statistik Uji i. Jika variansi (σ 2 ) diketahui, n ≥ 30. Statistik ujinya: z0 =
x¯ − µ0 σ √ n
ii. Jika variansi (σ 2 ) tidak diketahui, n < 30. Statistik ujinya: t0 =
Atina Ahdika, S.Si, M.Si
x¯ − µ0 √s
n
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Tabel z
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Tabel t
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
A random sample of 100 recorded death in the United States during the past year showed an average life span of 71.8 years. Assuming a population standard deviation of 8.9 years, does this seem to indicate that the mean life span today is greater than 70 years? Use a 0.05 level of significance. Solution: 1
H0 : µ = 70 years
2
H1 : µ > 70 years
3
α = 0.05
4
Critical region: z > 1.645, where z =
5
Computation: x¯ = 71.8 years, σ = 8.9 years, and hence 71.8−70 √ z = 8.9/ = 2.02 100
x¯−µ √0 σ/ n
Desicion: Reject H0 and conclude that the mean life span today is greater than 70 years. Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
The Edison Electric Institute has published figures on the number of kilowatt hours used annually by various home appliances. It is claimed that a vacuum cleaner uses an average of 46 kilowatt hours per year. If a random sample of 12 homes included in a planned study indicates that vacuum cleaners use an average of 42 kilowatt hours per year with a standard deviation of 11.9 kilowatt hours, does this suggest at the 0.05 level of significance that vacuum cleaners use, on average, less than 46 kilowatt hours annually? Assume the population of kilowatt hours to be normal.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
1
H0 : µ = 46 kilowatt hours
2
H1 : µ < 46 kilowatt hours
3
α = 0.05
4
Critical region: t < −1.796, where t = of freedom
5
Computations: x¯ = 42 kilowatt hours, s = 11.9 kilowatt hours, and n = 12. Hence t=
42 − 46 √ = −1.16, 11.9/ 12
x¯−µ √0 s/ n
with 11 degrees
P = P(T < −1.16) ≈ 0.135
Desicion: Do not reject H0 and conclude that the average number of kilowatt hours used annually by home vacuum cleaners is not significantly less than 46.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Uji Hipotesis Dua Rata-Rata Kriteria Pengujian
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Statistik Uji i. Jika variansi (σ12 dan σ22 ) diketahui, n ≥ 30. Statistik ujinya: z0 =
(¯ x1 − x¯2 ) − d0 q 2 σ1 σ22 n1 + n2
ii. Jika variansi (σ12 dan σ22 ) tidak diketahui namun dianggap sama, n < 30. Statistik ujinya: t0 =
(¯ x1 − x¯2 ) − d0 q sp n11 + n12
q (n1 −1)s12 +(n2 −1)s22 dengan sp = . n1 +n2 −2 Derajat bebas: ν = n1 + n2 − 2.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
iii. Jika variansi (σ12 dan σ22 ) tidak diketahui namun dianggap berbeda, n < 30. Statistik ujinya: t0 =
(¯ x1 − x¯2 ) − d0 q 2 s1 s22 n1 + n2
s12 s2 + n2 n1 2 !2
Derajat bebas: ν =
s2 1 n1
n1 −1
+
Atina Ahdika, S.Si, M.Si
s2 2 n2
!2
.
n2 −1
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
An experiment was performed to compare the abrasive wear of two different laminated materias. Twelve pieces of material 1 were tested by exposing each piece to a machine measuring wear. Ten pieces of material 2 were similarly tested. In each case, the depth of wear was observed. The samples of material 1 gave an average (coded) wear of 85 units with a sample standard deviation of 4, while the samples of material 2 gave an average of 81 with a sample standard deviation of 5. Can we conclude at the 0.05 level of significance that the abrasive wear of material 1 exceeds that of material 2 by more than 2 units? Assume the populations to be approximately normal with equal variances?
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Let µ1 and µ2 represent the population means of the abrasive wear for material 1 and material 2, respectively. 1
H0 : µ 1 − µ 2 = 2
2
H1 : µ 1 − µ 2 > 2
3
α = 0.05
4
Critical region: t > 1.725, where t =
(¯ x1 −¯ x2 )−d0 √ sp 1/n1 +1/n2
ν = 20 degrees of freedom 5
Computations: x¯1 = 85, s1 = 4, n1 = 12 x¯2 = 81, s2 = 5, n2 = 10
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
with
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Hence, r
(11)(16) + (9)(25) = 4.478 12 + 10 − 2 (85 − 81) − 2 p t= = 1.04 4.478 1/12 + 1/10
sp =
P = P(T > 1.04) ≈ 0.16 Decision: Do not reject H0 . We are unable to conclude that the abrasive wear of material 1 exceeds that of material 2 by more than 2 units.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Uji Hipotesis Data Berpasangan Kriteria Pengujian
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Statistik Uji t0 =
d¯ − d0 sd √ n
dengan s sd =
P
d)2 n
P
d2 − ( n−1
dan n adalah jumlah pasangan data. Derajat bebas: ν = n − 1.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Table below shows the results of a bioavailability study comparing a new formulation (A) to a marketed form (B) with regard to the area under the blood-level curve. The average difference is 18.5 and the standard deviation of the differences is 13. Test at the 0.05 level of significance that there is difference of the bioavailability between A and B. Animal 1 2 3 4 5 6
A 136 168 160 94 200 174
Atina Ahdika, S.Si, M.Si
B 166 184 193 105 198 197
di 30 16 33 11 -2 23
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
1
H0 : µ1 = µ2 or µD = µ1 − µ2 = 0
2
H1 : µ1 6= µ2 or µD = µ1 − µ2 6= 0
3
α = 0.05
4
Critical region: t < −2.571 or t > 2.571, where x1 −¯ x2 )−d0 √ with ν = 5 degrees of freedom t = (¯ sp
5
1/n1 +1/n2
Computations: the sample mean and standard deviation for the di are d¯ = 18.5 dan sd = 13 then t=
d¯ − d0 18.5 − 0 √ = √ = 3.48 sd / n 13/ 6
Decision: Reject H0 which mean that there is difference at the bioavailibility of formulation A and B. Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Uji Hipotesis Satu Variansi Kriteria Pengujian
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Statistik Uji χ2 =
(n − 1)s 2 σ02
di mana n adalah ukuran sampel, s 2 adalah variansi sampel, dan σ02 adalah nilai σ 2 yang diberikan oleh H0 . Jika H0 benar, χ2 adalah nilai dari distribusi chi-squared dengan derajat bebas ν = n − 1.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Tabel Distribusi Chi-Squared
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
A manufacturer of car batteries claims that the life of company’s batteries is approximately normally distributed with a standard deviation equal to 0.9 year. If a random sample of 10 of these batteries has a standard deviation of 1.3 years, do you think that σ > 0.9 year? Use a 0.05 level of significance.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
1
H0 : σ 2 = 0.81
2
H1 : σ 2 > 0.81
3
α = 0.05
4
Definisi Pengujian Hipotesis
Critical region: H0 is rejected when χ2 > 16.919, where 2 χ2 = (n−1)s with ν = 9 degrees of freedom. σ2 0
5
Computations: s 2 = 1.44, n = 10, and χ2 =
(9)(1.69) = 18.78 0.81
Decision: Reject H0 which mean that there is evidence that σ > 0.9.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Uji Hipotesis Dua Variansi Kriteria Pengujian
Catatan: f1−α(ν1 ,ν2 ) =
1 fα(ν2 ,ν1 )
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Statistik Uji f =
s12 s22
di mana s12 dan s22 variansi dari kedua sampel. Jika dua populasi tersebut menghampiri distribusi normal dan H0 s2 benar, maka rasio f = s12 adalah sebuah nilai dari distribusi F 2 dengan derajat bebas ν1 = n1 − 1 dan ν2 = n2 − 1.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
In testing for the difference in the abrasive wear of the two materials in example before, we assumed that the two unknown population variances were equal. Were we justified in making this assumption? Use a 0.10 level of significance.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Definisi Pengujian Hipotesis
Let σ12 and σ22 be the population variances for the abrasive wear of material 1 and 2, repectively. 1
H0 : σ12 = σ22
2
H1 : σ12 6= σ22
3
α = 0.10
4
Critical region: fα/2(ν1 ,ν2 ) = f0.05(11,9) = 3.11 and f1−0.05(11,9) = f 1 = 0.34. 0.05(9,11) Therefore, H0 is rejected when f < 0.34 or f > 3.11.
5
Computations: s12 = 16, s22 = 25, and hence f =
16 25
= 0.64
Decision: Do not reject H0 . Conclude that there is insufficient evidence that variances differ.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Latihan
Latihan
1. According to a dietary study, high sodium intake may be related to ulcers, stomach cancer, and migrain headaches. The human requirement for salt is only 220 milligrams per day, which is surpassed in most single servings of ready-to-eat cereals. If a random sample of 20 similar servings of a certain cereal has a mean sodium content of 244 milligrams and a standard deviation of 24.5 milligrams, does this suggest at the 0.05 level of significance that the average sodium content for a single serving of such cereal is greater than 220 milligrams?
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Latihan
2. According to Chemical Engineering, an important property of fiber is its water absorbency. The average percent absorbency of 25 randomly selected pieces of cotton fiber was found to be 20 with a standard deviation of 1.5. A random sample of 25 pieces of acetate yielded an average percent of 12 with a standard deviation of 1.25. Is there strong evidence that the population mean percent absorbency is significantly higher for cotton fiber than for acetate? Assume that the population variances in percent absorbency for the two fibers are the same. Use a significance level of 0.05.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Latihan
3. In a study conducted by the Department of Human Nutrition and Foods at Virginia Tech, the following data were recorded on sorbic acid residuals, in parts per million, in ham immediately after dipping in a sorbate solution and after 60 days of storage.
Is there sufficient evidence, at the 0.05 level of significance, to say that the length of storage influences sorbic acid residual concentrations? Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Latihan
4. Aflotoxins produced by mold on peanut crops in Virginia must be monitored. A sample of 64 batches of peanuts reveals levels of 24.17 ppm, on average, with a variance of 4.25 ppm. Test the hypothesis that σ 2 = 4.2 ppm against the alternative that σ 2 6= 4.2 ppm.
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi
Uji Hipotesis Latihan
Latihan
5. A study is conducted to compare the lengths of time required by men and women to assemble a certain product. Past experience indicates that the distribution of times for both men and women approximately normal but the variance of the times for women is less than that for men. A random sample of times for 11 men and 14 women produced the following data
Test the hypothesis that σ12 = σ22 against the alternative that σ12 > σ22 .
Atina Ahdika, S.Si, M.Si
613.123.15 Statistika Farmasi