ASPEK TEKNIS GAS METANA BATUBARA (COALBED METHANE)
Prof. Ir. Doddy Abdassah M.Sc, Ph.D f dd bd h h Departeman Teknik Perminyakan Institut Teknologi Bandung Institut Teknologi Bandung PERTAMINA‐CBM WORKSHOP HOTEL MELIA PUROSANI JOGYAKARTA RABU, 30 MARET 2011
Tajuk o o o o
Pendahuluan Batubara Sebagai Reservoir CBM Stages in CBM Development Sensitivity Study:
Tajuk (lanjutan) o Well Geometry o Vertical o Slanted o Horizontal o Multilateral o Well Diameter o Small Diameter o Large Diameter o Well Stimulation o Hydraulic Fracturing o CO2 Injection
o Masalah Lingkungan
CBM
Pendahuluan
Pendahuluan •
CBM sebagai salah satu alternatif sumber energi, di Indonesia mulai diupayakan untuk di produksikan. Sampai saat ini, Pemerintah Indonesia telah menandatangani 23 CBM‐PSC. Pada saat ini, masih dalam tahapan eksplorasi dan pilot project.
Sumber: Migas
• Bahkan, pada tahun 2010 masih banyak konsesi CBM yang ,p y y g masih ditawarkan pemerintah Indonesia.
Sumber: Migas
• Indonesia mempunyai potensi CBM yang diperkirakan p y p y g p sebesar 450 TSCF. Hal ini berarti Indonesia menempati urutan ke 6 di dunia
I d Indonesia i
Sumber: Migas
•
Gas Metana mempunyai “daya rusak” 21 kali lebih potent dari gas CO2 apabila lepas ke atmosfir. Dengan demikian, membakar habis gas Metana mendukung pengurangan “Global Warming”
Cmmemmision.info.co
• Reservoir CBM dapat digunakan untuk CO2 Sequestration. Sekaligus, penginjeksian CO2 kedalam reservoir ini akan meningkatkan produksi dan perolehan CBM (Enhanced CBM Recovery)
Sumber: Ertekin
Sumber: Pubs.acs.com
• Amerika Serikat adalah negara g pelopor p p dan terbesar yyang g memproduksikan CBM (10% dari konsumsi gas alam domestik) serc carleton edu serc.carleton.edu
CBM
Energypolicyinfo.com
Road Map CBM Indonesia p
Sumber: Migas
Unconventional Gas • CBM dikatagorikan kedalam “Unconventional Gas” g
Sumber: Wood McKenzie
What What is Unconventional Gases? is Unconventional Gases?
***Definition: Conventional Gases: Natural gas from gas reservoirs (k 0 1 d) (k>0.1 md) Natural gas from condensate reservoirs Natural gas from oil reservoirs
Batubara Sebagai Reservoir CBM
Reservoir Migas Reservoir Migas • Clastic sedimentary rocks • Bermigrasi dari batuan induk (source rocks) • Minyak dan gas dijebak pada y g j p media berpori • Reservoir adalah suatu tutupan • Adanya kontak fluida (fluid Adanya kontak fluida (fluid contacts): Water‐Oil Contact, Gas‐Oil Contact, Gas‐Water Contact
Reservoir CBM Reservoir CBM • Gas Metana Batubara terwujud bersamaan dengan j g • • • •
pembentukan batubara. Batubara sekaligus sebagai Source Rock dan Reservoir Rock. Tidak ada kontak fluida (gas dan air). Reservoir menghampar secara areal seperti karpet. Besarnya Kapasitas penyimpanan gas merupakan fungsi dari Besarnya Kapasitas penyimpanan gas merupakan fungsi dari ranking batubara.
Proses Terbentuknya Batubara
Cycle of Coal Development Increasing Time and Temperature Peat Lignite SubS b Bituminous Bituminous As coal is buried over time, coal responds to increased temperature by increasing thermal maturity which is qualifies by coal rank. Increased volumes of methane are generated during this maturation process.
Anthracite Graphite Sumber: Ertekin
Coalscience.com
Gas Generation As A Function Of Thermal Maturity Of Coal
Increasing gas volume →
Thermally-derived methane
Volatile matter driver off
Biogenic methane Nitrogen dan Carbon dioxide (CO2)
Lignite
S Subbituminous
Bituminous Increasing coal rank →
Anthracite
G Graphite
Pada umumnya Reservoir CBM di Indonesia adalah p pada SubBituminous Coal
• ARI reference of 1972 Land and Jones Coal Study • 2007 USGS study of Indonesian coals
Definisi: Coalbed Methane • • •
•
CBM adalah gas alam dengan komposisi utama Metana (CH4) Gas ini terwujud bersamaan dengan pembentukan batubara T j b kd t d Terjebak dan teradsorpsi pada i d “cleats” (macropore) dan matrix batubara (micropores) Diperlukan tekanan air yang Diperlukan tekanan air yang cukup untuk menahan gas metana di tempat.
Pore Structure of Coal Pore Structure of Coal
Source: Narkiewicz, M. R. and Mathews, J. P., Visualization of carbon dioxide sequestration issues within coal using b di id t ti i ithi l i molecular representation of Pocahontas No. 3 coal, 12th International Conference on Coal Science and Technology, 2005, October 9‐14, Okinawa, Japan.
Prof. Ertekin-CBM Seminar in ITB 2006
PORE STRUCTURES OF COALBED METHANE RESERVOIRS
The molecular representation of a bituminous coal
Visualization of CO2 adsorption at capacity
The molecular representation of a bituminous coal with 66 water molecules added
Gas adsorption on banks of carbon nanotubes f b b
Batubara sebagai Reservoir CBM
After: Remner, Miracic After: Remner, Miracic
Storage Capacity
Range of surface area: 21503150 ft square/gram
Modified from Okeke
Langmuir Isotherm Adsorption Saturated CBM Reservoir
Sumber: VICO
Langmuir Isotherm Adsorption Undersaturated CBM Reservoir
S b VICO Sumber:
Undersaturated CBM Reservoir Dewatering
Persamaan Langmuir Isotherm Adsortion:
VL .P Gs = PL + P Where: Gs P VL PL
After Aminian
: Gas storage capacity, SCF/ton : Pressure, psia : Langmuir volume constant, SCF/ton : Langmuir pressure constant, psia
Teknik Produksi CBM Teknik Produksi CBM • “Memompa air” dari cleats (rekahan, macropores)‐‐‐‐‐ Dewatering • Gas terdesorpsi dari matrix Gas terdesorpsi dari matrix batubara dan mengalir bersama dengan air pada cleats ke lubang bor cleats ke lubang bor • Laju alir gas rendah • Tekanan rendah
Sumber: Western Gas
Contoh lapangan CBM yang telah CBM yang telah berkembang
Sumber: Chris Allen -Vico
March 29, 2011 | ©2007 Institut Teknologi Bandung |
CBM Typical Production After: Mavor, Saulsberry,Bhavzar
Sangatt penting S ti meramalkan lk CBM production d ti performance …...Merupakan salah satu tujuan dari Disertasi ini
CBM Well Production 900,000
90
800,000
80
Gas Rate, scfd Water Rate, bw pd
Gas Ra ate, scfd
600,000
70 60
500,000
50
400,000
40
300,000
30
200,000
20
100,000
10
23-06-2000
01-10-2000
09-01-2001
19-04-2001
28-07-2001
05-11-2001
13-02-2002
Water ra ate, bwpd
700,000
Comparison Of Coal And Conventional Gas Sand Reservoir Characteristics
Dry Gas Recovery Factor : 80-95% Coalbed Methane Recovery Factor: 45-60%
Sumber: Ertekin
Dual Porosity Model Dual Porosity Model
Transportasi Gas pada Reservoir CBM “Dual Porosity Model” y Fickian Flow
Darcian Flow Stage 2
Stage 3
Desorption From Internal Surfaces
Flow Through the Matrix
Flow in the Natural Fracture N t Network k
JAF00 0670.CDR
Stage 1
Natural Fracture Network
qgm = 2.697σ DρcVc (Gc − Gs )
Sumber: Ertekin
Langmuir Isotherm Adsorption Saturated CBM Reservoir
Undersaturated CBM Reservoir Dewatering
VL .P Gs = PL + P Where: Gs P VL PL
After Aminian
: Gas storage capacity, SCF/ton : Pressure, psia : Langmuir volume constant, SCF/ton : Langmuir pressure constant, psia
COMPARISON OF COAL AND CONVENTIONAL GAS SAND RESERVOIR CHARACTERISTICS
Dry Gas Recovery Factor : 80-95% Coalbed Methane Recovery Factor: 45-60%
Gas Transportation in CBM Reservoir Dual Porosity Model y Fickian Flow
Darcian Flow Stage 2
Stage 3
Desorption From Internal Surfaces
Flow Through the Matrix
Flow in the Natural Fracture N t Network k
JAF00 0670.CDR
Stage 1
Natural Fracture Network
qgm = 2.697σ DρcVc (Gc − Gs )
Coal Petrology COAL PETROLOGY – PROXIMATE AND ULTIMATE ANALYSES PROCESSES
•The composition of coal often is described by proximate analysis and ultimate analysis. •A proximate analysis provides the percentage of fixed carbon (FC), volatile matter (VM) and moisture (H2O) and ash (ASH) content of coal. •An ultimate analysis provides the chemical make up of the coal as percentages of carbon, hydrogen, sulfur and ash.
After Ertekin
CBM Gas In Place Formula CBM Gas In Place Formula + Dissolved Gas in Water
⎡ 43560φ f (1 − Swi f ) ⎤ Gi = Ah ⎢ + 1.359C gi ρ c (1 − f a − f m ) ⎥ Bgi ⎣ ⎦
About 95%
Stages in CBM Development
Stages of Exploration and Development 0
1
2
3
4
5
20
Time (years)
Stage 1: Identification of CBM Resource
Stage 2: Early Evaluation Drilling
Stage 3: Pilot Project Drilling
Stage 4: Pilot Production Testing Stage 5: Commercial Development Commercial Development
Go/No Go Decisions are made at the end of each stage dependent on the results of the geological and engineering information that has been collected
After Agus Guntoro
Project Reclamation
Stage 1: Identification CBM Resources
After Agus Guntoro
COALBED METHANE WORKFLOW
Stage 2 Exploration: “Determine the size of the resource” Critical geological information necessary: Gas content of coal and relative relationship between gas content and depth Coal quality and maturation level V l Volume of coal present within specific defined reservoir parameters f l t ithi ifi d fi d i t Adsorption capacity of potential coal reservoirs to determine saturation % Gas composition Preliminary geological aspects of permeability such as: yg g p p y cleat development mineralization of cleat in situ stress hydrological setting hydrological setting
After Agus Guntoro
Stage 3 Exploration: “Will the Coals Produce Any Gas?” Micro‐Pilot or Feasibility Drilling y g Critical engineering information necessary: Reservoir properties to determine: Initial reservoir pressures and derived permeability Initial reservoir pressures and derived permeability Coal compressibility and stress regime Coal fabric response under depressurization conditions Formation water quantity and quality P Pressure drawdown profiles using limited pump tests d d fil i li it d t t Initial assessment of stimulation requirements Interference analysis between boreholes (communication and distance between wellbores)) Produced gas quality Borehole stability and migration of fines After Agus Guntoro
Stage 4 Exploration: “What are the production profiles like?” Full Size Pilot Project Drilling and Production Critical engineering information necessary: Production profiles to determine: water and gas production over a period of time interference effects from well spacing coal fabric response under depressurization conditions coal fabric response under depressurization conditions
Optimization of well spacing and orientation Optimization of fracture stimulation techniques Modelling of full pilot project in anticipation of full scale commercial development commercial development Detailed engineering studies for surface infrastructure: pipeline gathering system compression requirements water disposal commercial field design for well spacing and access
After Agus Guntoro
Stage 5 Commercial Development: “Did we get it right?” 1. Significant capital investment required so a high degree of
confidence is required that the project will be successful 2. Major construction of surface gathering system and sales line f f h d l l 3. Synergy and capital cost savings can be achieved through a systematic program development and operations
After Agus Guntoro
Stages of Exploration and Development St Stage 2 Exploration 2 E l ti
Stage 4 Exploration
Stage 3 Exploration 3 Exploration
Stage 5 Commercial Development
After Agus Guntoro
CBM Well & Completion Sensitivity CBM Well & Completion Sensitivity
Base Base Model Properties Model Properties • • • • • • •
Vertical well Vertical well Area : 160 Acre Thickness : 30 ft hi k 30 f Fracture Porosity : 0.001 Matrix Porosity : 0.005 Fracture Permeability : 4 mD Fracture Permeability : 4 mD Matrix Permeability : 0.0001 mD
Sensitivity Study • Well Geometry – Vertical – Slanted – Horizontal H i t l – Multilateral • Well Diameter – Small Diameter – Large Diameter • Well Stimulation – Hydraulic Fracturing CO2 Injection • CO2 Injection
Base Model CBM W Wellll & C Completion l ti S Sensitivity iti it St Study d Grid Top (m) 2000-01-01 K layer: 1 -100
0
100
200
300
400
500
600
700
800
900 0
0
File: Base.dat User: Administrator Date: 2/15/2011 Scale: 1:6344 Y/X: 1.00:1 Axis Units: m
-100
-100
-200
-200
1,002.7 1,002.0
-300
-300
1,001.3
-400
-400
1,000.5 PRODUCER
-500
-500
999.8 999.1 998.4
996.9
0.00
405.00
810.00 feet
996.2
0.00
125.00
250.00 meters
0
100
200
300
400
500
600
700
800
-800
-700
-700
-600
-600 -100 100
997.7
900
995.5
CBM Well & Completion Sensitivity Study Grid Top (m) 2000-01-01 J layer: 6 992.0 993.0 994.0 995.0 996.0 0 997.0 998.0 999.01,000..0 1,001.0 1,002.0 1 ,003.0 1,004 .0 1,005.0 1 ,006.0 1,007.0
0
100
200
300
400
500
600
700
800
PRODUCER
1,006.0 1,005.0 1,004.0 1,003.0 1,002.0 1,001.0 1,,000.0999.0 998.0 997.0 996.0 9 995.0 994.0 993.0 992.0 9
Slanted Well
0.00
320.00
640.00 feet
0.00
100.00
200.00 meters
700
800
File: Slanted.dat User: Administrator D t 2/15/2011 Date: Scale: 1:4959 Z/X: 44.00:1 Axis Units: m
1,002.7 1,002.0 1,001.3 1,000.5 999 8 999.8 999.1 998.4 997.7 996.9 996.2 995.5
0
100
200
300
400
500
600
CBM W Wellll & C Completion l ti S Sensitivity iti it St Study d Grid Top (m) 2000-01-01 J layer: 6 0
100
200
300
400
500
600
700
800
993.0 994 4.0 995.0 996.0 997.0 9 998.0 999.01,000.0 1,001 1.0 1,002.0 1 ,003.0 1,004.0 1,0 005.0 1,006.0 1,007.0 1,008 8.0
PRODUCER
1,006.0 1,005 5.0 1,004.0 1,003.0 1,002.0 1,0 001.0 1,000.0999.0 998.0 0 997.0 996.0 995.0 99 4.0 993.0 992.0
Horizontal Well
0.00
320.00
640.00 feet
0.00
100.00
200.00 meters
File: Horizontal.dat User: Administrator Date: 2/15/2011 Scale: 1:4959 Z/X: 44.00:1 Axis Units: m
1,002.7 1,002.0 1,001.3 1,000.5 999.8 999.1 998.4 997.7 996.9 996.2 995.5
0
100
200
300
400
500
600
700
800
Horizontal vs Vertical Drilling
After Ramaswmay
After Ramaswmay
Multilateral Well CBM W Wellll & C Completion l ti S Sensitivity iti it St Study d Grid Top (m) 2000-01-01 K layer: 3 -100
0
100
200
300
400
500
600
700
800
900 0
0
File: Multilateral.dat User: Administrator Date: 2/15/2011 Scale: 1:6344 Y/X: 1.00:1 Axis Units: m
-100
-100
-200
-200
1,002.7 1,002.0
-300
-300
1,001.3
-400
-400
1,000.5 PRODUCER
-500
-500
999.8 999.1 998.4
996.9
0.00
405.00
810.00 feet
996.2
0.00
125.00
250.00 meters
0
100
200
300
400
500
600
700
800
-800
-700
-700
-600
-600 -100 100
997.7
900
995.5
CBM W Wellll & C Completion l ti S Sensitivity iti it St Study d Grid Top (m) 2000-12-31 K layer: 1 -200
-100
0
100
200
300
400
500
600
700
800
900
1,000
0
0
100
CO2 Injection (5 Spot)
INJ-1
INJ-3
File: CO2 Injection.da User: Administrator Date: 2/15/2011
-100
-100
Scale: 1:7493 Y/X: 1.00:1 Axis Units: m
-200
-200
1,002.7 1,002.0
-300 0
-3 300 -400
-400
1,001.3
PRODUCER
-500
-500 -600
-600
1,000.5 999.8 999.1 998.4
-700
-700
-800
INJ-4
-900
0.00
480.00
960.00 feet
0.00
150.00
300.00 meters
-900
-800
INJ-2
997.7 996.9 996.2 995.5
-200 200
-100 100
0
100
200
300
400
500
600
700
800
900
1 000 1,000
Sensitivity Results Sensitivity Results
Well Geometry Well Geometry
CBM Well & Completion Sensitivity Study Base.irf 5.00e+5
200
Gas Rate SC Water Rate SC 4.00e+5
3.00e+5 100 2.00e+5
50 1 00 +5 1.00e+5
0 00e+0 0.00e+0
0 2005
2010
2015 Time (Date)
2020
2025
2030
Water R Rate SC (bbl/da ay)
Gas R Rate SC (ft3/day)
150
CBM Well & Completion Sensitivity Study Slanted.irf 6.00e+5
200
Gas Rate SC Water Rate SC
5.00e+5
Gas R Rate SC (ft3/day)
4.00e+5
3.00e+5
100
2.00e+5 50 1.00e+5
0 00e+0 0.00e+0
0 2005
2010
2015 Time (Date)
2020
2025
2030
Water R Rate SC (bbl/da ay)
150
CBM Well & Completion Sensitivity Study Horizontal.irf 8.00e+5
200
6.00e+5
150
4.00e+5
100
2.00e+5
50
0 00e+0 0.00e+0
0 2005
2010
2015 Time (Date)
2020
2025
2030
Water R Rate SC (bbl/da ay)
Gas R Rate SC (ft3/day)
Gas Rate SC Water Rate SC
CBM Well & Completion Sensitivity Study Multilateral.irf 2.00e+6
600
Gas Rate SC Water Rate SC
500
Gas R Rate SC (ft3/day)
400
1.00e+6
300
200 5.00e+5 100
0 00e+0 0.00e+0
0 2005
2010
2015 Time (Date)
2020
2025
2030
Water R Rate SC (bbl/da ay)
1.50e+6
CBM Well & Completion Sensitivity Study 2 00 6 2.00e+6
Base.irf Slanted.irf Horizontal.irf Multilateral irf Multilateral.irf
Gas Rate SC (ft3/da ay)
1.50e+6
1.00e+6
5.00e+5
0 00e+0 0.00e+0 2005
2010
2015 Time (Date)
2020
2025
2030
CBM Well & Completion Sensitivity Study 2 00 9 2.00e+9
Cumu ulative Gas SC ((ft3)
1.50e+9
1.00e+9
Base.irf Slanted.irf Horizontal.irf Multilateral.irf
5.00e+8
0 00e+0 0.00e+0 2005
2010
2015 Time (Date)
2020
2025
2030
Well Diameter Well Diameter
CBM Well & Completion Sensitivity Study Base.irf 5.00e+5
200
Gas Rate SC Water Rate SC 4.00e+5
3.00e+5 100 2.00e+5
50 1 00 +5 1.00e+5
0 00e+0 0.00e+0
0 2005
2010
2015 Time (Date)
2020
2025
2030
Water R Rate SC (bbl/da ay)
Gas R Rate SC (ft3/day)
150
CBM Well & Completion Sensitivity Study Large Wellbore.irf 6.00e+5
250
Gas Rate SC Water Rate SC 5.00e+5
Gas R Rate SC (ft3/day)
4.00e+5 150 3.00e+5 100 2.00e+5
50 1.00e+5
0 00e+0 0.00e+0
0 2005
2010
2015 Time (Date)
2020
2025
2030
Water R Rate SC (bbl/da ay)
200
CBM Well & Completion Sensitivity Study 6 00 5 6.00e+5
Base.irf Large Wellbore.irf 5.00e+5
Gas Rate SC (ft3/da ay)
4.00e+5
3.00e+5
2.00e+5
1.00e+5
0 00e+0 0.00e+0 2005
2010
2015 Time (Date)
2020
2025
2030
CBM Well & Completion Sensitivity Study 1 40 9 1.40e+9
1.20e+9
Cumu ulative Gas SC ((ft3)
1.00e+9
8.00e+8
6.00e+8
4.00e+8 Base.irf Large a ge Wellbore.irf e bo e
2.00e+8
0 00e+0 0.00e+0 2005
2010
2015 Time (Date)
2020
2025
2030
CO2 Injection CO2 Injection
CBM Well & Completion Sensitivity Study Base.irf 5.00e+5
200
Gas Rate SC Water Rate SC 4.00e+5
3.00e+5 100 2.00e+5
50 1 00 +5 1.00e+5
0 00e+0 0.00e+0
0 2005
2010
2015 Time (Date)
2020
2025
2030
Water R Rate SC (bbl/da ay)
Gas R Rate SC (ft3/day)
150
CBM Well & Completion Sensitivity Study CO2 Injection.irf 1.00e+6
200
Gas Rate SC Water Rate SC 8.00e+5
6.00e+5 100 4.00e+5
50 2 00 +5 2.00e+5
0 00e+0 0.00e+0
0 2005
2010
2015 Time (Date)
2020
2025
2030
Water R Rate SC (bbl/da ay)
Gas R Rate SC (ft3/day)
150
CBM Well & Completion Sensitivity Study Base.irf 1.00e+6
Base.irf CO2 Injection.irf
Gas R Rate SC (ft3/day)
8.00e+5
6.00e+5
4.00e+5
2 00 +5 2.00e+5
0 00e+0 0.00e+0 2005
2010
2015 Time (Date)
2020
2025
2030
CBM Well & Completion Sensitivity Study 8 00 9 8.00e+9
Base.irf CO2 Injection.irf
Cumu ulative Gas SC ((ft3)
6.00e+9
4.00e+9
2.00e+9
0 00e+0 0.00e+0 2005
2010
2015 Time (Date)
2020
2025
2030
Allison Unit Production
Source: ARI, 2003
Well Stimulation Well Stimulation
CBM Well & Completion Sensitivity Study Base.irf 5.00e+5
200
Gas Rate SC Water Rate SC 4.00e+5
3.00e+5 100 2.00e+5
50 1 00 +5 1.00e+5
0 00e+0 0.00e+0
0 2005
2010
2015 Time (Date)
2020
2025
2030
Water R Rate SC (bbl/da ay)
Gas R Rate SC (ft3/day)
150
CBM Well & Completion Sensitivity Study Hydraulic Fract.irf 8.00e+5
400
6.00e+5
300
4.00e+5
200
2.00e+5
100
0 00e+0 0.00e+0
0 2005
2010
2015 Time (Date)
2020
2025
2030
Water R Rate SC (bbl/da ay)
Gas R Rate SC (ft3/day)
Gas Rate SC Water Rate SC
CBM Well & Completion Sensitivity Study 8 00 5 8.00e+5
Base.irf Hydraulic Fract.irf
Gas Rate SC (ft3/da ay)
6.00e+5
4.00e+5
2.00e+5
0 00e+0 0.00e+0 2005
2010
2015 Time (Date)
2020
2025
2030
CBM Well & Completion Sensitivity Study 1 40 9 1.40e+9
1.20e+9
Cumu ulative Gas SC ((ft3)
1.00e+9
8.00e+8
6.00e+8
Base.irf Hydraulic Fract.irf
4.00e+8
2.00e+8
0 00e+0 0.00e+0 2005
2010
2015 Time (Date)
2020
2025
2030
Pinnate Well Pattern
After Ramaswmay
After Ramaswmay
After Ramaswmay
After Ramaswmay
After Ramaswmay
After Ramaswmay
After Ramaswmay
After Ramaswmay
After Ramaswmay
After Ramaswmay
P bl Problematika Pada Lingkungan tik P d Li k
o CBM dicirikan oleh Resource In Place yang besar (6‐7 kali dibandingkan dengan reservoir gas yang konvensional, pada volume yang sama). o Produksi CBM lebih ramah lingkungan. Akan tetapi dapat Produksi CBM lebih ramah lingkungan. Akan tetapi dapat berpengaruh terhadap tata ruang lahan, cagar alam dan lingkungan kehidupan manusia. o Pengembangan CBM membawa resiko terhadap lingkungan Pengembangan CBM membawa resiko terhadap lingkungan hidup. o Sengketa mungkin terjadi karena penguasaan lahan dan sumber daya lainnya. b d l i o Dapat pula menimbulkan tuntutan‐tuntutan yang menyebabkan kerugian yang besar bagi pengusahaan CBM
Masalah utama terhadap Lingkungan Masalah utama terhadap Lingkungan o Penurunan muka air tanah dikarenakan pemompaan air Penurunan muka air tanah dikarenakan pemompaan air‐tanah tanah secara besar secara besar‐ besaran. g y g p y g o Pembuangan limbah air yang terproduksi dalam volume yang besar. o Kontaminasi gas Metana terhadap sumber air tanah dangkal. p g y g y o Polusi suara dari kompresor gas dan yang lainnya. o Polusi udara yang disebabkan oleh gas buang dari stasiun kompresor, kebocoran metana dan debu. o Gangguan permukaan berupa konstruksi pembuatan jalan, jalur pipa dan fasilitas produksi lainnya.
Cap Rock ????
Noise Control
Sumber: Raj Puri
Water Production in some major CBM Basins (old data) (old data) Basin (State, USA) Black Warrior (Al b (Alabama) ) Power River (Wyoming) Raton (Colorado) San Juan (Colorado, NM) Uinta ((Utah)) Sumber: Raj Puri
# of CBM Wells Average Water P d ti Production (bbl/day/well) 2,917 58
Water/Gas R ti Ratio Bbl/Mcf 0.55
Primary Di Disposal l Method Surface Discharge
2,737
400
2.75
Surface Discharge
459
266
1.34
Injection
3,089
25
0.031
Injection
393
215
0.42
Injection
CBM Water Treatment Technology o Freeze‐Thaw/Evaporation to reduce dissolved solids in / p
o o o o o o
produced water o Used in Colorado, Alaska, Wyoming Reverse Osmosis Ultraviolet Light Sterilization Chemical treatment Chemical treatment Ion Exchange Deionization Dan lain‐lain
Example of New Technology p gy
Wyoming CBM
Sumber: Raj Puri
Drake Technology gy 8,500 , b/d capacity p y produced CBM water for fresh water