Diamant: permanentne strategická surovina DUŠAN HOVORKA
Existujú dva varianty vysvetľovania pôvodu názvu diamantu: z arabského „al-mas“ (najtvrdší), resp. z gréckeho „adamas“ (nezničiteľný, nepremožiteľný). Z textov v sanskrite sa dozvedáme, že v Indii už v 4. storočí pred n. l. existoval rozsiahly obchod s diamantmi a až do 18. storočia bola táto krajina ich výhradným dodávateľom. Podľa starých Hindov diamanty vznikli z piatich základných prírodných substancií: vody, vzduchu, oblohy, zeme a energie. Plínius Starší vo svojej Historia naturalis o diamantoch napísal: „Najvyššiu cenu medzi vecami, a to nielen medzi drahými kameňmi, má diamant. Dlho bol známy len kráľom, ale aj to len v obmedzenej miere. Podobne ako zlato aj diamant sa ťaží v baniach, pričom je jeho zriedkavým sprievodcom...“ Dnes je už dokázané, že diamant a zlato sa nikdy nenachádzajú na primárnych výskytoch spolu. Výrazne odlišné fyzikálnochemické podmienky vzniku vylučujú ich spoločnú genézu. Mylný názor Plínia Staršieho vyplýva z dobového poznatku, že tieto dva minerály sa spolu vyskytovali v druhotných náleziskách – v náplavoch. Až do 80. rokov 19. storočia prvotné náleziská diamantov neboli známe. Ťažili sa z rozsypových nahromadenín pieskov a štrkov. Úsilie geológov zistiť primárne výskyty diamantov bolo korunované úspechom až r. 1871, keď v blízkosti mesta Kimberley v južnej Afrike v tmavosfarbenej eruptívnej hornine objavili kryštáliky tohto vzácneho nerastu. Materská hornina dostala potom pomenovanie „kimberlit“. Neskôr sa v širšej oblasti Kimberley našlo viacero ďalších telies. Dnes je známych vyše 1600 telies kimberlitov na všetkých kontinentoch. Ešte pred jedným či dvoma desaťročiami sa vznik diamantov v prírode spájal výlučne s kimberlitmi, ktoré v podobe rúrkovitých telies doslova „prestreľovali“ zemskú kôru štítov. Geológovia však zistili, že diamanty sú charakteristickými minerálnymi fázami aj iných horninových typov, ktoré vznikali v diametrálne odlišných geologických podmienkach. Kimberlitové erupcie Kimberlity sú svojrázne horniny, ktoré tvoria rúrkovité (komínovité) vertikálne orientované telesá, lokalizované na starých stabilizovaných častiach kontinentov. Ich vertikálny dosah je veľký, dosahujú hĺbku vyše 100 km. Na povrchu majú kruhovitý, resp. elipsovitý prierez. Kimberlit sa podľa obsahov základných oxidov, najmä SiO2 a MgO, radí medzi ultra-
1. Kimberley, Big Hole. Snímky ukazují postup těžby v diamantovém dole v letech 1872, 1873 a 1875; snímek archiv
bázické horniny. Charakteristický je preň zvýšený obsah alkalických kovov, prítomnosť magmaticky vykryštalizovaných karbonátov, ale aj vysoký podiel rôznych typov uzavrenín (xenolitov) hornín vrchného plášťa Zeme. Vysoký obsah plynov, a najmä vodných pár v kimberlitovej magme spôsobuje, že výplne kimberlitových rúrok („diatrémy“) majú prevažne Prof. RNDr. Dušan Hovorka, DrSc., (*1933) je profesorom petrológie na Prírodovedeckej fakulte Univerzity Komenského v Bratislave. Venuje sa štúdiu hornín vrchného plášťa Zeme. Je vedúcim geologicko-archeologického projektu IGCP/ UNESCO No. 442. http://vesmir.cts.cuni.cz l VESMÍR 81, únor 2002
83
2. Diamantový důl Ekati v kanadském Severozápadním teritoriu začal svou produkci r. 1998. Na diamantové burze v Antverpách dosáhl za listopadovou a říjnovou těžbu (68 500 ct) obratu 8,5 milionu amerických dolarů. Snímek © Jiří Hermann, BHP Diamond
3. Sluice Box leží v arkansaském státním parku Crater of Diamonds. Těžba diamantů v této oblasti začala 8. srpna 1906, dnes je již jen turistickou atrakcí. Snímek © Crater of Diamonds State Park
84
VESMÍR 81, únor 2002 l http://vesmir.cts.cuni.cz
brekciovitý (dezintegrovaný) charakter. Často sa preto píše o kimberlitových brekciách. Vlastná hornina je tvorená horečnatým olivínom, chrómdiopsidom, pyropom, enstatitom, serpentínovými minerálmi, flogopitom, perovskitom, karbonátmi, ale aj coesitom (vysokotlakovou modifikáciou SiO2) a v časti kimberlitov v akcesorickom (veľmi sporadickom) množstve aj diamantom.
Názory na jeho vznik v materských horninách prekonali v posledných 2 desaťročiach neočakávaný vývoj. Izotopové metódy stanovenia veku diamantov priniesli dôkazy o tom, že diamant je starší ako obklopujúci ho kimberlit. Ten predstavuje len „dopravcu“ diamantov zo spodných častí vrchného plášťa Zeme k jej povrchu. Kimberlity sú v dôsledku svojej brekciovitej textúry do veľkých hĺbok zvetrané. V takomto prípade sa najprv povrchovým, a potom aj banským spôsobom ťaží zvetraný kimberlit žltej a žltohnedej farby (yellow ground), ktorý smerom do hĺbky postupne prechádza v tmavý čerstvý kimberlit (blue ground). Ťažba diamantov z kimberlitov v JAR už dávnejšie prenikla do hĺbok väčších ako 1000 m. V kimberlitových diatrémach sú diamanty geneticky i priestorovo viazané na kimberlitovú magmu, ale aj na útržky (xenolity) granátických peridotitov a eklogitov v nej. Je známe, že diamanty sú prítomné len v časti kimberlitových diatrém. To, že diamant predstavuje skutočne len akcesorický minerál kimberlitov, dokumentuje najmä ich priemerný obsah v hornine (0,l–0,2 karátu na tonu horniny). Toto množstvo je najmenej desaťnásobne nižšie, ako je obsah zlata v súčasnosti ťaženého z veľkých povrchových ložísk. Diamanty v kimberlitoch sú prevažne drobné, s hmotnosťou spravidla menšou ako l karát. Kryštály s hmotnosťou desiatok či stoviek karátov sa nájdu len ojedinelo. Uchovanie diamantov v kimberlitoch je odrazom veľmi rýchleho výstupu tohto chemicky veľmi agresívneho média cez zemskú kôru. Okrem samotnej oblasti Kimberley v JAR a ďalších štátov južnej časti afrického kontinentu sú kimberlitové diatrémy známe aj z iných oblastí zemského povrchu, najmä z Jakutska na Sibíri, Arkansasu v USA, vyskytujú sa v Minas Geraes v Brazílii, na indickom subkontinente, v Austrálii atď. V posledných rokoch objavili ojedinelé drobné diamanty aj v peridotitoch (v Britskej Kolumbii) a peridotitových brekciách (na ostrove Borneo), ale aj v dunitoch ofiolitového komplexu v severnom Arménsku, v andezitoch ostrovných oblúkov (na Kamčatke) či v lamproitoch v západnej Austrálii. Aj v Českej republike sú evidované 2 diamanty získané z pyroponosných štrkov v podhorí Českého stredohoria. Najstarší z nich je tzv. dlažkovický (s hmotnosťou 0,28 karátu) objavený r. 1869, druhý bol nájdený pred r. 1910. Tretí nález bol později určený ako barnaté sklo. V minulosti bola objavená a podrobne študovaná kimberlitoidná (kimberlitom podobná) diatréma v Linhorke – avšak nasledujúce rozdrvenie a spracovanie niekoľkých ton horniny v 70. rokoch neprinieslo žiadne ďalšie kryštály diamantov. Ultravysokotlaková metamorfóza hornín L. Coes r. l953 syntetizoval novú modifikáciu SiO2 pri tlaku 3 GPa (dostala názov coesit), čo bolo impulzom k hľadaniu ultravysokotlakových minerálnych asociácií v prírodných horninách. Neskôr S. Stišov a S. Popova (1961) syntetizovali pri tlaku 8 GPa ešte „hutnejšiu“ modifikáciu SiO2 (stišovit). Prvou oblasťou, v ktorej sa našli horniny ultravysokých tlakov, konkrétne s coesitom (opísal ich Chopin, l984), bol masív Dora Maira v Západných Alpách. Prítomnosť coesitu, pyropu, príp. aj diamantu sa potom stala podmienkou definovania novej metamorfnej kategórie hornín ultravysokých tlakov. Diamanty mikroskopických rozmerov boli neskôr objavené ako uzavreniny v granátoch a zirkónoch
rôznych typov ultravysokotlakových hornín v Kazachstane, ale, na prekvapenie odbornej komunity, aj v zirkónoch, kyanitoch a granátoch hornín eklogitovej fácie Krušných hôr, ako aj v granátoch eklogitov, granátických pyroxenitov a v jadeititoch masívu Dabie v strednej Číne. Pravdepodobne najneočakávanejšie je zistenie prítomnosti diamantu v metamorfitoch západného rulového terénu Nórska. Diamanty z rôznych horninových prostredí všetkých uvedených oblastí sa vyznačujú mikrometrovými rozmermi, pričom najväčšie z nich (do 700 µm) boli zistené v zóne ultravysokotlakových hornín Dabie-Sulu v centrálnej severovýchodnej Číne. Vznik diamantov v horninách ultravysokých tlakov je podmienený najmä: l celkovým chemickým zložením horniny „vtiahnutej“ do podmienok metamorfózy ultravysokých tlakov, najmä od obsahu uhlíka v nej, l zložením fluidov v reakčnom prostredí spolu s fugacitou kyslíka (nesmie byť vysoká), l vhodným geotermálnym gradientom. Stále otvorená ostáva otázka pôvodu uhlíka (vrchnoplášťový pôvod verzus pôvod v samotných metamorfovaných horninách, ktoré sa ocitli v podmienkach ultravysokého tlaku). Oproti diamantom vznikajúcim v kimberlitoch, diamanty tejto proveniencie: n sú extrémne zriedkavé (ale sú), n majú len mikroskopické rozmery, n vystupujú ako uzavreniny v nereaktívnych mineráloch, ako je granát, zirkón, kyanit, n sú minerálnymi fázami rôznych typov hornín, a to najmä eklogitov, granátických peridotitov, granátických pyroxenitov, jadeititov, rúl atď., n nateraz nepredstavujú priemyselne využiteľnú abrazívnu surovinu. Vznik diamantov pri impaktoch Vďaka dobrej rozlišovacej schopnosti kamier satelitov Zeme možno identifikovať na zemskom povrchu početné misovité prehĺbeniny. Na základe terénneho geologického prieskumu i laboratórneho štúdia je veľká časť z nich zaradená do impaktových (dopadových) štruktúr. Pevné horninové či kovové telesá dopadom na zemský povrch spôsobujú zvláštny druh premeny hornín v mieste dopadu – známy ako impaktová (šoková) metamorfóza. Obrovská kinetická energia planetárnej hmoty (ak nezhorela pri prelete atmosférou) sa preniesla na horniny v mieste dopadu. Tento proces spôsobuje nerovnovážne zmeny v mineráloch i vlastných horninách v mieste dopadu – tavenie, pri ktorom sa vyparí značná časť ich objemu. Roztavené horniny sa označujú ako suevity či v prípade štruktúry Popigaj na východnej Sibíri ako taganity. V súčasnosti je na zemskom povrchu identifikovaných viac ako 150 impaktových štruktúr, ku ktorým pravdepodobne pribudnú ďalšie (viz Vesmír 79, 270, 2000/5). Vznikali v podstate v celej histórii formovania sa Zeme, najstaršia identifikovaná impaktová štruktúra je stará 2,2 miliardy rokov. Stupeň ich zachovania závisí od topografie terénu, atmosférických podmienok, horninového prostredia impaktu a pod. Veľkosť impaktov je šokujúca – kruhový priemer dosahuje až 300 km, no najčastejšie sa vyskytujú do 100 km. Najlepšie zachované impaktové štruktúry sa nachádzajú na štítoch, a nie v mladých orogenných oblastiach, v ktorých ešte stále prebiehajú vertikálne i horizontálne posuny krýh zemskej kôry. http://vesmir.cts.cuni.cz l VESMÍR 81, únor 2002
85
ných horninách (suevitoch, taganitoch), ale súčasne aj v blokoch rôznych typov hornín v impaktovej brekcii. Najviac sa ich nachádza v roztavených blokoch pôvodných rúl, v ktorých bol prítomný grafit. Diamanty impaktov predstavujú novú priemyselne využiteľnú surovinu. Niektorými vlastnosťami dokonca diamanty z kimberlitov prevyšujú i priemyselne vyrábané diamanty. Okrem spomínanej štruktúry Popigaj, v ktorej je podľa niektorých prameňov nahromadených (čo do hmotnosti) viac diamantov ako vo všetkých známych kimberlitových telesách na zemskom povrchu dohromady (!), sú známe aj diamanty z ďalších impaktových štruktúr, napr. Ries, Kara, Terny, Zapadnaja, Sudbury, Lappajäarvi, Puchez–Katunki atď. Zaujímavá je aj skutočnosť, že v prachu z oblasti explózie známeho tunguského kozmického telesa na Sibíri (1906) sa nachádza množstvo grafitovo-diamantových čiastočiek vytvorených zrastami spomínaných modifikácií uhlíka. Získavanie diamantov z náplavov 4. Vrtná korunka osazená syntetickými diamanty; snímek archiv
Poznatky o prítomnosti diamantov v horninách miest impaktov sú staré len asi 30 rokov. Jednou z dobre preštudovaných impaktových štruktúr je Popigaj na severnej Sibíri východne od Katangy. Ide o štruktúru starú 35 mil. rokov, dobre zachovanú vďaka nízkej intenzite deštrukčných procesov. Horniny oblastí impaktových kráterov predstavujú chaotické rôznorodé brekcie s veľmi variabilnou veľkosťou (mm – stovky metrov) jednotlivých úlomkov. Charakteristická je prítomnosť tmavého pórovitého impaktového skla (produktu tavenia hornín), ktoré miestami tvorí aj žilné telesá. Impaktové brekcie sú spravidla tmelené drobnoúlomkovitým materiálom veľmi pestrého zloženia. Podobné brekcie (s rozdielnou horninovou náplňou jednotlivých úlomkov) sú známe aj z kráterov Ries v Nemecku, Sudbury v Kanade, Vredefort v južnej Afrike a ďalších. Impaktový metamorfizmus je charakterizovaný vysokou teplotou (nad 1200 °C) a tlakom spravidla prevyšujúcim 50 GPa. Vysoký tlak spôsobuje šokovú (náhlu) kompresiu, po ktorej okamžite nasleduje uvoľnenie tlaku za súčasného premiestnenia obrovského množstva materiálu. V prípade impaktu Popigaj nastalo premiestnenie hornín zo širšieho okolia dopadu a vznikla impaktová tavenina s objemom vyše 1800 km3! Značná časť objemu hornín oblasti impaktu sa v dôsledku vysokej teploty doslova odparila, teda v podstate zmizla. Grafit prítomný v tomto procese mení svoju štruktúru – rekryštalizuje na diamant. Premena prebieha v pevnom stave a diamanty dedia mnohé vlastnosti prekurzora, t. j. grafitu. Preto sa morfológiou, sfarbením a pod. líšia od diamantov z kimberlitov. Diamanty impaktov tvoria nepravidelné, resp. tabuľkovité rôzne sfarbené (žlté, sivé, čierne) kryštály, ktoré nikdy nedosahujú šperkársku kvalitu. Ich veľkosť sa pohybuje v rámci hodnôt 0,5–2 mm, ale našli sa až 10mm kryštály. Drobnokryštalický vývoj týchto diamantov je spôsobený len krátkym trvaním vhodných podmienok na ich vznik (diamanty nemali čas „narásť“). Diamanty impaktov tvoria spravidla polykryštalické agregáty, pričom jednotlivé kryštály majú v dimenziách štruktúrnej mriežky početné praskliny a zdvojenia, čo sa v kimberlitových diamantoch nikdy nezistilo. Diamanty impaktového pôvodu sa vyskytujú vo forme akcesorických kryštálov v impaktových tave-
86
VESMÍR 81, únor 2002 l http://vesmir.cts.cuni.cz
Priam rozprávkové bohatstvo indických radžov a maharadžov má reálny základ vo vlastníctve diamantov (ale aj iných drahých kameňov) pochádzajúcich z tohto subkontinentu. Všetky tieto drahokamy boli získané z náplavov ryžovaním. Touto technológiou sa spolu s diamantmi ručne vyberalo aj zlato, granáty, rubíny, zafíry a ďalšie drahé kamene. I keď sa technológia ryžovania za tisícročia zmenila, princíp zostal. Diamant, ako aj všetky drahé kamene, patrí k tzv. ťažkým minerálom, ktoré medzi úlomkami minerálov (a hornín) pri ich nadľahčovaní (napr. vo vodnom prostredí) zaujímajú vždy najnižšiu polohu. Tento princíp uplatňovali zlatokopovia na Aljaške, ako aj na Dunaji, či nadnárodné spoločnosti, ktoré realizujú spomínaný proces v ohromujúcom rozsahu dodnes. Táto technológia získavania diamantov sa prirodzene preniesla aj na pobrežné oblasti v tých miestach, kde sa na priľahlom kontinente nachádzajú kimberlitové diatrémy či impaktové štruktúry. Ľudská vynaliezavosť (či nenásytnosť?) nepozná hranice. Po ťažbe diamantov z recentných (súčasných či geologicky veľmi mladých) náplavov sa v posledných rokoch realizuje i ťažba diamantov (ale aj platiny, zlata atď.) z vhodných usadených úlomkovitých hornín, ktoré vznikli v geologickej minulosti (sú však mladšie ako materské kimberlitové diatrémy či impakty). Keďže uvoľňovanie diamantov z takýchto typov hornín je výrazne jednoduchšie (a preto aj lacnejšie) ako z kimberlitov, celosvetová ťažba diamantov z náplavov stále narastá. Syntetická výroba diamantov Aby bol prehľad problematiky diamantov komplexný, musíme sa stručne zmieniť aj o syntetických diamantoch. Cieľavedomé experimenty s uhlíkom ako vstupným médiom experimentov priniesli pred viac ako štyridsiatimi rokmi vytúžený, takpovediac alchymistický výsledok: v laboratórnych podmienkach sa podarilo syntetizovať diamanty. Najprv len mikroskopických rozmerov, no postupne stále väčšie a čistejšie, dokonalejšie kryštály. Takto synteticky bola vyrobená supertvrdá surovina, ktorá nachádzala stále širšie uplatnenie v najrôznejších moderných technológiách. Ľudský génius nepozná obmedzenia. Šlágrom posledných rokov je príprava diamantových a semidiamantových vrstiev (D-vrstiev), ktoré sú vďaka ich unikátnym vlastnostiam vhodné na rôzne technické aplikácie (v elektronike, optike, strojárstve a pod.).
V poslednom desaťročí sa zistilo, že tenké vrstvy diamantov možno pripraviť rôznymi metódami chemickej a fyzikálnej depozície pár. Podstatou prípravy diamantových vrstiev je dopad radikálov rozštiepených uhľovodíkov (napr. metánu) na povrch substrátu zahriateho na teplotu okolo 900 °C za prítomnosti atómového vodíka. Vzniká pritom vrstvička (s hrúbkou niekoľko µm) polykryštalického diamantu s rôzne orientovanými diamantovými kryštálikmi. Tento proces úspešne zvládli aj na katedre mikroelektroniky Fakulty elektrotechniky a informatiky Slovenskej technickej univerzity v Bratislave. Komerčné využívanie už prvých pozitívnych výsledkov výskumu (najmä v USA a Japonsku) len potvrdzuje predpoklady, že ide o jednu z nových avantgardných technológií 21. storočia. Každý mineralóg sa iste s netajenou úľubou pozrie na prekrásnu hru farieb briliantu osadeného v zlate. Avšak podobne ako bankovka nemôže pre bankára predstavovať iba predmet neutíchajúcej túžby po jej vlastníctve, aj v prípade diamantu mineralóg-profesionál v ňom vidí v prvom rade produkt špecifických prírodných procesov. o ODPORÚČANÁ LITERATÚRA Bernard J. H. a kol.: Mineralogie Československa. Academia Praha, 1981, 645 s. Bernard J. H., Rost, R.: Encyklopedický přehled minerálu. Academia Praha, 1992, 701 s. Hallová C.: Drahé kamene. Osveta Martin, 1996, 160 s. Pellant Ch.: Horniny a minerály. Osveta Martin, 256 s. 1) ct = metrický karát, platný od r. 1914, odpovídá 0,2 g; jako standard byl odvozen od váhy jednoho semínka z lusku rohovníku obecného (Ceratonia siliqua), arab. kharrub, ř. karation, který je u nás znám pod lidovým názvem „svatojánský chléb“. Jeho semínka se používala při jemném vážení už ve starověku. Zcela jiné karátové vyjádření se používá u drahých kovů. Pro zlato, které má v nejčistší podobě 24 Kt, vyjadřuje karátový údaj, kolik dílů zlata připadá na 1000 dílů slitiny; 1 Kt = 1000/24, tzn. u 14Kt zlata je v 1000 dílech slitiny 583,33 dílů zlata (puncovním zákonem je u nás stanoven podíl 585/1000, což odpovídá 14,04 karátu). 1. Diamant „Heureka“ (10,73 ct) je považován za úplně první, který byl nalezen v jižní Africe; snímek archiv
Diamanty stále vábí Lom a odraz světla v barevných variacích PETRA BURDOVÁ
Diamantovou horečku v jižní Africe odstartoval v polovině 19. století zcela náhodný nález mezi holandskými přistěhovalci na farmě „De Kalk“ v povodí řeky Oranje. Tehdy si Schalk van Niekerk, muž pozorný a s podobou diamantu obeznámený, povšiml při návštěvě farmy svého souseda pana Jacobse dětí hrajících starou římskou hru: pět oblázků se položí na hřbet pěsti, vyhodí se do vzduchu a mají se pokud možno všechny střelhbitě chytit. Jacobsovy děti si nic netušíce pohazovaly také s jednadvacetiačtvrtkarátovým diamantem. Van Niekerk se nabídl, že podivný kámen odkoupí, ale paní Jacobsová se té myšlence usmála a darovala mu ho s výrazem: „Když vám to udělá radost...“ Přes několik dalších osob se kámen, prodaný už za 500 liber a určený jako diamant, dostal pod názvem „Heureka“ do Londýna. Tam byl vybroušen a jako briliant má hmotnost 10,73 ct. U Christie’s byl r. 1946 nabízen za 5700 liber a svou pouť zakončil zásluhou koncernu De Beers opět v Jihoafrické republice, v Hornickém muzeu u Kimberley, poblíž vytěženého diamantového dolu „Big Hole“. Jiný surový diamant (o hmotnosti 83,5 ct) našel domorodý pastevec u Griquatownu. Směnil ho s farmářem za 500 ovcí, 10 volů a 1 koně... ale to už je historie diamantu nazvaného „Hvězda jižní Afriky“, který po vybroušení do briliantové slzy má hmotnost 47,69 ct a jeho poslední dosažená cena při prodeji se vyšplhala až na 225 000 liber. Diamanty se jako minerální druh vyskytují ve svrchní části zemské kůry poměrně řídce. Jsou však velmi vyhledávané, počet těžených ložisek i jejich produkce překvapují vysokými čísly. Celosvětová těžba dosáhla (podle Terraconsult Antverpy 1999) r. 1998 téměř 120 milionů karátů.1) Na celkové světové těžbě se nejvýznamnější měrou podílejí Afrika (61,5 milionu ct) a Austrálie (40,92 milionu ct), zbývajících 17,3 milionu ct připadá na Asii (především Rusko) a Ameriku. Produkce některých ložisek je jen odhadována. Výtěžnost závisí na typu ložiska a může být i značně proměnlivá, od 0,03 ct/t v Namibii po dosud nejvyšší 2,40 ct/t na australském primárním ložisku Argyle. Z hlediska možného použití se hodnotí také poměr neprůhledných až opakních (technických) diamantů k dokonale čistým (klenotnickým) a podobně i poměr diamantů Petra Burdová (*1949) vystudovala geologii na Přírodovědecké fakultě UK v Praze. Je kurátorkou sbírky drahých kamenů Národního muzea v Praze, zabývá se gemologií. http://vesmir.cts.cuni.cz l VESMÍR 81, únor 2002
87
2. Cullinan – největší dosud nalezený diamant – byl rozdělen na devět hlavních částí, z nichž byly vybroušeny šperky, jejichž celková váha je 1055,9 ct: Cullinan I (530,2 ct), II (317,4 ct), III (94,4 ct), IV (63,6 ct), V (18,8 ct), VI (11,5 ct), VII (8,8 ct), VIII (6,8 ct), IX (4,4 ct). Původní hmotnost byla 3022 ct; snímek archiv
nevhodně zbarvených k atraktivně zbarveným až dokonale bezbarvým. Někdy bývá z celé produkce ložiska pouze 5–10 % klenotnicky využitelných (tak je tomu např. v Austrálii na ložisku Argyle), na tradičních jihoafrických nalezištích je využitelnost mnohem vyšší, 16–76 %. V oboru mineralogie si specifičnost drahých kamenů (zhruba 130 z celkového počtu asi 3700 minerálních druhů) vynutila vznik vědní disciplíny zvané gemologie. I když metody výzkumu jsou podobné, v gemologii se aplikují ty, které nejsou destruktivní. Vše, co se týká diamantů, je však i v tomto vědním oboru významně odlišné od toho, co souvisí s ostatními barevnými drahými kameny, natož pak s organogenními produkty, jako jsou perly, korály, slonovina ad. TYPY DIAMANTŮ PODLE CHEMIZMU A STRUKTURY n Typ I obsahuje jako hlavní příměs dusík. Jsou-li atomy dusíku ve shlucích a neovlivňují barvu, pak jde o typ Ia; jsou-li atomy dusíku rozptýlené v mřížce, vzniká žlutá barva tzv. „Cape“ série. Většina přírodních diamantů (asi 95 %) jsou Ia nebo směsi Ia a Ib, zatímco syntetické diamanty jsou pouze typu Ib. n Typ II neobsahuje žádný dusík; typ IIa neobsahuje vůbec žádné příměsi a je v přírodě vzácný; velmi vzácný je také typ IIb (např. známý modrý diamant „Hope“). Obsahuje na místě uhlíkových atomů atomy boru, což způsobuje částečnou elektrickou vodivost a soudí se, že také modrou barvu. Diamanty, které získaly modrou barvu ozářením, však tuto částečnou elektrickou vodivost nevykazují. n Typ III má hexagonální strukturu místo kubické. Objevila jej v meteoritu Ďáblova kaňonu Kethleen Lonsdaleová, proto byl nazván lonsdaleit. n Tepelná vodivost diamantů je 5krát větší než u mědi a 25–65krát větší než u safíru, dosahuje hodnoty 1000 (u typu I) až 2600 W m–1 °C–1 (u typu II). Vodivost je dobrou identifikační vlastností, která se od r. 1979 úspěšně využívá při výrobě různých zkoušecích zařízení. Má však také svá úskalí a je nutné ji kontrolovat i jinou metodou.
88
VESMÍR 81, únor 2002 l http://vesmir.cts.cuni.cz
Specifičnost se projevuje už od počátečního třídění diamantů v surovém stavu. Zcela samostatným oborem je broušení diamantů, které je v mnohém natolik odlišné, že je k němu nutné speciální zaškolení. Pro brusiče, kteří dají diamantu dokonale vyniknout dobře zvoleným a propočítaným brusem, a pro klenotníky, kteří umocní jeho krásu ve výjimečném šperku, je gemolog partnerem, který teoretickými poznatky pomáhá praxi, a tím i výslednému procesu. Diamantové repetitorium Chemicky je diamant čistý uhlík; do jeho plošně centrované kubické atomové mřížky vstupují stopově i dusík, bor a dalších 11 prvků, které mají určitý vliv na zbarvení. Ačkoliv příčiny zbarvení nejsou dosud zcela vysvětleny, všechny žluté diamanty vykazují přítomnost železa, růžově červené manganu a modré hliníku. Barva diamantu se pohybuje v kategorii bezbarvý až zbarvený. Obvykle mívá světlé odstíny všech barevných tónů, ale nejčastější je nažloutlý a našedlý, se všemi možnými přechody až do neprůhledné černé formy známé jako ballas, bort nebo karbonado. Pro vybroušené bezbarvé či téměř bezbarvé až světle tónované barevnější diamanty slouží při jejich třídění speciální standardní stupnice. Jednoduše značený systém standardů používá Gemologický institut americký (GIA). Je vyjádřen písmeny abecedy od D do Z. Výraznější barevné diamanty jsou v klenotnické praxi nazývány „fancy“. Z intenzivních výzkumů v posledních desetiletích vyplynulo např. třídění diamantů podle chemizmu a struktury (viz rámeček). Krystalografická symetrie je (až na výjimky, viz rámeček) krychlová, nejhojnější jednoduché tvary diamantu jsou osmistěn {111}, dvanáctistěn {110} a krychle {100} nebo jejich spojky, dvojčatně srůstá podle jedné z ploch osmistěnu, podle níž tvoří i dvojčatné lamely. Diamant může být průhledný až neprůhledný, jeho lesk je diamantový a lom bývá štěpinovitý až téměř lasturnatý, s dokonalou štěpností podle plochy osmistěnu.
3. Nahoře: Jihoafrický diamantový důl Premier v době nálezu proslulého Cullinanu Dole: Asscherova rodina při dělení Cullinanu; snímky archiv
Vrypová tvrdost podle Mohse je 10 a diamant je posledním členem etalonové řady, kterou se školáci učí jako stupnici tvrdosti. Ačkoliv je diamant krychlově souměrný a opticky izotropní, jeho tvrdost je poněkud anomální. Největší je na ploše osmistěnu, proto se diamanty brousí přísně orientovaně ve směru krystalografických os, tedy kolmo ke směru růstu. Broušení je zdlouhavý proces, při němž se používají diamantové nástroje a brusné pasty. Směr brusu se musí volit velmi pečlivě. Jedinou stejně tvrdou látkou jako diamant je syntetický nitrid boru BN (borazon), který je technicky dokonce lepší, protože je na vzduchu stálý ještě při 1900 °C. Naproti tomu diamant shoří už při teplotě kolem 800 °C, za nepřístupu vzduchu přechází od teploty 1200 °C na grafit. Vzhledem k těsnému uspořádání atomů uhlíku v mřížce diamantu odpovídá jeho hustota 3,52 g/cm3 (kolísá mezi 3,47–3,56 g/cm3). Velmi vysoký je rovněž index lomu, odpovídající hodnotě 2,418 (2,4175– 2,4190). Ačkoliv je to minerál opticky izotropní, často bývá anomálně dvojlomný. Dvojlom je považován za napěťový, jeho velikost je 0,0005. Zajímavé je, že byly pozorovány i dvojčatné lamely, z nichž každá je samostatně dvojlomná. (To by mohlo naznačovat nekrychlovou symetrii a výzkum v tomto směru ještě musí prokázat, zda nejde o formu lonsdaleitu.) Diamant má i vysokou disperzi, ale vzhledem k značně vysokému indexu lomu je disperze nepoměrně nižší a tvoří tak určitou výjimku. Ačkoliv hranolové spektrum barev produkované disperzním kamenem je
vidět hlavně v bezbarvých diamantech, lze ho najít také u diamantů výrazněji zbarvených, i když je maskováno jejich vlastní barvou. Luminiscence pod krátkovlnným i dlouhovlnným ultrafialovým světlem je u diamantu různá a v různých barvách (modravých, bílých, žlutavých, zelenavých až do světle oranžových). Pod rentgenovým zářením je fluorescence většinou výrazněji modrá, žlutá a zelená. Diamant je pro rentgenové záření zcela propustný, čímž se liší od svých imitací, jako jsou např. syntetický stronciumtitanát, nazývaný také fabulit, zirkon, olovnaté sklo, syntetický rutil a syntetická kubická zirkonie (CZ nebo též djevalit). Absorpční čáry ve viditelném spektru jsou pro sérii žlutých „Cape“ diamantů 415 nm, pro sérii hnědých 504 nm. Zušlechťování diamantu V posledních deseti až dvaceti letech se zušlechťování diamantu provádí ozařováním, mnohdy se změnami teploty, nebo se dociluje barevných variant difuzním barvením povrchu (ty mají však jiné absorpční čáry). Jinou úpravou je laserové odvrtávání vad a nečistot kamene, které se potom nahradí plnidly s vlastnostmi více či méně diamantu podobnými. Často se tak čistota diamantů zlepší až o několik stupňů, je však třeba dát pozor při jejich zasazování. Formy brusu diamantů se vyvíjely po staletí. Zpočátku jednoduché tříploché nebo šestiploché tvary, sbíhavé do vrcholu, se nazývaly routy. Objev optických zákonitostí umožnil využít lom a maximální odraz světla do briliantového brusu, který různí autoři různě modifikují. Stále se však hledají nové možnosti a i moderní brusy jsou dnes již překonány. Cesty světla v diamantu umožňují rozvinout fantazii k formám zcela nevídaným a v minulosti i těžko představitelným. o http://vesmir.cts.cuni.cz l VESMÍR 81, únor 2002
89