PENGARUH PANJANG PIPA, POSISI STACK DAN INPUT FREKWENSI ACOUSTIC DRIVER/AUDIO SPEAKER PADA RANCANG BANGUN SISTEM REFRIGERASI THERMOAKUSTIK Arda Rahardja Lukitobudi Jurusan Teknik Refrigerasi dan Tata Udara Politeknik Negeri Bandung Telp. 022-2013789 Fax. 022-2013889
Abstrak Sistem Refrigerasi Thermoakustik adalah suatu sistem refrigerasi yang ramah terhadap lingkungan karena menggunakan gas inert sebagai fluida kerjanya. Disebut Thermoakustik karena sistem refrigerasi ini menggunakan audio speaker atau acoustic driver sebagai penghasil gelombang suara yang berfungsi sekaligus sebagai penggerak sistem. Dengan komponen utama berupa acoustic driver, function generator, tabung resonator, stack dan penguat daya, maka sistem ini dapat mencapai perbedaan temperatur sebesar 5,1 oC terhadap suhu lingkungan 26,2 oC pada posisi stack ¼ dari panjang gelombangnya dimana temperatur sebelum stack adalah sebesar 28,7 oC dan temperatur sesudah stack adalah sebesar 21,1 oC. Dari hasil perhitungan diperoleh bahwa pada posisi ini, COP carnot adalah sebesar 0,0258. Daya acoustic driver yang dipergunakan adalah sebesar 600 watt PMPO dengan daya input sebesar 129,36 watt.
PENDAHULUAN Di Indonesia maupun di belahan dunia lainnya, penggunaan sistem refrigerasi thermoakustik masih dalam taraf pengembangan dan pembuatan prototype dan belum memasuki tahapan komersial. Mudahmudahan dalam waktu tidak terlalu lama, suatu kulkas thermoakustik sudah terdapat dipasaran. Thermoakustik adalah suatu bidang yang berhubungan dengan suatu fenomena fisis dimana perbedaan suhu dapat membangkitkan bunyi dan sebaliknya gelombang suara dapat menghasilkan perbedaan suhu. Jika sejumlah kalor dilepaskan ke udara saat terjadi kondensasi (kompresi) atau diserap saat terjadi evaporasi (ekspansi), maka akan terjadi vibrasi pada partikel partikel udara. Demikian pula pada proses sebaliknya, akan terjadi perbedaan suhu yang dihasilkan dari osilasi akustik yang disebut sebagai fenomena refrigerasi thermoakustik. Berbeda dengan sistem refrigerasi konvensional seperti sistem refrigerasi kompresi uap yang menggunakan kompresor sebagai penggerak sistem maka sistem refrigerasi thermoakustik menggunakan audio speaker atau acoustic driver sebagai
penghasil gelombang suara sekaligus berfungsi sebagai penggerak sistem. Komponen utama sistem ini terdiri dari acoustic driver, function generator, tabung resonator, stack dan penguat daya. Sistem ini menggunakan gas inert yaitu nitrogen sebagai fluida kerjanya dan sama sekali tidak menggunakan refrigeran CFC, HCFC ataupun HC sehingga ramah terhadap lingkungan. Unjuk kerja dari sistem ini dinyatakan oleh rumus : COPc = Th – Tc Tc dimana Th = temperatur sebelum stack, oK Tc = temperatur sesudah stack, oK
POLBAN
CARA KERJA SISTEM Seperti yang telah dikemukakan diatas bahwa sistem refrigerasi thermoakustik menggunakan gelombang suara untuk membuat gradien temperatur sebelum dan sesudah stack. Tabung resonator yang dipakai jenis closed end tube sehingga terjadi resonansi akustik pada tabung sehingga gas akan berosilasi bolak balik. Seluruh partikel gas akan mengalami kompresi peningkatan suhu ketika bergerak
ke arah sesudah stack. Sebaliknya, ketika partikel gas bergerak ke bagian sebelum stack akan mengalami ekspansi dan penurunan suhu. Panjang tabung resonator yang berkaitan dengan frekwensi resonansi memiliki pengaruh terhadap kecepatan gerak partikel molekul yang berada di dalam stack. Jika digunakan resonator pendek (frekwensi resonator tinggi), maka molekul molekul gas akan bergerak cepat di dalam celah stack sehingga perpindahan kalor dari bagian dingin ke bagian panas akan berlangsung dengan baik/cepat, yaitu laju perpindahan kalor jauh lebih besar daripada laju aliran balik kalor dari bagian panas ke bagian dingin secara konduksi melalui bahan stack. Sedangkan jika digunakan resonator yang lebih panjang (frekwensi resonansi lebih rendah), maka gerak molekul molekul gas akan melambat sehingga perpindahan kalor dari bagian dingin ke bagian panas akan berlangsung kurang efektip yaitu laju perpindahan kalor hanya sedikit lebih besar dari laju aliran balik kalor dari bagian panas ke bagian dingin secara konduksi melalui bahan stack. Partikel gas yang berada di dalam stack mengalami siklus, dimana fenomena thermoakustik dapat dilihat dengan mengamati pergerakan partikel fluida sepanjang stack yang berosilasi sepanjang pelat pelat stack yang terbagi menjadi empat tahap (Gambar 1).
Tahap kedua terjadi ketika partikel gas melepas kalor ke lingkungan/dinding sebelum stack. Tahap ketiga terjadi ekspansi ketika partikel gas berosilasi ke bagian sesudah stack yang diikuti dengan penurunan suhu. Tahap terakhir ketika partikel gas menerima kalor dari lingkungan/ dinding sesudah stack.
Gambar 2.
Transfer kalor pada stack
Itu sebabnya mengapa bagian sebelum stack akan menjadi panas dan sebaliknya bagian sesudah stack akan menjadi dingin.
POLBAN Gambar 3.
Gambar 1.
Cara kerja sistem refrigerasi thermoakustik
Tahap pertama adalah tahap ketika terjadi kompresi pada partikel gas pada saat partikel gas berosilasi ke bagian sebelum stack yang diikuti dengan peningkatan suhu.
Diagram P-V sistem refrigerasi thermoakustik
Celah pada stack memiliki fungsi khusus dan paling penting dalam sistem refrigerasi thermoakustik, dimana jika jaraknya terlalu lebar maka tidak akan terjadi kontak termal antara partikel gas dengan stack sehingga suhu partikel gas akan mendekati suhu stack. Sebaliknya jika jaraknya terlalu dekat maka kontak termal partikel gas dengan stack terlalu kondusip sehingga akibatnya perpindahan kalor antara partikel gas dengan stack akan berlangsung secara isotermal sehingga tidak terdapat gradien suhu pada stack.
GELOMBANG BUNYI PADA GAS DI DALAM TABUNG Pada gelombang bunyi, arah getaran partikel gas searah dengan arah rambatan (disebut longitudinal). Jika tidak ada rintangan, maka gelombang bunyi akan menyebar ke semua arah dari sebuah sumber bunyi. Pada tabung (Gambar 3), gelombang bunyi dapat dianalogikan sebagai sebuah penghisap di ujung kiri tabung yang berisi gas mampat. Jika terdapat gelombang bunyi yang merambat ke kanan, yang dianalogikan dengan penghisap yang bergerak ke kanan, akan memampatkan gas yang ada di sebelah kanannya sehingga tekanan dan massa jenis gas akan meningkat, dan daerah ini disebut perapatan. Gas yang dimampatkan akan bergerak ke kanan dan akan memampatkan lapisan lapisan gas berikutnya.
Gambar 4.
Gelombang bunyi dalam tabung yang dihasilkan oleh sebuah penghisap yang berisolasi
METODOLOGI Acoustic driver yang digunakan memiliki impedansi sebesar 8 ohm dengan daya input sebesar 700 watt. Tabung resonator jenis closed end tube memiliki diameter 2 inchi dengan panjang 1,71 meter untuk frekwensi 200Hz, 1,14 meter untuk frekwensi 300 Hz dan 0,855 meter untuk frekwensi 400 Hz. Sedangkan stack terbuat dari bahan mylar yang memiliki konduktivitas thermal rendah sebesar 0,16 W/mK dengan diameter 1 mm dan panjang 25 cm yang berjumlah 500 buah yang diikat membentuk sebuah silinder yang pas/sesuai mengisi diameter bagian dalam tabung. Variasi posisi stack diletakkan tepat pada ¼, ½ dan ¾ panjang tabung (panjang tabung sama dengan satu kali panjang gelombangnya). Sehingga untuk frekwensi 300 Hz, dengan panjang tabung 1,14 m, posisi stack adalah 28,5 cm, 57 cm dan 85,5 cm. Untuk frekwensi 200 Hz dengan panjang tabung 1,71 m, posisi stack pada 42,75 cm, 85,5 cm dan 128,25 cm. Untuk frekwensi 400 Hz dengan panjang tabung 85,5 m, posisi stack pada 21,375 cm, 42,75 cm dan 64,125 cm. Function generator digunakan untuk menghasilkan gelombang sinusoid yang frekwensi dan amplitudonya dapat bervariasi yang menjadi input acoustic driver. Penguat daya dirancang untuk dapat memberikan daya input ke acoustic driver pada kapasitas 150 watt dan 600 watt. Parameter parameter pengukuran yang diambil adalah : temperatur sebelum stack, temperatur sesudah stack, temperatur lingkungan, tegangan dan arus listrik input penguat daya.
POLBAN
Jika kemudian penghisap ditarik mundur, maka gas yang ada disebelah kanan akan mengembang sehingga tekanan dan massa jenisnya akan menurun, dan daerah ini disebut perenggangan dimana sebuah denyut perenggangan akan berjalan sepanjang tabung tersebut. Jika penghisap tersebut berosilasi bolak balik, maka suatu deretan kontinyu perapatan dan perenggangan akan berjalan ke kanan sepanjang tabung tersebut dengan kecepatan tetap. Dan panjang gelombang diukur antara jarak perapatan dan perenggangan dengan rumus : c=f.λ dimana c = kecepatan suara pada gas f = frekwensi gelombang suara λ = panjang gelombang suara
HASIL DAN PEMBAHASAN Tabel 4.1 data hasil pengukuran F = 300 Hz, Pergeseran Stack sejauh = 28.5 cm dari penutup Pnjg Pwr Posisi Tsblm Tssdh Wktu ∆T Tlingk Pipa II Stack Stack stack (mnt) (ºC) (ºC) (cm) (watt) (cm) (ºC) (ºC) 0 1.14 600 28.5 26 26.1 -0.1 26.2
Tabel 4.4 data hasil pengukuran F = 200 Hz, Pergeseran Stack sejauh = 42.75 cm dari penutup Pnjg Pwr Posisi Tsblm Tssdh Wktu ∆T Tlingk Pipa II Stack Stack Stack (mnt) (ºC) (ºC) (cm) (watt) (cm) (ºC) (ºC) 0 171 600 42.75 25.9 25.8 0.1 25.8 10
171
600
42.75
30.7
27.6
3.1
20
171
600
42.75
33.2
28.7
4.5
26.1 26
10
1.14
600
28.5
28.3
20.9
7.4
26.1
30
171
600
42.75
35.3
29.1
6.2
26.1
20
1.14
600
28.5
28.7
21.1
7.6
26.2
40
171
600
42.75
36.5
30.4
6.1
26.2
30
1.14
600
28.5
29.3
21.4
7.9
26.2
50
171
600
42.75
37.9
31
6.9
25.9
40
1.14
600
28.5
29.7
21.7
8
26.3
60
171
600
42.75
38.4
31.7
6.7
26.1
50
1.14
600
28.5
30.1
22.2
7.9
26.1
70
171
600
42.75
39.2
31.8
7.4
26.2
60
1.14
600
28.5
30.5
22.6
7.9
26.2
70
1.14
600
28.5
31.6
22.8
8.8
26.4
80
171
600
42.75
39.3
31.8
7.5
26.2
80
1.14
600
28.5
32.7
23
9.7
26.2
90
171
600
42.75
25.9
25.8
0.1
25.8
90
1.14
600
28.5
36.1
22.8
13.3
26.9
100
1.14
600
28.5
38.3
22.8
15.5
26.4
110
1.14
600
28.5
38.3
22.8
15.5
26.5
Tabel 4.2 data hasil pengukuran F = 300 Hz, Posisi Stack= 57 cm Pnjg Pwr Posisi Tsblm Tssdh Wktu ∆T Tlingk Pipa II stack stack stack (mnt) (ºC) (ºC) (cm) (watt) (cm) (ºC) (ºC) 0 1.14 600 57 24.1 24.1 0 23.9
Tabel 4.5 data hasil pengukuran F = 200 Hz, Pergeseran Stack sejauh = 85.5 cm dari penutup Pnjg Pwr Posisi Tsblm Tssdh Wktu ∆T Tlingk Pipa II Stack Stack Stack (mnt) (ºC) (ºC) (cm) (watt) (cm) (ºC) (ºC) 0 171 600 85.5 27.2 27 0.2 27.1 10
171
600
85.5
27.8
25.5
2.3
26.8
20
171
600
85.5
27.9
25.2
2.7
26.6
30
171
600
85.5
28.5
24.8
3.7
26.9 26.8
10
1.14
600
57
45.6
23.8
21.8
23.9
40
171
600
85.5
29
24.2
4.8
20
1.14
600
57
48.3
23.7
24.6
24.4
50
171
600
85.5
30.6
24.8
5.8
27
171
600
85.5
31.4
24.6
6.8
26.8
30
1.14
600
57
52.4
24.2
28.2
24.5
60
40
1.14
600
57
54.8
24.4
30.4
24.3
70
171
600
85.5
31.8
24.7
7.1
26.8
50
1.14
600
57
56.9
24.8
32.1
24.4
80
171
600
85.5
31.6
24.8
6.8
27.2
60
1.14
600
57
58.7
25.4
33.3
24.6
90
171
600
85.5
31.8
24.7
7.1
27.2
70
1.14
600
57
62.1
26
36.1
24.5
80
1.14
600
57
69.5
26.8
42.7
24.6
90
1.14
600
57
70.8
27.9
42.9
24.6
100
1.14
600
57
71.3
28.4
42.9
24.3
110
1.14
600
57
71.5
29.2
42.3
24.6
120
1.14
600
57
72.2
32.5
39.7
24.7
130
1.14
600
57
72.3
32.5
39.8
24.6
Tabel 4.6 data hasil pengukuran F = 200 Hz, Pergeseran Stack sejauh = 128.25 cm dari penutup
POLBAN
Tabel 4.3 data hasil pengukuran F = 300 Hz, Pergeseran stack sejauh = 85.5 cm dari penutup Pnjg Pwr Posisi Tsblm Tssdh Wktu Pipa II stack Stack Stack ∆T Tlingk (mnt) (cm) (watt) (cm) (ºC) (ºC) (ºC) (ºC)
Pnjg Pwr Posisi Tsblm Tssdh Wktu ∆T Tlingk Pipa II stack Stack Stack (mnt) (ºC) (ºC) (cm) (watt) (cm) (ºC) (ºC) 0 171 600 128.25 24.4 24.5 -0.1 24.4 10
171
600
128.25
30.4
27.2
3.2
24.3
20
171
600
128.25
31.7
27.5
4.2
24.5
30
171
600
128.25
32.8
27.8
5
24.6
40
171
600
128.25
34.6
28.2
6.4
24.8
50
171
600
128.25
36
28.9
7.1
25.1
0
114
600
85.5
24.9
24.8
0.1
24.8
60
171
600
128.25
37.1
29
8.1
25.2
10
114
600
85.5
25.8
23.2
2.6
24.8
70
171
600
128.25
37.8
29.5
8.3
25.5
20
114
600
85.5
37.1
28.1
9
25
80
171
600
128.25
38.2
29.5
8.7
25.6
30
114
600
85.5
39.6
28.6
11
25.4
90
171
600
128.25
38.4
29.5
8.9
25.5
40
114
600
85.5
41.5
29.5
12
25.5
50
114
600
85.5
43.6
30.2
13.4
25.4
60
114
600
85.5
44.2
30.3
13.9
25.2
70
114
600
85.5
45.7
31.3
14.4
25.3
80
114
600
85.5
45.9
32.2
13.7
25.4
90
114
600
85.5
46.2
32.3
13.9
25.3
Tabel 4.7 data hasil pengukuran F = 400 Hz, A = 20 Vss Pergeseran Stack sejauh = 21.375 cm dari penutup
0
Pnjg Pwr Posisi Tsblm Tssdh ∆T Tlingk Pipa II Stack stack Stack (ºC) (ºC) (cm) (watt) (cm) (ºC) (ºC) 85.5 600 21.375 25.7 25.6 0.1 25.7
10
85.5
600
21.375
36.2
25.6
10.6
25.9
20
85.5
600
21.375
38.4
26
12.4
26
30
85.5
600
21.375
43.3
26.5
16.8
25.9
40
85.5
600
21.375
45.8
27.1
18.7
26.1
50
85.5
600
21.375
47.4
27.5
19.9
26.1
60
85.5
600
21.375
48.7
27.9
20.8
26.1
70
85.5
600
21.375
49.4
28
21.4
26.3
80
85.5
600
21.375
49.6
28
21.6
26.3
Wktu (mnt)
Tabel 4.8 data hasil pengukuran F = 400 Hz, A = 20 Vss Pergeseran Stack sejauh = 42.75 cm dari penutup Pnjg Pwr Posisi Tsblm Tssdh Wktu Pipa II stack Stack Stack (mnt) (cm) (watt) (cm) (ºC) (ºC) 0 85.5 600 42.75 25.7 25.6
∆T (ºC)
Tlingk (ºC)
Tabel 4.10 Data Arus, Tegangan dan Daya pada F= 300 Hz, Pergeseran Stack sejauh = 28.5 cm dari penutup. Wktu (mnt)
Arus (A)
Tegangan (V)
Daya (Watt)
0
0
0
0
10
2.8
46.2
129.36
20
2.8
46.2
129.36
30
2.8
46.2
129.36
40
2.8
46.2
129.36
50
2.8
46.2
129.36
60
2.8
46.2
129.36
70
2.8
46.2
129.36
80
2.8
46.2
129.36
90
2.8
46.2
129.36
100
2.8
46.2
129.36
110
2.8
46.2
129.36
Tabel 4.11 data Arus, Tegangan dan Daya pada F= 300 Hz, Power 600 watt, Pergeseran Stack sejauh = 57 cm dari penutup.
0.1
25.7
10
85.5
600
42.75
36.2
25.6
10.6
25.9
20
85.5
600
42.75
38.4
26
12.4
26
30
85.5
600
42.75
41.4
26.3
15.1
25.9
10
Wktu Arus (mnt) (A) 0 2.8
Tegangan (V) 46.2
Daya ( Watt ) 129.36
2.8
46.2
129.36
2.8
46.2
129.36
40
85.5
600
42.75
44.9
26.8
18.1
25.9
20
50
85.5
600
42.75
46.8
27.3
19.5
26.1
30
2.8
46.2
129.36
26.2
40
2.8
46.2
129.36
26.1
50
2.8
46.2
129.36
60
2.8
46.2
129.36
Tabel 4.9 data hasil pengukuran F = 400 Hz, A = 20 Vss Pergeseran Stack sejauh = 64.125 cm dari penutup
70
2.8
46.2
129.36
80
2.8
46.2
129.36
90
2.8
46.2
129.36
Pnjg Pwr Posisi Tsblm Tssdh Wktu ∆T Tlingk Pipa II Stack Stack Stack (mnt) (ºC) (ºC) (cm) (watt) (cm) (ºC) (ºC) 0 85.5 600 64.125 24.7 24.5 0.2 24.5
110
2.8
46.2
129.36
60 70
85.5 85.5
600 600
42.75 42.75
48.7 48.9
27.9 27.9
20.8 21
POLBAN
10
85.5
600
64.125
36.4
25.2
11.2
24.7
20
85.5
600
64.125
39.5
26.1
13.4
24.8
30
85.5
600
64.125
42.6
26.9
15.7
25
40
85.5
600
64.125
44.9
27.5
17.4
50
85.5
600
64.125
47.2
28.2
19
60
85.5
600
64.125
48.6
28.9
19.7
70
85.5
600
64.125
50.2
29.3
80
85.5
600
64.125
45.9
32.2
90
85.5
600
64.125
46.2
32.3
Tabel 4.12 data Arus, Tegangan dan Daya pada F= 300 Hz, Power 600 watt, Pergeseran Stack sejauh = 85.5 cm dari penutup.
25.1
Wktu (mnt) 0
Arus (A) 2.8
Tegangan Daya (V) ( Watt ) 46.2 129.36
25.1
10
2.8
46.2
129.36
25.3
20
2.8
46.2
129.36
20.9
25.2
30
2.8
46.2
129.36
13.7
25.4
40
2.8
46.2
129.36
13.9
25.3
50
2.8
46.2
129.36
60
2.8
46.2
129.36
70
2.8
46.2
129.36
80
2.8
46.2
129.36
90
2.8
46.2
129.36
Tabel 4.13 data Arus, Tegangan dan Daya pada F= 200 Hz, Power 600 watt, Pergeseran Stack sejauh = 42.75 cm dari penutup Wktu (mnt) 0
Arus (A ) 0
Tegangan (V) 0
Daya (Watt) 0
10
2.8
46.6
130.48
30
2.8
46.6
130.48
30
2.7
46.6
125.82
40
2.7
46.7
126.09
50
2.7
46.7
126.09
60
2.7
46.8
126.36
70
2.7
46.8
126.36
80
2.7
46.8
126.36
Tabel 4.14 data Arus, Tegangan dan Daya pada F= 200 Hz, Power 600 watt, Pergeseran Stack sejauh = 85.5 cm dari penutup Wktu (mnt) 0
Arus (A ) 2.8
Tegangan (V) 46.9
Daya (Watt) 131.32
10
2.8
46.8
131.04
20
2.8
46.8
131.04
30
2.8
46.7
130.76
40
2.8
46.7
130.76
50
2.8
46.7
130.76
60
2.8
46.7
130.76
70
2.8
46.7
130.76
80
2.8
46.7
130.76
90
2.8
46.7
130.76
Tabel 4.15 data Arus, Tegangan dan Daya pada F= 200 Hz, Power 600 watt, Pergeseran Stack sejauh = 128.25 cm dari penutup Wktu (mnt) 0
Arus Tegangan (A ) (V) 2.8 46.8
Daya (Watt) 131.04
Wktu (mnt) 20
Arus (A) 3.2
Tegangan (V) 46.2
Daya ( Watt ) 147.84
30
3.2
46.2
147.84
40
3.2
46.2
147.84
50
3.2
46.2
147.84
60
3.2
46.2
147.84
70
3.2
46.2
147.84
80
3.2
46.2
147.84
Tabel 4.17 data Arus, Tegangan dan Daya pada F= 400 Hz, Power 600 watt, Pergeseran Stack = 42.75 cm dari penutup Wktu Arus (mnt) (A) 0 0
Tegangan (V) 0
Daya ( Watt ) 0
10
3.2
46.2
147.84
20
3.2
46.2
147.84
30
3.2
46.2
147.84
40
3.2
46.2
147.84
50
3.2
46.2
147.84
60
3.2
46.2
147.84
70
3.2
46.2
147.84
Tabel 4.18 data Arus, Tegangan dan Daya pada F= 400 Hz, Power 600 watt, Pergeseran Stack = 64.125 cm dari penutup Wktu (mnt) 0
Arus (A) 3.2
Tegangan (V) 46.2
Daya ( Watt ) 147.84
10
3.2
46.2
147.84
20
3.2
46.2
147.84
30
3.2
46.2
147.84
40
3.2
46.2
147.84
50
3.2
46.2
147.84
60
3.2
46.2
147.84
70
3.2
46.2
147.84
80
3.2
46.2
147.84
90
3.2
46.2
147.84
POLBAN
10
2.8
45.8
128.24
20
2.8
45.8
30
2.8
45.8
128.24
40
2.8
45.8
128.24
50
2.8
45.8
128.24
60
2.8
45.8
128.24
70
2.8
45.8
128.24
80
2.8
45.8
128.24
90
2.8
45.6
127.68
128.24
Tabel 4.16 data Arus, Tegangan dan Daya pada F= 400 Hz, Power 600 watt, Pergeseran Stack = 21.375 cm dari penutup Wktu (mnt) 0
Arus (A) 0
Tegangan (V) 0
Daya ( Watt ) 0
10
3.2
46.2
147.84
Temperatur sebelum stack, temperatur sesudah stack, dan temperatur lingkungan terhadap waktu pada frekuensi= 300 Hz, saat pergeseran stack sejauh 28.5 cm dari penutup
Temperatur sebelum stack, temperatur sesudah stack, dan temperatur lingkungan terhadap waktu pada frekuensi= 300 Hz, saat pergeseran stack sejauh 57 cm dari penutup
Pengaruh perubahan posisi stack terhadap temperatur sebelum stack, temperatur sesudah stack dan temperatur lingkungan, pada frekuensi = 200 Hz, saat pergeseran stack sejauh 128.25cm dari penutup.
Temperatur sebelum stack, temperatur sesudah stack, dan temperatur lingkungan terhadap waktu pada frekuensi= 300 Hz, saat pergeseran stack sejauh 85.5 cm dari penutup
Pengaruh perubahan posisi stack terhadap temperatur sebelum stack, temperatur sesudah stack dan temperatur lingkungan, pada frekuensi = 400 Hz, saat pergeseran stack sejauh 21.375 cm dari penutup.
Pengaruh perubahan posisi stack terhadap temperatur sebelum stack, temperatur sesudah stack dan temperatur lingkungan pada frekuensi = 200 Hz, saat pergeseran stack sejauh 42.75cm dari penutup.
Pengaruh perubahan posisi stack terhadap temperatur sebelum stack, temperatur sesudah stack dan temperatur lingkungan, pada frekuensi = 400 Hz, saat pergeseran stack sejauh 42.75cm dari penutup.
POLBAN Pengaruh Perubahan posisi stack terhadap temperatur sebelum stack, temperatur sesudah stack dan temperatur lingkungan, pada frekuensi = 200 Hz, saat pergeseran stack sejauh 85.5cm dari penutup.
Pengaruh Perubahan posisi stack terhadap temperatur sebelum stack, temperatur sesudah stack dan temperatur lingkungan, pada frekuensi = 400 Hz, saat pergeseran stack sejauh 64.125cm dari penutup.
KESIMPULAN Berdasarkan hasil perancangan, pengukuran, perhitungan dan analisa yang telah dilakukan, maka sistem refrigerasi thermoakustik ini memberikan beberapa kesimpulan : 1. Sistem ini mampu menghasilkan gradien temperatur antara sebelum dan sesudah stack dimana temperatur sesudah stack lebih rendah dibanding sebelum stack dan pada kondisi tertentu lebih rendah dari temperatur lingkungan sehingga ke depan dapat dimanfaatkan sebagai pendingin walaupun pada saat ini belum mencapai tahap yang layak 2. Baik posisi stack, panjang tabung maupun frekwensi acoustic driver dapat mempengaruhi gradien temperatur yang didapat 3. Sistem ini dapat mencapai perbedaan temperatur sebesar 5,1 oC terhadap suhu lingkungan 26,2 oC pada posisi stack ¼ dari panjang gelombangnya dimana temperatur sebelum stack adalah sebesar 28,7 oC dan temperatur sesudah stack adalah sebesar 21,1 oC. Dari hasil perhitungan diperoleh bahwa pada posisi ini, COP carnot adalah sebesar 0,0258. Daya acoustic driver yang dipergunakan adalah sebesar 600 watt PMPO dengan daya input sebesar 129,36 watt 4. Diperlukan peredam suara yang kuat untuk dapat mengurangi kebisingan yang ditimbulkan acoustic driver serta diperlukan heat exchanger baik pada bagian sebelum maupun sesudah stack agar kinerja sistem menjadi lebih baik.
Setiawan, I., dkk, Pengaruh dimensi resonator silindris terhadap kinerja suatu pendingin thermoakustik, Skripsi, Universitas Gajah Mada, Yogjakarta, 2008 Subkhan, Analisis sistem refrigerasi thermoakustik dengan variasi frekwensi gelombang suara, Tugas Akhir, Politeknik Negeri Bandung, 2008
POLBAN
PUSTAKA Dewi Permata Sari, Studi sistem refrigerasi thermoakustik dengan variasi jarak antar lapisan stack dan panjang resonator, Skripsi, Institut Teknologi Bandung, 2008 Gunawan Wibisana, Rancang bangun ulang sistem refrigerasi thermoakustik dengan memvariasikan perubahan posisi stack, Tugas Akhir, Politeknik Negeri Bandung, 2008