8
sidding
petak jalan
petak blok Keterangan:
Stasiun
Sinyal Crossing
Overtaking Gambar 5 Ilustrasi dari istilah perkeretaapian.
III PEMODELAN MASALAH PENJADWALAN KERETA API DAN APLIKASINYA 3.1 Model Matematika Masalah penjadwalan kereta api pada karya ilmiah ini akan dimodelkan dengan mempertimbangkan asumsi sebagai berikut: 1 model dibangun untuk kasus kereta api jalur ganda, 2 satuan waktu terkecil yang digunakan dalam penjadwalan adalah menit, 3 tidak ada urutan prioritas kereta api yang akan menggunakan petak blok yang sama. Model penjadwalan kereta api pada karya ilmiah ini dirancang sebagai alat untuk merencanakan jadwal kereta api pada periode operasi tertentu. Jadwal yang akan dihasilkan merupakan jadwal faktual. Jadwal aktual akan sama dengan jadwal faktual apabila tidak terjadi gangguan operasional seperti pemadaman listrik, bencana alam yang mengakibatkan kerusakan infrastruktur, gangguan sinyal, dan lain sebagainya. Referensi utama yang digunakan penulis dalam memodelkan masalah penjadwalan kereta api jalur ganda adalah tulisan Higgins, et al. (1996). Notasi-notasi yang akan digunakan pada model penjadwalan kereta api sebagai kasus khusus dari masalah penjadwalan job-shop didefinisikan sebagai berikut: n = banyaknya kereta api m = banyaknya petak blok
q S J Ji
= banyaknya stasiun = himpunan stasiun, S = { 1, 2, ..., q} = himpunan kereta api, J = {1, 2, …, n} = perjalanan kereta api i (i = 1, 2, ..., n) (pekerjaan) oik = operasi di petak blok k (k = 1, 2, ..., m) (sumber daya) dari kereta api i h = time headway Xias = waktu kedatangan kereta api i di stasiun s Xids = waktu keberangkatan kereta api i dari stasiun s dk = panjang petak blok k v ik = kecepatan rata-rata minimum kereta api i di petak blok ke-k vik = kecepatan rata-rata maksimum kereta api i di petak blok ke-k pis = lama waktu berhenti kereta api i di stasiun s = waktu delay kereta api i di stasiun s M = bilangan bulat positif besar Cmaks = waktu tempuh maksimum. Misalkan diberikan n buah perjalanan kereta api J1, J2, ..., Jn yang harus dijadwalkan pada l buah rute. Sebuah perjalanan Ji melewati suatu rute yang terdiri atas q buah stasiun dan m buah petak blok. Oleh karena itu pekerjaan yang merepresentasikan perjalanan Ji tersebut terdiri atas m buah operasi oi1, oi2, oi3, ..., oim. Setiap operasi yang dilakukan dalam perjalanan Ji tersebut
9
menggunakan tepat satu sumber daya berupa satu petak blok pada rute yang dilalui, yaitu operasi oik. Misalkan pada suatu rute perjalanan kereta api jalur ganda yang diilustrasikan pada Gambar 6 terdapat m petak blok dan q stasiun. Himpunan kereta api yang akan dioperasikan adalah J = {1, 2, ..., r, r + 1, ..., n}, dengan indeks 1 sampai r untuk kereta api outbound dan r+1 sampai n untuk kereta api inbound. Kereta api outbound pada karya ilmiah ini merupakan jenis kereta api yang melakukan perjalanan dari stasiun ke-1 ke arah stasiun ke-q, sedangkan kereta api inbound merupakan jenis kereta api yang melakukan perjalanan dengan arah sebaliknya. Didefinisikan variabel biner untuk beberapa kondisi antara dua kereta api yang akan terjadi konflik, yaitu: 1, jika kereta api outbound i, dengan i r menggunakan petak blok k Aijk sebelum kereta api outbound j , dengan j r 0, lainnya, 1, jika kereta api inbound i, dengan i r menggunakan petak blok k Bijk sebelum kereta api inbound j , dengan j r 0, lainnya.
Fungsi Objektif Minimumkan (9) Cmaks = ∑ − +∑ − , dengan: = waktu kedatangan kereta api i di stasiun ke-1, untuk i = 1, 2, …, r. = waktu keberangkatan kereta api i dari stasiun ke-q untuk kembali ke stasiun pertama atau masuk ke dalam depo, dengan i = 1, 2, …, r. = waktu kedatangan kereta api i di stasiun ke-q, untuk i= r+1, r+2, …, n. = waktu keberangkatan kereta api i dari stasiun ke-1 untuk kembali ke stasiun pertama atau masuk ke dalam depo, dengan i = r+1, r+2, …, n. Kendala-kendala yang harus dipenuhi dalam rangka mendapatkan solusi jadwal kereta api yang fisibel diberikan pada pertaksamaan (10) sampai (24): Kendala 1 (Urutan operasi)
X ias pis is X ids , i r , s 1, 2, ..., q.
(10)
X ias pis is X ids , i r , s q, q 1, ..., 1.
(11)
Kendala (10) dan (11) menunjukkan urutan operasi pada satu perjalanan kereta api di stasiun. Kedua kendala tersebut dikembangkan dari konsep masalah penjadwalan jobshop, yaitu operasi ke-(k + 1) pada pekerjaan Ji hanya bisa dimulai setelah operasi ke-k telah selesai dikerjakan. Waktu dimulainya operasi oi(k + 1) yaitu Xids harus lebih dari atau sama dengan waktu dimulainya operasi oik yaitu Xias ditambah lama waktu pemrosesannya yaitu pis. Selain itu, terdapat variabel delay ( ) yang merupakan lama waktu penundaan dari suatu perjalanan kereta api i di stasiun s untuk menghindari konflik. Waktu tiba kereta api di stasiun pertama merupakan waktu tiba kereta api yang keluar dari depo atau waktu kembali dari stasiun tujuan akhir ke stasiun asal. indeks stasiun inbound
Tujuan penjadwalan kereta api pada karya ilmiah ini adalah meminimumkan total waktu tempuh maksimum. Hal ini dapat dihitung berdasarkan selisih antara waktu kedatangan di stasiun pertama dan waktu keberangkatan dari stasiun akhir kembali ke stasiun awal atau masuk ke dalam depo. Depo merupakan tempat peristirahatan kereta api untuk mendapatkan perawatan, perbaikan mesin, dan sebagainya. Secara matematis fungsi objektif dari masalah penjadwalan kereta api ditunjukkan pada persamaan (9). Kereta api dari 1 sampai r (outbound) berakhir di stasiun q. Sedangkan kereta api r + 1 sampai n (inbound) berakhir di stasiun 1. outbound
1 dk
2
3
.......
indeks petak blok
q
q─1
.......
2
1
m─1 Keterangan:
Gambar 6 Ilustrasi suatu rute perjalanan kereta api jalur ganda.
m Sinyal
10
Kendala 2 (Aturan Penyusulan)
M (1 Bijk ) X jas X ias h,
Misalkan terdapat kereta api i dan j dengan arah yang sama akan menggunakan petak blok ke-k secara bersamaan, sehingga operasi oik dan ojk akan diproses pada waktu yang sama. Terdapat dua langkah yang dapat dilakukan agar tidak terjadi konflik. Kedua langkah tersebut adalah dengan mendahulukan perjalanan kereta api Jj atau mendahulukan perjalanan kereta api Ji. Oleh karena itu, kendala dikalikan dengan M, yaitu bilangan positif besar yang digunakan khusus pada kendala either or (pilih salah satu). Pengalian dengan bilangan M terdapat pada kendala (12) sampai (19). Aturan penyusulan untuk jenis kereta api outbound didefinisikan pada kendala (12) sampai (15). Kendala (12) dan (13) digunakan apabila nilai Aijk = 0, yaitu perjalanan kereta api Jj didahulukan, sehingga kereta api j tiba lebih awal dari kereta api i di stasiun berikutnya. Nilai h juga ditambahkan agar terdapat jarak antarkereta api ketika keluar dan masuk stasiun. Kendala (14) dan (15) dapat dijelaskan dengan cara yang sama dengan nilai Aijk = 1, yaitu kereta api i berangkat lebih dulu dari j.
i j; s q 1, q 2, ..., 1;
MAijk X ia ( s 1) X ja ( s 1) h,
(12)
(13)
(16)
k m, m 1, ..., 1.
k m, m 1, ..., 1.
Kendala 3 (Aturan lama waktu beroperasi) Waktu penggunaan sumber daya pada masalah penjadwalan job-shop secara umum diberikan sebagai input. Waktu tersebut pada masalah penjadwalan kereta api sama dengan jarak tempuh dibagi dengan kecepatan rataratanya. Waktu rata-rata minimum dan maksimum penggunaan suatu petak blok diberikan pada kendala (20) untuk kereta api outbound dan kendala (21) untuk kereta api inbound.
dk d X ia ( s 1) X ids k , i 1, 2, ..., r ; (20) vik v ik
k 1, 2, ..., m; s 1, 2, ..., q 1. dk d X ia ( s ) X id ( s 1) k , vik v ik
(21)
Kendala 4 (Stasiun pemberhentian)
X ias X ids , i J dan s S
i j; s q 1, q 2, ..., 1;
i j; s q 1, q 2, ..., 1;
k m, m 1, ..., 1.
(15)
Aturan penyusulan pada kereta api inbound juga dapat dijelaskan dengan cara yang sama seperti kereta api outbound. Kendala aturan penyusulan pada kereta api inbound diberikan pada pertaksamaan (16) sampai (19) .
MBijk X id ( s 1) X jd ( s 1) h,
i j; s q 1, q 2, ..., 1;
Apabila terdapat kereta api yang hanya berhenti di stasiun-stasiun tertentu, terdapat kendala yang ditambahkan khusus untuk kereta api tersebut, yaitu:
i j; s 1, 2, ..., q 1; k 1, 2, ..., m.
MBijk X ias X jas h,
(19)
(14)
i j; s 1, 2, ..., q 1; k 1, 2, ..., m.
M (1 Aijk ) X jds X ids h,
M (1 Bijk ) X jd ( s 1) X id ( s 1) h,
s q 1, q 2, ..., 1.
i j; s 1, 2, ..., q 1; k 1, 2, ..., m.
M (1 Aijk ) X ja ( s 1) X ia ( s 1) h,
k m, m 1, ..., 1.
i r 1, r 2, ..., n ; k m, m 1, ..., 1;
i j; s 1, 2, ..., q 1; k 1, 2, ..., m.
MAijk X ids X jds h,
(18)
(17)
(22)
Kendala (22) menggambarkan bahwa apabila kereta api tidak berhenti di stasiun ke-s, maka waktu kedatangan dan keberangkatan kereta api tersebut di stasiun ke-s adalah sama. Selain itu, sebagai input, waktu tunggu di stasiun tersebut bernilai nol. Kendala 5 (Ketaknegatifan dan biner) Selain kendala-kendala yang telah dijelaskan sebelumnya, terdapat kendala ketaknegatifan dan biner. Kedua kendala tersebut secara berturut-turut didefinisikan sebagai berikut, (23) h, pis , X ias , X ids 0
Aijk , Bijk bernilai 1 atau 0
(24)
11
3.2 Aplikasi Model Aplikasi model pada karya ilmiah ini akan diterapkan dengan data hipotetik pada kasus kereta api jalur ganda yaitu jalur MRT (Mass Rapid Transit) rute Lebak BulusSisingamangaraja, dengan asumsi sebagai berikut: 1 banyaknya kereta api jenis outbound (Lebak Bulus-Sisingamangaraja) adalah sepuluh unit dan jenis inbound (Sisingamangaraja-Lebak Bulus) delapan unit, 2 waktu yang disimulasikan dimulai dari pukul 06.00 WIB, 3 simulasi penjadwalan pada setiap kereta api dilakukan untuk satu kali perjalanan, 4 terdapat dua jenis kereta api, yaitu MRT Ekonomi dan MRT Ekspres. Ilustrasi perjalanan kereta api dapat dilihat pada Gambar 7. Terdapat tujuh stasiun, yaitu: Lebak Bulus (LB), Fatmawati (FA), Cipete Raya (CR), Haji Nawi (HN), Blok A (BA), Blok M (BM), dan Sisingamangaraja (SI). Stasiun Lebak Bulus memiliki delapan jalur dan stasiun Sisingamangaraja memiliki empat jalur. Kedua stasiun tersebut memiliki depo. Stasiun di antara Lebak Bulus dan Sisingamangaraja beserta enam petak blok yang menghubungkannya hanya memiliki dua jalur. MRT Ekonomi berhenti di setiap
stasiun, sedangkan MRT Ekspres hanya berhenti di stasiun Lebak Bulus, Haji Nawi, dan Sisingamangaraja. Data kecepatan ratarata MRT Ekonomi dan MRT Ekspres pada setiap petak blok antarstasiun diberikan pada Tabel 4 yang dapat dilihat pada Lampiran 2. Kecepatan tersebut diperhitungkan berdasarkan jarak yang harus ditempuh pada setiap petak blok. Himpunan kereta api yang akan dijadwalkan adalah J = {1, 2, ..., 10, 11, ..., 18}, dengan indeks untuk kereta api outbound dari 1 sampai 10 dan kereta api inbound dari 11 sampai 18. Nilai-nilai variabel biner didefinisikan sebagai berikut:
1, Aijk 0,
jika kereta api outbound i, dengan i 10 menggunakan petak blok k sebelum kereta api outbound j , dengan j 10 lainnya,
1, jika kereta api inbound i, dengan i 10 menggunakan petak blok k Bijk sebelum kereta api inbound j, dengan j 10 0, lainnya.
d6 d5 d4 d3
d1
d2
Gambar 7 Ilustrasi perjalanan MRT rute Lebak Bulus-Sisingamangaraja.
12
Formulasi secara matematis dari aplikasi model masalah penjadwalan kereta api kasus jalur ganda diberikan pada persamaan dan pertaksamaan (25) sampai (41). Fungsi Objektif Minimumkan Cmaks = ∑
(
−
)+∑
(
−
),
(25)
dengan: = waktu kedatangan kereta i di stasiun Lebak Bulus, dengan i = 1, 2, …, 10. = waktu keberangkatan kereta i dari stasiun Sisingamangaraja untuk kembali ke stasiun Lebak Bulus atau masuk ke dalam depo, dengan i = 1, 2, …, 10. = waktu kedatangan kereta i di stasiun Sisingamangaraja, dengan i = 11, 12, …, 18. = waktu keberangkatan kereta i dari stasiun Lebak Bulus untuk kembali ke stasiun Sisingamangaraja atau masuk ke dalam depo, dengan i = 11, 12, …, 18. Kendala-kendala: X ias pis is X ids , i 10, s 1, 2, ..., 7.
(26)
X ias pis is X ids , i 10, s 7, 6, ..., 1.
(27)
MAijk X ia ( s 1) X ja ( s 1) h,
(28)
i j; s 1, 2, ..., 6; k 1, 2, ..., 6.
MAijk X ids X jds h,
(29)
i j; s 1, 2, ..., 6; k 1, 2, ..., 6.
M (1 Aijk ) X ja ( s 1) X ia ( s 1) h,
(30)
i j; s 1, 2, ..., 6; k 1, 2, ..., 6.
M (1 Aijk ) X jds X ids h,
(31)
i j; s 1, 2, ..., 6; k 1, 2, ..., 6.
MBijk X ias X jas h,
(32)
i j; s 6, 5, ..., 1; k 6, 5, ..., 1. MBijk X id ( s 1) X jd ( s 1) h,
(33)
i j; s 6, 5, ..., 1; k 6, 5, ..., 1. M (1 Bijk ) X jas X ias h,
i j; s 6, 5, ..., 1; k 6, 5, ..., 1.
(34)
M (1 Bijk ) X jd ( s 1) X id ( s 1) h,
(35)
i j; s 6, 5, ..., 1; k 6, 5, ..., 1. dk d X ia ( s 1) X ids k , vik v ik
(36)
dk d X ia ( s ) X id ( s 1) k , vik v ik
(37)
X ias = X ids , dengan i 7, 8, 9, 10 dan
(38)
X ias = X ids , dengan i 16, 17, 18 dan
(39)
h, pis , X ias , X ids 0.
(40)
Aijk , Bijk . bernilai 1 atau 0.
(41)
i 1, 2, ..., 10; k 1, 2, ..., 6; s 1, 2, ..., 6.
i 11, 12, ..., 18; k 6, 5, ..., 1; s 6, 5, ..., 1. s 2, 3, 5, 6. s 6, 5, 3, 2.
Misalkan diberikan waktu kedatangan setiap kereta api di stasiun pertama sebagai nilai awal yang dapat dilihat pada Tabel 5 di Lampiran 2. Waktu headway (h) antarkereta api adalah lima menit. Pertaksamaan (36) dan (37) dapat disubstitusi langsung dengan menggunakan Tabel 4 pada Lampiran 2. Lama waktu pemberhentian (pis) kereta api di setiap stasiun juga diberikan pada Tabel 4 yang dapat dilihat di Lampiran 2. Jadwal kereta api sebelum menggunakan model dapat dilihat pada Gambar 8 dan 9. Gambar tersebut memperlihatkan terjadi banyak konflik di beberapa petak blok, salah satunya pada petak blok di antara stasiun Fatmawati dan Cipete Raya, dengan rute dari Lebak Bulus ke Sisingamangaraja. Terjadi kasus penyusulan oleh MRT Ekspress terhadap MRT Ekonomi pada petak blok tersebut. Konflik yang lainnya pun terjadi akibat melanggar aturan penyusulan dan aturan headway. Berdasarkan data yang ada, model dikonstruksi pada perangkat lunak LINGO 11.0. Kemudian didapat solusi optimal dengan menggunakan algoritme branch and bound. Program dan solusi yang diperoleh dapat dilihat pada Lampiran 3. Nilai fungsi objektif yang didapatkan adalah 1502 menit. Nilai tersebut merupakan jumlah dari total waktu tempuh MRT outbound dan inbound.
13
Representasi dalam diagram ruang-waktu dari solusi yang diperoleh dapat dilihat pada Gambar 10 dan 11. Gambar tersebut memperlihatkan bahwa jadwal yang diperoleh tidak terdapat konflik baik karena melanggar aturan penyusulan maupun headway. Diagram tersebut diubah dalam bentuk tabel yang dapat dilihat pada Tabel 2 dan 3. Ukuran menit dapat diubah dalam bentuk jam, misalkan pada karya ilmiah ini dimulai dari pukul 06.00 WIB. Berdasarkan asumsi pada karya ilmiah ini, bahwa tidak ada prioritas dalam menentukan perjalanan kereta api yang harus ditunda untuk menghindari konflik, solusi jadwal yang dihasilkan menunjukkan MRT Ekspres mengalami penundaan perjalanan di stasiun Haji Nawi selama 11 menit, baik MRT Ekspres jenis inbound maupun outbound. Delay selama 11 menit pada MRT Ekspres bagi sebagian penumpang masih dianggap
terlalu lama. Panjang delay dapat dikurangi dengan menambahkan kendala:
i 4 c, i J . Indeks i merupakan indeks MRT Ekspres yaitu {6, 7, 8, 9, 10, 16, 17, 18} dan s = 4 (indeks stasiun Haji Nawi pada simulasi ini). Nilai c merupakan konstanta yang dapat dicari untuk membatasi waktu delay sekecil mungkin. Kendala tersebut mampu membatasi delay sampai batas tertentu. Namun pembatasan ini berimplikasi pada penambahan waktu tempuh maksimum (Cmaks). Jika c = 6, maka Cmaks berubah dari 1502 menit ke 1612 menit. Diagram ruang waktu dengan delay MRT Ekspres menjadi 6 menit ditunjukkan pada Gambar 12 dan 13 yang dapat dilihat di Lampiran 4. Jadwal dalam bentuk tabel diberikan pada Tabel 6 dan 7 yang juga dapat dilihat di Lampiran 4.
14
120
6. MRT Ekonomi
110
5. MRT Ekonomi 4. MRT Ekonomi
100
90
3. MRT Ekonomi
80
2. MRT Ekonomi 10. MRT Ekspres 1. MRT Ekonomi
Waktu (menit)
70
9. MRT Ekspres
60
8. MRT Ekspres
50 7. MRT Ekspres
40
30
20
10
0 LB(a)
LB(d)
FA(a)
Lebak Bulus
Keterangan :
FA(d)
Fatmawati
CR(a)
CR(d)
Cipete Raya
HN(a)
HN(d)
Haji Nawi
BA(a)
BA(d)
Blok A
BM(a)
BM(d)
Blok M
SI(a)
SI(d)
Sisingamangaraja
Konflik
Gambar 8 Diagram ruang waktu dari simulasi penjadwalan MRT dari Lebak Bulus ke Sisingamangaraja yang mengandung konflik.
15
120
110
15. MRT Ekonomi
100
14. MRT Ekonomi
90
13. MRT Ekonomi 12. MRT Ekonomi
80 11. MRT Ekonomi 70 Waktu (menit)
18. MRT Ekspres
60 17. MRT Ekspres
50
16. MRT Ekspres
40
30
20
10
0 SI(a)
SI(d)
Sisingamangaraja
Keterangan :
BM(a) BM(d) Blok M
BA(a)
BA(d)
Blok A
HN(a)
HN(d)
Haji Nawi
CR(a)
CR(d)
Cipete Raya
FA(a)
FA(d)
Fatmawati
LB(a)
LB(d)
Lebak Bulus
Konflik
Gambar 9 Diagram ruang waktu dari simulasi penjadwalan MRT dari Sisingamangaraja ke Lebak Bulus yang mengandung konflik.
16
160 6. MRT Ekonomi
150
140 10. MRT Ekspres 5. MRT Ekonomi
130
4. MRT Ekonomi 120
9. MRT Ekspres
110
8. MRT Ekspres 3. MRT Ekonomi
100
Waktu (menit)
90 7. MRT Ekspres 80
2. MRT Ekonomi 1. MRT Ekonomi
70
60
50
40
30
20
10
0 LB(a)
LB(d)
Lebak Bulus
FA(a)
FA(d)
Fatmawati
CR(a)
CR(d)
Cipete Raya
HN(a)
HN(d)
Haji Nawi
BA(a)
BA(d)
Blok A
BM(a)
BM(d)
Blok M
SI(a)
SI(d)
Sisingamangaraja
Gambar 10 Diagram ruang waktu dari simulasi penjadwalan MRT dari Lebak Bulus ke Sisingamangaraja yang sudah tidak mengandung konflik.
17
15. MRT Ekonomi 140
130 18. MRT Ekspres 14. MRT Ekonomi
120
110 17. MRT Ekspres 13. MRT Ekonomi
100
12. MRT Ekonomi 90
80 Waktu (menit)
16. MRT Ekspres 11. MRT Ekonomi
70
60
50
40
30
20
10
0 SI(a)
SI(d)
Sisingamangaraja
BM(a)
BM(d)
Blok M
BA(a)
BA(d)
Blok A
HN(a)
HN(d)
Haji Nawi
CR(a)
CR(d)
Cipete Raya
FA(a)
FA(d)
Fatmawati
LB(a)
LB(d)
Lebak Bulus
Gambar 11 Diagram ruang waktu dari simulasi penjadwalan MRT dari Sisingamangaraja ke Lebak Bulus yang sudah tidak mengandung konflik.
18
Tabel 2 Simulasi jadwal kedatangan dan keberangkatan MRT dari Lebak Bulus ke Sisingamangaraja (menit ke-) Indeks MRT
Jenis MRT
1
Lebak Bulus
Fatmawati
Cipete Raya
Haji Nawi
Blok A
Blok M
Sisingamangaraja
LB(a)
LB(d)
FA(a)
FA(d)
CR(a)
CR(d)
HN(a)
HN(d)
BA(a)
BA(d)
BM(a)
BM(d)
SI(a)
SI(d)
MRT Ekonomi
5
10
19
20
31
32
40
41
48
49
58
59
70
75
2
MRT Ekonomi
10
15
24
25
36
37
45
46
53
54
63
64
75
80
7
MRT Ekspres
15
31
-
-
-
-
50
62
-
-
-
-
80
85
3
MRT Ekonomi
20
36
45
46
57
58
66
67
74
75
84
85
96
101
8
MRT Ekspres
25
52
-
-
-
-
71
83
-
-
-
-
101
106
9
MRT Ekspres
30
57
-
-
-
-
76
88
-
-
-
-
106
111
4
MRT Ekonomi
35
62
71
72
83
84
92
93
100
101
110
111
122
127
5
MRT Ekonomi
40
67
76
77
88
89
97
98
105
106
115
116
127
132
10
MRT Ekspres
45
83
-
-
-
-
102
114
-
-
-
-
132
137
6
MRT Ekonomi
50
88
97
98
109
110
118
119
126
127
136
137
148
153
Keterangan : “-“ = Tidak berhenti, (a) = Arrival (Kedatangan), (d) = Departure (Keberangkatan). 18
19
Tabel 3 Simulasi jadwal kedatangan dan keberangkatan MRT dari Sisingamangaraja ke Lebak Bulus (menit ke-) Indeks MRT
Jenis MRT
11
Sisingamangaraja
Blok M
Blok A
Haji Nawi
Cipete Raya
Fatmawati
Lebak Bulus
SI(a)
SI(d)
BM(a)
BM(d)
BA(a)
BA(d)
HN(a)
HN(d)
CR(a)
CR(d)
FA(a)
FA(d)
LB(a)
LB(d)
MRT Ekonomi
5
10
21
22
31
32
39
40
48
49
60
61
70
75
16
MRT Ekspres
10
26
-
-
-
-
44
56
-
-
-
-
75
80
12
MRT Ekonomi
15
31
42
43
52
53
60
61
69
70
81
82
91
96
13
MRT Ekonomi
20
36
47
48
57
58
65
66
74
75
86
87
96
101
17
MRT Ekspres
25
52
-
-
-
-
70
82
-
-
-
-
101
106
14
MRT Ekonomi
30
57
68
69
78
79
86
87
95
96
107
108
117
122
18
MRT Ekspres
35
73
-
-
-
-
91
103
-
-
-
-
122
127
15
MRT Ekonomi
40
78
89
90
99
100
107
108
116
117
128
129
138
143
Keterangan : “-“ = Tidak berhenti, (a) = Arrival (Kedatangan), (d) = Departure (Keberangkatan).
19