Cursus Vacuümtechniek Kenniscentrum Mechatronica Eindhoven
Cursus Hogere Vacuümtechniek
Week 1/
1
Naslagwerken Vacuümtechniek •
•
• •
•
L.Wolterbeek Muller: Vacuümtechniek, beginselen en toepassingen, ISBN 90-2012203-7, Uitg.: Kluwer Technische Boeken b.v., Deventer; E.P.Th.Suurmeyer en J.Verhoeven: Vacuümtechniek, ISBN 90-9002806-4, Uitg.: Nederlandse Vacuüm Vereniging (NEVAC); J.Visser, serie artikelen in De Constructeur (oktober 1988 t/m januari 1991) M.Wutz, H.Adam, W.Walcher: Theorie und Praxis der Vakuumtechniek, ISBN 3-528-14884-5; uitg.: Verlag Fried. Vieweg & Sohn, Braunschweig/ Wiesbaden; Nigel Harris: Modern Vacuum Practice, ISBN 0-07-707099-2; Uitg.: McGraw-Hill Book Company.
Cursus Hogere Vacuümtechniek
Week 1/
2
Naslagwerken Vacuümtechniek •
•
•
John F. O'Hanlon: A User's Guide to Vacuum Technology; ISBN 0-471-81242-0; Uitg.John Wiley & Sons, New York. D.H.Holkeboer, D.W.Jones, F.Pagano, D.J.Santeler.: Vacuum Technology and Space Simulation, ISBN 1-56396-123-7; Uitg. American Institute of Physics, New York. A.Chambers, R.K.Fitch, B.S.Halliday: Basic Vacuum Technology, ISBN 0-85274-128-6; Uitg. Adam Hilger, Bristal en New York.
Cursus Hogere Vacuümtechniek
Week 1/
3
Waarom vacuum ? Q
Q
Q
Q Q Q
Sommige processen verdragen geen zuurstof of andere gassen Sommige oppervlakteprocessen moeten plaatsvinden op schone oppervlakken Bij sommige processen is er een zekere afstand tussen bron en substraat: daar tussenin mogen gassen geen rol spelen (hinderen) Een drukverschil veroorzaakt een kracht Vacuum is een goede warmte-isolator Om opgelost gas te verwijderen is een lagere dichtheid nodig, soms ontstaat ook een temperatuurdaling (vriesdrogen)
Cursus Hogere Vacuümtechniek
Week 1/
4
Basisbegrippen
Cursus Hogere Vacuümtechniek
Week 1/
5
Basisbegrippen
Cursus Hogere Vacuümtechniek
Week 1/
6
Verdampingssnelheid
!
Bereken hoe lang het duurt voor een schoteltje water geheel verdampt is, en vergelijk dat metde werkelijke situatie Cursus Hogere Vacuümtechniek
Week 1/
7
Verdampingssnelheid (vervolg)
Cursus Hogere Vacuümtechniek
Week 1/
8
Overzicht Vacuümgebied tijd voor een monolaag (s) 108
106
104
102
100
10-2
10-4
10-6
10-8
106 atmosferische druk druk (Pa)
10
4
10-6
gemiddelde vrije -4 10 weglengte (m) 10-2
102 voorvacuum
100 10-2
100
hoog vacuum 10-4
102
10-6
104
ultra-hoog vacuum
10-8
106
10-10
108
10-12
1010
107
109
1011
1013
1015 1017 1019 gasdichtheid (per m3)
1021
1023
Cursus Hogere Vacuümtechniek
1025
Week 1/
9
Vacuümsysteem (algemeen) reactie met wand virtueel lek proces gas
bulk desorptie oppervlakte desorptie
reëel lek
vloeistofkruip
permeatie terugstroming van pompvloeistof terug-diffusie
re-emissie van eerder verpompte gassen
Cursus Hogere Vacuümtechniek
Week 1/
10
XL40 TMP vacuum configuration
Vacuümsysteem Elektronenmicroscoop
Cursus Hogere Vacuümtechniek
Week 1/
11
Invloed van een wand
Vacuüm
Atmosfeer
Verdamping Desorptie Diffusie Adsorptie
Permeatie
Cursus Hogere Vacuümtechniek
Week 1/
12
Gaswetten Wet van Boyle: Boyle voor een afgesloten hoeveelheid gas is bij constante temperatuur het produkt van druk en volume constant: constant p ⋅ V = constant
Wetten van Gay Lussac: Lussac voor een afgesloten hoeveelheid gas geldt voor een V volumeverandering bij constante druk: druk = constant T en voor een drukverandering bij constant volume: volume p = constant T Gecombineerd levert dit de z.g wet van Boyle - Gay Lussac op: Voor een afgesloten hoeveelheid gas geldt: pV = constant T Cursus Hogere Vacuümtechniek
Week 1/
13
Deeltjesdichtheid druk (mbar)
800 hoogte 640 (km)
10-10 10-9
480
10-8 10-7
320
10-6
160
10-3
80 0
1013
Cursus Hogere Vacuümtechniek
Week 1/
14
Getal van Avogadro Voor ieder gas met dezelfde temperatuur en druk is het aantal moleculen per volume-eenheid gelijk Massa van molecuul wordt uitgedrukt in atomaire massaeenheden: massaeenheden 1 a.m.e. ÷ 1,66.10-27 kg De massa M van een stikstofmolecuul is 28 a.m.e. = 28x1,66.10-27 kg = 4,5.10-26 kg In 1 mol gas zitten NA = 6,0.1023 moleculen. Voor stikstof is 1 mol gelijk aan 28 gram en bij 1 atmosfeer en 20 0C is dat een volume van 24 dm3. Algemene gaswet: pV = nm RT Met nm = N/NA en R is de algemene gasconstante: R = 8,3 J.K-1 Cursus Hogere Vacuümtechniek
Week 1/
15
Belangrijke relaties
Cursus Hogere Vacuümtechniek
Week 1/
16
Gassnelheid van gasdeeltjes Q
Q
Q
Gasmoleculen hebben voor dagelijkse begrippen grote snelheden De molecuulsnelheid is niet voor elk molecuul gelijk: de snelheid hangt af van het soort molecuul: X lichte moleculen gaan sneller dan zware X de snelheid hangt van de temperatuur X bij hogere temperatuur hogere snelheid
Cursus Hogere Vacuümtechniek
Week 1/
17
Gassnelheid van gasdeeltjes Q
Q
Q
Q
Gasmoleculen hebben voor dagelijkse begrippen grote snelheden De molecuulsnelheid is niet voor elk molecuul gelijk: de snelheid hangt af van het soort molecuul: X lichte moleculen gaan sneller dan zware X de snelheid hangt van de temperatuur X bij hogere temperatuur hogere snelheid er is een snelheidsverdeling van een gas: de z.g. 8kT Maxwell-Boltzmannverdeling c= πm X je kunt dan spreken over: 2kT = c maximum X de gemiddelde snelheid m X de meest voorkomende snelheid 3kT 3kT 2 c = ⇒ cmiddelbaar = X de middelbare snelheid m m Cursus Hogere Vacuümtechniek
Week 1/
18
Snelheidsverdeling van Maxwell-Boltzmann Aantal moleculen met snelheid tussen c en c + ∆c
T = 300 K
cmaximum =
2kT m T = 1000 K
8kT c= πm cmiddelbaar 0
500
1000
3 kT = m
1500
2000
2500
Snelheid c [m.s-1] Cursus Hogere Vacuümtechniek
Week 1/
19
Snelheidsverdelingsfunctie van Maxwell voor H2 en N2 bij twee verschillende temperaturen
Cursus Hogere Vacuümtechniek
Week 1/
20
Rekenvoorbeeld gassnelheid Bij kamertemperatuur (20 0C = 293 K) voor stikstof (N2):
cN
2
8kT 8 ∗ 1,38 ⋅ 10 −23 ⋅ 293 −1 = = = 480 m ⋅ s πm π ⋅ 28 ⋅ 1,66 ⋅ 10 −27
En voor waterstof (H2):
cH
2
8kT 8 ∗ 1,38 ⋅ 10 −23 ⋅ 293 −1 = = = 1800 m ⋅ s πm π ⋅ 2 ⋅ 1,66 ⋅ 10 −27
Cursus Hogere Vacuümtechniek
Week 1/
21
Begrip gemiddelde vrije weglengte λ D
2D
1
Omvatte botsingsvolume per seconde is:
πD 2v
Er bevinden zich hierin: nπD 2v deeltjes Dus: nπD 2v botsingen per seconde λ=(afgelegde weg per seconde)/(aantal botsingen per seconde)
v 1 λ= = 2 nπD v nπD 2
−3 kT 6 , 7 10 ⋅ λ= pπD 2 λlucht = p[Pa ] [ m ]
Cursus Hogere Vacuümtechniek
Week 1/
22
Vrije weglengte Voor de vrije weglengte (afstand waarover molecuul gemiddeld beweegt voordat het botst) in lucht bij kamertemperatuur geldt:
λlucht
6,7 ⋅ 10 −3 = [ m ] waarbij p in Pa is uitgedrukt p
Gassoort λ in cm bij p = 1 Torr λ in m bij p = 1 Pa -----------------------------------------------------------------------------------9,0 x 10-3 1,2 x 10-2 H2 (waterstof) He (helium) 14 x 10-3 1,8 x 10-2 Ar (argon) 4,8 x 10-3 6,4 x 10-3 H2O (waterdamp) 3,0 x 10-3 4,0 x 10-3 N2 (stikstof) 4,6 x 10-3 6,1 x 10-3 O2 (zuurstof) 4,9 x 10-3 6,5 x 10-3 CO2 (kooldioxyde) 3,0 x 10-3 4,0 x 10-3 Hg (kwik) 2,3 x 10-3 3,1 x 10-3 lucht 5,0 x 10-3 6,7 x 10-3 Cursus Hogere Vacuümtechniek
Week 1/
23
Pompsnelheid Een (ideale) pomp sluit per tijdseenheid t een bepaald volume V van het te evacueren systeem af en verwijdert de daarin toevallig aanwezige deeltjes: Pompsnelheid = S Let op: dit zegt niets over de hoeveelheid verpompt gas !!
dV S= dt Uitgedrukt in
⎡m3 ⎤ 3 −1 [ ] = ⋅ m s ⎢ s ⎥ ⎦ ⎣
Hoeveelheid verpompt gas Q wordt gegeven door:
Q = p ⋅S
⎡ Pa ⋅ m 3 ⎤ 3 −1 [ ] Pa m s = ⋅ ⋅ Uitgedrukt in: ⎢ ⎥ ⎣ s ⎦ Cursus Hogere Vacuümtechniek
Week 1/
24
Pompsnelheid S
dN 1 = n c .A dt 4 dV 1 dN 1 = . = c .A ≡ S dt n dt 4 Verband gasstroom Q en pompsnelheid S:
Q = p ∗S Cursus Hogere Vacuümtechniek
Week 1/
25
Transportverschijnselen Q
Q
Q
Q
Goed begrip van de kinetische gastheorie is essentiëel voor het verkrijgen van inzicht in de vacuümfysica en -techniek. Belangrijk zijn de eigenschappen van een gas onder niet-evenwichtsomstandigheden, evenwichtsomstandigheden te weten X het transport van impuls (viscositeit), viscositeit X energie (warmtegeleiding) warmtegeleiding X Massa (diffusie). usie Het blijkt dat de geldende wetten voor het transport van deze drie grootheden veel gelijkenis met elkaar vertonen. Transport van een fysische eigenschap, eigenschap die de gasdeeltjes met zich meedragen, kan slechts plaatsvinden dankzij hun thermisch beweging. beweging Cursus Hogere Vacuümtechniek
Week 1/
26
Transportverschijnselen Q
Q
Q
Q
Het transportgedrag van een gas blijkt afhankelijk van de grootte van de gemiddelde vrije weglengte λ in verhouding tot de karakteristieke afmeting d van het systeemonderdeel waarin of waardoor het transport plaatsvindt Deze verhouding staat bekend onder de naam kengetal van Knudsen: Knudsen
Kn << 1 ) we spreken van `hoge' druk; het gas wordt `dicht' genoemd en gedraagt zich als een continu medium; medium gasstroming onder deze omstandigheden heet `viskeus'. viskeus' Kn >> 1 ) we spreken van `lage' druk; het gas wordt `verdund' genoemd en gedraagt zich als een systeem van losse moleculen zonder interactie; interactie gasstroming bij lage druk noemen we `(vrij) vrij moleculair' Cursus Hogere Vacuümtechniek
Week 1/
27
Transportverschijnselen bij hoge druk
∂ ∂ ∂ + + met: ∇ = ∂x ∂y ∂z
G is een fysische grootheid (energie, impuls, massa) het bijbehorende transport van G noemen we ΓG Cursus Hogere Vacuümtechniek
Week 1/
28
Transportverschijnselen: Viscositeit Q
Hoge druk (Kn << 1)
η = viscositeitscoëfficiënt
F = schuifkracht per eenheid van oppervlak evenwijdig aan de stromingsrichting
du/dz = ter plaatse heersende snelheidsgradiënt
z = coördinaat loodrecht op stromingsrichting
Nauwkeuriger: Cursus Hogere Vacuümtechniek
Week 1/
29
Viscositeit Q
Lage druk (Kn >> 1)
moleculaire viscositeitscoëfficiënt:
Cursus Hogere Vacuümtechniek
Week 1/
30
Thermomoleculaire gasverplaatsing λ << d: drukken aan weerszijden opening gelijk:
λ >> d: deeltjesstroom naar links en rechts door opening gelijk:
Cursus Hogere Vacuümtechniek
Week 1/
31
Warmtegeleiding bij hoge druk Q
Hoge druk (Kn << 1)
Afwijkingen t.g.v. correlatie en transportsnelheid !! Cursus Hogere Vacuümtechniek
Week 1/
32
Warmtegeleiding bij hoge druk
Cursus Hogere Vacuümtechniek
Week 1/
33
Warmtegeleiding bij lage druk Q
!
Kn >> 1
Ga na dat bij constante κ geldt, dat Λm redelijk goed evenredig is met m-½ Cursus Hogere Vacuümtechniek
Week 1/
34
Accommodatiecoëfficiënten
Cursus Hogere Vacuümtechniek
Week 1/
35
Diffusievergelijkingen van Fick Q
1e diffusievergelijking van Fick:
Q
2e diffusievergelijking van Fick: Met hulp van continuïteitsvergelijking: Waarbij:
Cursus Hogere Vacuümtechniek
Week 1/
36
Zelfdiffusie
!
Q
Ga na, D bij constante temperatuur evenredig is met X p-1 X m-½ Cursus Hogere Vacuümtechniek
Week 1/
37
Wederzijdse diffusie
Cursus Hogere Vacuümtechniek
Week 1/
38
Wederzijdse diffusie
Cursus Hogere Vacuümtechniek
Week 1/
39