DAFTAR PUSTAKA
Ambraseys, N. N., 1988. Engineering Seismology. Earthquake Engineering and Structural Dynamics, Vol. 15: pp 1-105. Ariestianty, S. K., Taha, M. R., Nayan, K. A. M., Chik, Z., 2009. Penentuan Modulus Geser Tanah Menggunakan Metode Analisis Multi-channel Gelombang Permukaan. Jurnal Ilmiah Semesta Teknika, Vol. 12: No. 2, hal 185-198. ASTM D 3999-91 (Reapproved 2003), Standart Test Method for The Determination of The Modulus and Damping Properties of Soils Using The Cyclic Triaxial Apparatus. ASTM International. West Conshohocken. United States. ASTM D 5311-92 (Reapproved 1996), Standart Test Method for Load Controlled Cyclic Triaxial Strength of Soil, ASTM International. West Conshohocken. United States. Bouferra, R., Benseddiq, N., Shahrour, I., 2007. Saturation and Preloading Effects on the Cyclic Behavior of Sand. International Journal of Geomechanic. Vol. 7: pp 396-401. Boresi, A. P, Schmidt, R. J. and Sidebottom, O. M., 1993. Advanced Mechanics of Materials. Wiley. New York. Day, R.W., 2002. Geotechnical Earthquake Engineering Handbook. McGrawHill. New York. Daga, W.M. L., 2010. Rasio Redaman Tanah Pasir dengan Uji Triaksial Siklis (Cyclic Triaxial Test). Tesis. Yogyakarta. Universitas Gadjah Mada. Das, B. M., 1993. Principal of Soil Dynamic. PWS-Kent Boston. United States. Das, B. M., Endah, N., Mochtar, B. 1993. Mekanika Tanah (Prinsip-Prinsip Rekayasa Geoteknis). Erlangga. Jakarta. Dowrick, 2009. Earthquake Resistant Design and Risk Reduction. John Wiley and Sons, New York. Hardin, B. O., dan Black, W. L., 1968. Vibration Modulus of Normally Consolidated Clay (Closure). Journal of The Soil Mechanics and Foundations Division. ASCE. 95:6. pp 1531-1537.
93
94
Hardin, B. O., dan Black, W. L., 1969. Vibration Modulus of Normally Consolidated Clay. Journal of The Soil Mechanics and Foundations Division. ASCE. 95:6. pp 353-369. Hardin, B. O., dan Drnevich, V. P., 1972. Shear Modulus and Damping in Soils : Design Equations and Curves. Journal of The Soil Mechanics and Foundations Division. ASCE. 94:2. pp 667-692. Hardin, B. O., dan Richart, F. E.,1963. Elastic Wave Velocities in Granular Soils. Journal of the Soil Mechanics and Foundations Division. ASCE. 89:1. pp 33-65. Hardiyatmo, H.C., 2006. Mekanika Tanah 1. Gadjah Mada University Press. Yogyakarta. Ishihara, K., 1993, Liquefaction and Flow Failure During Earthquake, Geotechnique. Vol 43: pp 351-415. Ishihara, K., 1996. Soil Behaviour in Earthquake Geotechnics. Clarendon Press. Oxford. Jafarzadeh, F. Yanagisawa, E., 1996. Effects of Load irregularity on Energy Dissipation of Saturated Sand Models During Dynamic Loading. Geotechnical Engineering Buletin, Vol. 5: No. 2. pp 71-80. Jafarzadeh, F. Sadeghi, H., 2012. Experimental Study on Dynamic Properties of Sand With Emphasis on The Degree of Saturation. Soil Dynamics and Earthquake Engineering. Vol. 32: pp 26-41. Karnawati, D., Husein, S., Pramumijoyo, S., Ratdomopurbo, A., Watanabe, K., Anderson, R., 2008. Earthquake Microzonation and Hazard Maps on Bantul Area, Yogyakarta, Indonesia. The Yogyakarta Earthquake 2006. hal. 6-1 – 6-16. Kramer, S. L., 1996. Geotechnical Earthquake Engineering. Prentice Hall. Englewood Cliffs. N.J. 653. Kristian, Y., 2013. Analisis Respon Dinamik Tanah yang Berpotensi Likuifaksi di Kawasan Kabupaten Bantul. Tugas Akhir. Yogyakarta. Universitas Gadjah Mada. Lad, R. S., Dobry, R., Dutko, P., 1989. Pre Water Pressure Build Up in Clean Sand because of Cyclic Straining. Geotechnical Testing Jurnal. Vol. 12: pp 77-86.
95
Lambe, T. W., and Whitman, R. V., 1979. Soil Mechanics – SI Version. Chichester. John Wiley. New York. United States. Mahmud, C., 2001. Redaman Getaran Akibat Beban Dinamik Pada Model Tanah Dasar Fondasi Berupa Pasir. Tesis. Yogyakarta. Universitas Gadjah Mada. Mase, L. Z., 2013. Analisis Potensi Likuifaksi di Kali Opak Imogiri Daerah Istimewa Yogyakarta (Studi Eksperimental dan Analisis Empiris). Tesis. Yogyakarta. Universitas Gadjah Mada. Mithchell, J. K. Soga, K., 2005. Fundamental of Soil Behaviour. John Wiley & Sons. New York. United States. Mogami, T., dan Kubo, K., 1953. The Behaviour of Soil During Vibration. Proceedings 3rd International Conference on Soil Mechanics and Foundation Engineering. Vol 1: pp 153-155. Zurich. Murty, C. V. R., 2002. Learning Earthquake Design and Construction. Indian Institute of Technology Kanpur. India. Neolaka, S., 2012. Pengaruh Beban Siklis Pada Tanah Lempung Kenyang Air Dalam Tinjauan Parameter Dinamik Tanah. Tesis. Yogyakarta. Universitas Gadjah Mada. Nurhidayanti, A., 2012. Pengaruh Beban Siklis Pada Tanah Dasar Fondasi Candi Prambanan dengan Variasi Kepadatan Dalam Tinjauan Parameter Dinamik Tanah. Tesis. Yogyakarta. Universitas Gadjah Mada. Okamura, M., Soga, Y., 2006. Effects of Pore Fluid Compressibility on Liquefaction Resistance of Partially Saturated Sand. Soil and Foundations. Vol. 46: No. 5. pp 695-700. Okamura, M., Tarek, H., Dobry, R., 2001. Effects of Sand Permeability and Weak Aftershocks on Earthquake-Induced Lateral Spreading. Soil and Foundations. Vol. 41: No. 6. pp 63-77. Paz, M., 1993. Dinamika Struktur. Erlangga. Jakarta. Rahmi, N., 2011. Perilaku Regangan-Siklus Pembebanan Tanah Pasir Prambanan dengan Uji Triaksial Siklis. Tesis. Yogyakarta. Universitas Gadjah Mada. Santamarina, J. C., Cho, G. C., 2004. Soil Behaviour: The Role of Particle Shape. Proceeding Skempton Conference. London.
96
Seed, H. B., dan Idriss, I. M., 1982. Ground Motions and Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute. Pasadena. California. Seed, H. B., dan Idriss, I. M., 1970. Soil Moduli and Damping Factors for Dynamic Response Analysis. Report No. EERC 75-29. University of California. Berkeley. California. Seed, H. B., dan Idriss, I. M., 1971. The Procedure of Measuring Soil Liquefaction Characteristics. Journal of Soil Mechanics and Foundations. ASCE. Vol. 97: pp 1099-1119. Seed, H. B., Wong, R. T., Idriss, I. M., dan Tokimatsu, K., 1986. Moduli and Damping Factors for Dynamic Analysis of Cohesive Soils. Journal of Geotechnical engineering. ASCE. Vol. 112: pp 1016-1032. Seed, R. B., Cetin, K. O., Moss, R. E. S., 2003. Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework. 26th Annual ASCE Los Angeles Geotechnical Spring Seminar. pp 43-46. Sherif, M. A., Ishibashi, I., dan Gaddah, A. H., 1972. Damping Ratio for Dry Sands. Journal of Geotechnical Engineering. ASCE. Vol. 103: pp 743756. Sitharam, T., G., 2004. Evaluation of Liquefaction Potential of Soils. Workshop on Microzonation. Interline Publishing. Bangalore. Stewart, D. P., Chen, Y. R., Kutter, B. L., 1998. Experience with the Use of Methylcellulose as a Viscous Pore Fluid in Centrifuge Models. Geotechnical Testing Journal. Vol. 21: No. 4. pp: 365-369. Tatsuoka, F., Iwasaki, T., Takagi, Y., 1978. Experience with the Use of Methylcellulose as a Viscous Pore Fluid in Centrifuge Models. Soil and Foundations. Vol. 18: pp 25-40. Taylor, R., N., 1994. Geotechnical Centrifuge Technology. Chapman and Hall. London. Tohwata, I., 2008. Geotechnical Earthquake Engineering. Springer. Verlag Berlin Heidelberg. Germany. Tsuchida, H., 1970. Prediction and Countermeasure Againts Liquefaction in Sand Deposits. Abstract of the Seminar of the Port and Harbour Research Institute. Ministry of Transport. Yokosuka. Japan. pp 3.1-3.33.
97
Verruijt, A., 2005. Soil Mechanics. Delft University of Technology. Delft. Netherland. Wiley, J., 1999. Earthquake Engineering and Structural Dynamics. John Wiley & Sons. United States. Youd, T. L., 1984. Geologic Effects – Liquefaction and Associated Ground Failure. Proceeding of The Geologic and Hydrologic Hazards Training Program. Open-File Report 84-760. Menlo Park. California. Yogatama, B. A., 2012. Analisis Potensi Likuifaksi pada Kawasan Kabupaten Bantul dan Kotamadya Yogyakarta. Tugas Akhir. Yogyakarta. Universitas Gadjah Mada. Xenaki, V. C., Athanasopoulos, G. A., 2008. Dynamic Propertis and Liquefaction Resistance of Two Soil Materials in Earthfill Dam- Laboratory Test Results. Soil Dynamics and Earthquake Engineering. Vol. 28: pp 605620.