Contents 1 1.1 1.1.1 1.1.2 1.1.3 1.2 1.2.1 1.2.2 1.3 1.3.1 1.3.2 1.4 1.4.1 1.4.2 1.4.3 1.5 1.5.1 1.5.2
Artificial Intelligence (MSc) Knowledge Technology and Intelligent Internet Applications Compulsory courses Strongly recommended optional courses Recommended optional courses Cognitive Science Compulsory courses Recommended optional courses Computational Intelligence and Selforganisation Compulsory courses Recommended optional courses Technical Artificial Intelligence Compulsory courses Compulsory optional course (Software Engineering) Recommend optional courses AI and Communication Artificial Intelligence part Communication part
5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8
2
Exam parts
9
4
Artificial Intelligence (MSc)
1
Artificial Intelligence (MSc) The information presented here concerns the structure of the MSc programme in Artificial Intelligence and detailed course information. More detailed and general information about the master programme - for instance the master coordinator, schedules, etcetera - can be found at http://www.few.vu.nl/onderwijs/masters/ai.
1.1
Knowledge Technology and Intelligent Internet Applications Students must also follow optional courses for a total of 41 cp.
1.1.1
Compulsory courses Course code 400113 400111 400153 400125 400435 400152 400290 400285 400292 400592
1.1.2
Behaviour Dynamics Evolutionary Computing Intelligent Web Applications Knowledge Management and Modeling Information Retrieval Intelligent Interactive Distributed Systems Qualitative Research Methods for the Information Sciences Master Project Artificial Intelligence Ontology Engineering Scientific Writing in English
Cr.
Period
6 6 8 6 6 8 3
1 and 2 1 and 2 1 and 2 1 and 2 2 2 and 3 3
30 3 3
4, 5 and 6 6 Various dates around the year, see timetable masters
Strongly recommended optional courses Course code 400108 400389
1.1.3
Course name
Course name Data Mining Techniques Automated Reasoning in AI
Cr.
Period
6 6
4 and 5 5 and 6
Cr.
Period
Recommended optional courses Course code 400010 400440 60111030 400110 400378 400115 400195 400029 400410 400052 400117 400487 400067 400428
Course name Bedrijfsmodellering en requirements engineering Multimedia Authoring Management en Organisatie 1.1 E-Business Innovation Advanced Topics in Software Design Logical Verification Kwaliteitszorg van de informatievoorziening Inleiding besliskunde Voortgezette logica Network Programming Protocol Validation Computernetwerken Project Software Engineering Mini Master Project AI
Artificial Intelligence (MSc)
7
1
6 3 7 6 6 5
1 1 1 and 2 1 and 2 1 and 2 1 en 2
6 4 9 6 6 8 6
1 en 2 4 4 and 5 5 and 6 5 en 6 5 en 6 Throughout the year
5
1.2
Cognitive Science Students must also follow optional courses for a total of 24 cp.
1.2.1
Compulsory courses Course code 400113 400111 400125 400560 815049 815096 815098 815067 815100 815048 815051 400592
1.2.2
Behaviour Dynamics Evolutionary Computing Knowledge Management and Modeling Special Topics Cognitive Science Thinking and Deciding (Denken en Beslissen) Behavioral Methods Seminar Cognitive Neuroscience Master Thesis: Research Project Cognitive Science Seminar Attention (Seminar Attention) Human Information Processing (Informatieverwerking) Neural Models of Cognitive Processes Scientific Writing in English
Cr.
Period
6 6 6 9 6
1 and 2 1 and 2 1 and 2 1, 2, 3, 4, 5 and 6 2
6 6 30
3 4 4, 5 and 6
6 6
5 and 6 5 and 6
6 3
2 (in 09/10; not in 08/09) Various dates around the year, see timetable masters
Recommended optional courses Course code 400054 815103 400434 400154 815102 815104 815097 815047 400428
1.3
Course name
Course name Design of Multi-Agent Systems Brain Imaging Advanced Selforganisation Machine Learning Memory and Memory Disorders Review Paper Advanced Statistics for Experimentation Perception Mini Master Project AI
Cr. 6 6 6 6 6 6 6 6 6
Period 1 1 2 2 2 (in 08/09; not in 09/10) 3 4 5 Throughout the year
Computational Intelligence and Selforganisation Students must also follow optional courses for a total of 44 cp.
1.3.1
Compulsory courses Course code 400113 400125 400111 400310 400434 400152 400290 400108 400285 400592
6
Course name Behaviour Dynamics Knowledge Management and Modeling Evolutionary Computing Design of Experiments and Analysis of Variance Advanced Selforganisation Intelligent Interactive Distributed Systems Qualitative Research Methods for the Information Sciences Data Mining Techniques Master Project Artificial Intelligence Scientific Writing in English
Artificial Intelligence (MSc)
Cr.
Period
6 6 6 2
1 and 2 1 and 2 1 and 2 2
6 8 3
2 2 and 3 3
6 30 3
4 and 5 4, 5 and 6 Various dates around the year, see timetable masters
1.3.2
Recommended optional courses Course code 400604 61312020 400153 400436 400073 400130 400211 430048 150005 400292 470053 470622 470503 400428
1.4
Course name Introduction to Game Theory Business Intelligence Intelligent Web Applications Computational Genomics and Proteomics Statistical Data Analysis Distributed Systems Distributed Algorithms Bioinformatic Data Analysis and Tools Inleiding wijsgerige antropologie Ontology Engineering Evolutionaire genetica Intracellular Networks Dynamic Energy Budgets Mini Master Project AI
Cr. 6 6 8 6 6 6 6 6 6 3 6 6 6 6
Period
1 1 and 2 1 and 2 1, 2 and 3 2 4 and 5 4 and 5 5 6 01.06.2009-26.06.2009 27.10.2008-21.11.2008 february- october 2009 Throughout the year
Technical Artificial Intelligence Students must also follow optional courses for a total of 26 cp. Besides these, students must also choose one course from the compulsory optional courses.
1.4.1
Compulsory courses Course code 400132 400153 400111 400125 400130 400154 400152 400290 400285 400277 400592
1.4.2
Neural Networks Intelligent Web Applications Evolutionary Computing Knowledge Management and Modeling Distributed Systems Machine Learning Intelligent Interactive Distributed Systems Qualitative Research Methods for the Information Sciences Master Project Artificial Intelligence Literature Study Scientific Writing in English
Cr.
Period
6 8 6 6 6 6 8 3
1 1 and 2 1 and 2 1 and 2 2 2 2 and 3 3
30 6 3
4, 5 and 6 Variable Various dates around the year, see timetable masters
Compulsory optional course (Software Engineering) one of both Course code 400378 400170
1.4.3
Course name
Course name Advanced Topics in Software Design Software Architecture
Cr.
Period
6 6
1 and 2 2 and 3
Cr.
Period
Recommend optional courses Course code 400435 400410 400012 400108 400389 400428
Course name Information Retrieval Voortgezette logica C/C++ Data Mining Techniques Automated Reasoning in AI Mini Master Project AI
Artificial Intelligence (MSc)
6 4 2 6 6 6
2 4 4 4 and 5 5 and 6 Throughout the year
7
1.5 1.5.1
AI and Communication Artificial Intelligence part This part consists of optional courses and a research project, including a master thesis. The project and thesis are 21 cp. For the choice of the optional courses (39 cp), students should consult the master coordinator of the section where they plan to do their project. Course code 400538
1.5.2
Course name Master Project AI for the Communication Variant
Cr.
Period
21
Communication part This part of the programme consists of 60 cp. and is dedicated to Science Communication. Three courses, one internship or research project and a thesis are compulsory. The rest of the programme can be filled in with optional courses. Compulsory courses An individual Internship of 21 cp. and an individual Thesis of 9 cp. are also compulsory. Communication part: compulsory courses
Also compulsory is a individual research project (21 cp) and a individual thesis (9 cp). Course code 470582 470587
Course name Qualitative and Quantitative Research Methods Science and Communication
Cr.
Period
6
01.09.2008-26.09.2008
6
05.01.2009-30.01.2009
Recommended optional courses Communication part: optional courses
At least 12 cp are required. Course code 470087 470562 471026 471014 471007 470572
8
Course name Gezondheidscommunicatie Interactive Communication Museologie en buitenschoolse educatie Wetenschapsjournalistiek (science journalism) Interpersoonlijke communicatie Communication, Organization and Management
Artificial Intelligence (MSc)
Cr.
Period
6 3 6 6
01.06.2009-26.06.2009 13.10.2008-24.10.2008 24.11.2008-19.12.2008 27.10.2008-21.11.2008
3 6
29.09.2008-10.10.2008 29.09.2008-24.10.2008
2 subject code lecturer credits period aim
content
form of tuition literature mode of assessment target audience remarks
subject code credits period lecturer aim
content form of tuition literature mode of assessment remarks
Exam parts Advanced Selforganisation 400434 dr. M.C. Schut 6 2 To understand, simulate and analyse the behaviour and self-organization of complex systems. The student is able to explain, implement and recognize basic principles and properties of such systems. This course is about the understanding of the behavior and self-organization of complex systems: systems in which the interaction of the components is not simply reducible to the properties of the components. The general question the we address is: how should systems of very many independent computational (e.g., robotic or software) agents cooperate in order to process information and achieve their goals, in a way that is efficient, selfoptimizing, adaptive, and robust in the face of damage or attack? We will look at natural systems that solve some of the same problems that we want to solve, e.g., adaptive path minimization by ants, wasp and termite nest building, army ant raiding, fish schooling and bird flocking, coordinated cooperation in slime molds, synchronized firefly flashing, evolution by natural selection, game theory and the evolution of cooperation. The course includes a practical part in which students implement a simulation of a selforganizing complex system and conduct structured experimental analysis with this simulation. Theory in lectures and practice in labs. Schut M.C., Scientific Handbook for Simulation of Collective Intelligence, 2007. Available at http://www.sci-sci.org/. Report including description of simulation and experimental analysis. mAI (computational intelligence and self organisation), mBMI, mIS, mCS More information available on BlackBoard. This is a project-oriented course and therefore students will be expected to have basic programming skills. Advanced Statistics for Experimentation 815097 6 4 dr. N. Smits To acquire knowledge of and insight into multivariate statistics in order to be able to apply these techniques and read associated literature at a level relevant for research in cognitive neuropsychology Multivariate Statistics: the General Linear Model. Lectures and practicals To be announced Assignments and final examination Admission conditions: Statistics and Research methods II (or a similar course).
Exam parts
9
subject code lecturer credits period aim
content
form of tuition literature mode of assessment entry requirements target audience remarks
Advanced Topics in Software Design 400378 dr. P. Lago 6 1 and 2 Learn advanced design techniques applicable to large software systems. Be able to select among them and apply them for a specific system. Be able to document and compare the design decisions. The lectures explain the most innovative design techniques. Examples are: service-oriented design, domain design and product line/family engineering, pattern-oriented design, web design, global software development. The students work in small groups to discuss the different design techniques and how to use them for an assigned software system. They have to develop different representations of the system. Each representation has to emphasize how a certain design technique has been applied, and the pros and cons it brings in the developed solution. Each representation constitutes a design documentation for the software system. Lectures and group work. Material handed out by the lecturer and on Blackboard. Written reports of the assignment. Teamwork. Basic knowledge on Software Engineering theory and practice. mCS, 3IMM, mIS, mBMI, mAI Registration for this course is compulsory in TIS via https://tisvu.vu.nl/tis/menu, two weeks prior to the start. Further information on this module will be made available on the Blackboard system http://bb.vu.nl.
subject code docent lecturer credits period aim
Automated Reasoning in AI 400389 dr. A.C.M. ten Teije prof.dr. F.A.H. van Harmelen 6 5 and 6 Since its early days Artificial Intelligence has employed logic as a mean to provide generic solutions for computationally and conceptually difficult practical problems. The aim of the course is to make the students familiar with a number of popular logic-based representation and reasoning mechanisms for Artificial Intelligence. Furthermore, students should have the capability to transfer the learned techniques to other problems and to other representation mechanisms. content The course will be structured in three modules. In each of these modules a practical problem will be introduced, a logic-based representation proposed, and the basic techniques for automated reasoning in this language studied in a practical, hands on, way. In a nutshell, we plan to cover: • propositional Logic for scheduling, and satisfiability checking with Davis Putnam; • Allen's interval logic for Planning, with constraint propagation in Temporal Constraint Networks;
10
Artificial Intelligence (MSc)
•
form of tuition
literature mode of assessment entry requirements target audience remarks naam code docent studiepunten periode doel
inhoud
werkwijze literatuur toetsing doelgroep subject code credits period lecturers aim
description logics for classification, with Tableau calculi for subsumption. In period 5 there will be lectures and practical sessions, plus significant time for self-study and practical work. In period 6 there will be regular meetings to support for the work on a larger project. Selected scientific papers. 3 practical assignments (2 in period 5, 1 in period 6). Basic knowledge in logic is an advantage, but not required, as is some familiarity with programming. Master AI, in particular the specialization "Knowledge Technology and Intelligent Internet Applications". For further information see the AR in AI blackboard site. Bedrijfsmodellering en requirements engineering 400010 dr. J.F.M. Burg 7 1 Na dit vak is de student in staat: • een probleem- en veranderingsanalyse uit te voeren met betrekking tot een IT vraagstuk in een bedrijfsmatige context; • op modelmatige wijze in kaart te brengen hoe een informatiesysteem als oplossing past in bedrijfsstrategie en bedrijfsproces; • verschillende methodieken toe te passen voor het eliciteren van door de organisatie te stellen eisen aan een te ontwikkelen informatiesysteem. Het vak BedrijfsModellering en Requirements Engineering (BMRE) behandelt de analyse van bedrijfsvraagstukken, waarbij introductie of uitbreiding van een informatiesysteem een van de mogelijke oplossingen is. Dit omvat de activiteiten en methodieken die nodig zijn om: (1) een probleemanalyse uit te voeren met betrekking tot IT vraagstukken in een bedrijfsmatige context; (2) te modelleren hoe een gewenst informatiesysteem past in het bedrijfsproces en aan te geven welke eventuele veranderingen daarbij wenselijk zijn; (3) het ontwikkelen en toetsen van het te stellen pakket van eisen aan een te bouwen informatiesysteem. Het vak bestaat uit een college met een tentamen en een practicum. Beide moeten voldoende zijn. Syllabus. Tentamen plus practicumverslag. 2IMM, 3I, 3BWI Behavioral Methods 815096 6 3 dr. M.R. Nieuwenstein; dr. L.J.F.M. van Zoest This course aims to provide students with knowledge of commonly used methods in cognitive psychology, and their problems. This will include methods for data collection, data analysis, and theory development.
Exam parts
11
content Examples of methods that will be covered in this course are signal detection theory, the methods used in cognitive neuropsychology (e.g., double dissociations), psychophysical experiments (e.g., how to obtain a reliable estimate of a sensation threshold), and memory research (e.g., the processdissociation technique). The course also covers the problems of some commonly used methods in data-analysis (e.g., null-hypothesis significance testing, interpretation of p values), and the principles that govern the development and evaluation of theories (e.g., philosophy of science, hypothesis testing). form of tuition Lectures literature A selection of articles and bookchapters. mode of assessment open-ended written examination subject code lecturers credits period content
form of tuition literature mode of assessment target audience subject code coördinatoren lecturers credits period aim
content
12
Behaviour Dynamics 400113 dr. T. Bosse; dr. M. Hoogendoorn 6 1 and 2 This course teaches analysis and modelling of the dynamics of behaviour in Artificial, Biological, Cognitive and Social systems. Behavioural dynamics occurs in different forms, contexts and complexity. During the course examples of such behaviour are studied coming from software systems (e.g., knowledge- and agent-based systems), cognition (e.g., the use of beliefs, desires and intentions, complex reasoning tasks) and organisation theory (e.g., organisational change). The dynamics of behaviour of such systems is analysed (including verification and validation), modelled and simulated in this course using different techniques and tools. Combinations of lectures, practical assignments, and presentations. Online reader. Examination and practical assignments. Both grades should be at least 5.5 to pass the course. mAI Bioinformatic Data Analysis and Tools 430048 prof.dr. J. Heringa; dr.ir. K.A. Feenstra prof.dr. J. Heringa; prof.dr. F.A.H. van Harmelen; dr. T. Kielmann; dr.ir. K.A. Feenstra 6 4 and 5 A theoretical and practical bioinformatics course on the fundamentals of bioinformatics tools and tool creation for biological data mining. Goals: • At the end of the course, students will be aware of the issues, methodology and available bioinformatics tools, so to become a creative bioinformatics problem solver and tools creator. • At the end of the course, students will have hands-on experience in statistical thermodynamics and clustering techniques. Theory: • Microarray and array-CGH data, introduction to statistical
Artificial Intelligence (MSc)
form of tuition
literature
mode of assessment entry requirements
target audience
remarks subject code credits period lecturer aim content
form of tuition literature mode of assessment entry requirements remarks
thermodynamics of soft and biological matter, molecular mechanics simulations and sampling, repeat recognition tools and concepts (e.g. transitivity), protein domain prediction concepts and tools, pattern recognition (clustering techniques), machine learning techniques, genetic algorithm, ontologies, semantic web, parallel computational techniques and GRID computing Practical: • Assignment statistical thermodynamics • Assignment biological data clustering • 13 Lectures (2 two-hour lectures per week) • Assignment introductions • Computer practicals • Hands-on support Oral lectures, active participation, on-line assignments, assignment inductions and consultation (one-to-one teaching) • E-course material (slides, assignment material, papers): http://ibi.vu.nl • Books: Nelson, P., Biological Physics. Energy, Information, Life. W H Freeman & Co., July 2003, 600 pages, ISBN: 0716743728. Assignment results and oral or written exam (depending on number of course students). A completed course Sequence Analysis and DNA/Protein Structure-Function Analysis and Prediction is a strong advantage. Some experience in programming is required. MSc Bioinformatics, Students with Bachelor degree in Physics, Chemistry, Mathematics, Computer Science, Biology, Medical Natural Sciences or Medicine, with a strong interest and some basic knowledge in Bioinformatics. The course is taught in English. Brain Imaging 815103 6 1 dr. D.J. Heslenfeld To learn how various brain imaging techniques are used in modern neurocognitive research. The course will treat physical principles, recording apparatus, and practical applications of the four major brain imaging techniques: EEG, MEG, MRI, PET, with an emphasis on EEG and MRI. These techniques will be discussed in detail and live demonstrated. We will visit the various labs, and students will perform a small research project of their own. This includes recording, analyzing and presenting your own brain imaging data in a small supervised group. Lectures and obligatory practicals. To be announced Written report, oral presentation, contribution to practicals. Cognitive Neuroscience and Neuropsychology. Language: tuition in English MRI practicals will take place on Wednesdays in the afternoon/evening
Exam parts
13
subject code credits contact period co-ordinator lecturers aim
content
literature examination format
recommended
14
Business Intelligence 61312020 6 18 hours (6 tutorial, 12 lecture) 1 dr. J.F.M. Feldberg prof.dr. A.E. Eiben; dr. J.F.M. Feldberg The primary aim of this course is to establish an elementary frame of reference concerning business intelligence. Despite the fact that the course focus is primarily managerial and not technical, an important objective is to train students in the successful application of a popular decision support tool (Cognos Powerplay). By means of 'learning by doing' elementary skills in the usage of decision support systems are acquired. Students completing this course successfully, will be able to actively collaborate in sensible thinking and deciding about the benefits, development, application, and implementation of business intelligence solutions. The realization of business objectives and sustainable competitive advantage are keywords in this context. In addition to this, the frame of reference offers a point of departure for further self-study to deepen and broaden the knowledge offered. Modern organizations, in particular the management of these organizations, tend to suffer more from an overload of data than from a lack of data. To a great extent this overload is caused by the overwhelming growth of information systems in organizations. Enterprise Systems (ERP), Customer Relationship Systems (CRM) as well as the growing number of Internetbased applications (e.g. e-commerce) are all important sources for the explosion of financial, production, marketing and other business data. The challenge for most organizations is to develop and build systems that support the transformation of the collected data into knowledge. To be successful in this transformation processes organizations have to develop the capability to aggregate, analyze and use data to make informed decisions. This course deals with the theory concerning business intelligence as well as with the application of business intelligence solutions. To be able to successfully implement business intelligence solutions, one has to have knowledge about their functioning and proficiency in using them, as well as knowledge about their field of application, e.g., how to select, transform, integrate, condense, store and analyze relevant data. This course uses the term 'business intelligence' in a broad sense. A narrow interpretation would only deal with software solutions ('data warehousing' and 'online analytical processing'). The broad interpretation - to be used in this course - also includes: theories concerning decision making, related decision support systems and their application for management, i.e., data warehousing, online analytical processing and data mining. • Book (to be announced) • Various papers. written interim examination 65 percent practical test (weekly) business intelligence tutorial tests (35 percent). All tests and exams will be administered through a digital test environment. • Basic course in Information Systems, f.e. on the level of Laudon &
Artificial Intelligence (MSc)
background knowledge •
Laudon, Management Information Systems, Managing the Digital Firm. 9th edition.Prentice Hall, 2004. O'Brien, James A., Introduction to Information Systems. 12th edition. Mc Graw Hill, 2005.
naam C/C++ code 400012 Het vak wordt geven in de eerste 4 weken van periode 4. docent dr. N. Silvis-Cividjian studiepunten 2 periode 4 doel Het verwerven van basiskennis in C en C++, nodig voor o.a. het schrijven van computersimulaties inhoud Het college is een korte introductie van C/C++ als tweede programmeertaal. Ervaring met een andere programmeer taal zoals Java is vereist. Een paar belangrijke programmeeraspecten worden tijdens het college besproken en in kleine opdrachten wekelijks geoefend. Drie verschillende manieren van programmeren in C++ worden belicht: procedureel, object georienteerd en generiek programmeren. Topics : C/C++ basic data types, arrays, strings, functions, file I/O, pointers, linked lists, classes, separate compilation, templates, generic algorithms, the standard template library (STL). werkwijze 4 hoorcolleges en 4 verplichte programmeeropdrachten. literatuur Stephen Prata, C++ Primer Plus, SAMS, 2005. Website met nuttige links en documentatie is beschikbaar via Blackboard toetsing Op basis van de verplichte programmeeropdrachten. doelgroep 2BWI, 3Ect voorkennis Vereist voor deelname: Inleiding programmeren II practicum (400085) of Inleiding programmeren practicum voor Ect (400200). subject code co-ordinator lecturers credits period aim
Communication, Organization and Management 470572 dr. M.B.M. Zweekhorst dr. M.B.M. Zweekhorst; prof.dr. C.J. Hamelink; drs J. Maas; others 6 29.09.2008-24.10.2008 • To get acquainted with communication theories • To obtain in-depth understanding on communication from the perspective of sharing and influencing results • To acquire knowledge on organizational structures and designs • To get acquainted with important theories on organizational structures (e.g. Mintzberg) • To acquire insight into different management practices in the health and lifescience sector; • To obtain insight in motivation methods and conflict management • To gain insight and to practice leadership • To improve communication skills • To practise team management content Organizations in the health and life science sector are fast changing in part by newly emerging technologies and increasing societal complexity. A growing
Exam parts
15
form of tuition literature mode of assessment target audience
remarks
number of students with a beta degree become managers/professionals in these organizations. During this course students learn how to be effective performers both individually and in teams within organizations. This requires understanding the macro aspects of organizational behavior, which of necessity involves managerial skills and ways of strategic thinking. Several speakers conduct lecturers on different aspects, such as motivation, managing behavior between people, leadership, communication and developing and changing of organizations. The speakers will explain theories from literature and relate the theories to the experiences from practice. In addition, the students become a project manager of a project team (second year course `Biomedisch Beleid en (Kennis)management¿ of `Van Gen tot Gewas¿) that has been given the assignment to write a policy advisory report. While being a project manager you are trained and coached by experts. With the other students you discuss your experiences and the coach helps you relate the experiences to theory. Lectures, self study, training workshops project assignment "Management and organizational behaviour", Wendy Bloisi (European edition), McGraw-Hill Education, ISBN 0-07-709945-1 Written exam and assessment of the functioning as a team manager. Note both parts need to be passed Compulsory course within the Masterprogramme Management, Policy Analysis and entrepreneurship for the health and life sciences (MPA) and the Societal differentiation of Health, Life and Natural Sciences Masters programmes Attendance to trainingworkshops and project are compulsory.
subject code lecturer credits period aim
Computational Genomics and Proteomics 400436 prof.dr. J. Heringa 6 1 and 2 The course provides an insight into methods and algorithms for genomics and for proteomics data analysis. The course is aimed at students with an exact sciences background. At the end of the course students will be familiar with the basic principles of analysing the human genome and highthroughput proteomics data. content The course is structured around the following main topics: Biology: An introduction to molecular biology and genome biology, lectures explaining principles of biology required for the course. No additional biological knowledge expected! Sequences: Sequence comparison, searching large amounts of biological data, detecting genes and motifs Genomes: Sequencing and assembling, genome duplication, rearrangements, evolution, comparative genomics, genome repeats Proteomics: High-throughput mass spectrometry data, biomarker detection, computational diagnostics Protein-protein interaction (PPI): interaction networks, mesoscopic modeling, docking form of tuition Lectures and assignments. literature Course materials and references are available at the Centre for Integrative
16
Artificial Intelligence (MSc)
mode of assessment entry requirements target audience remarks
naam code docent studiepunten periode doel inhoud
werkwijze literatuur toetsing doelgroep voorkennis opmerkingen
Bioinformatics (IBIVU) website: http://www.ibivu.cs.vu.nl/teaching/ Written exam and assignments Writing algorithms in pseudocode; Mathematical skills. Third and fourth year students of CS, AI, Math, Physics. The course will only take place if at least 10 students register within the required notice period. The course is taught in English. Computernetwerken 400487 dr.ir. H.J. Bos 6 5 en 6 Het inzichtelijk maken van de architectuur van computernetwerken. De nadruk ligt op het behandelen van de architectuur van communicatieprotocollen, zowel voor hoog- als laagniveau-communicatie. Onderwerpen die aan de orde komen zijn: de fysieke laag, de datalinklaag, de netwerklaag, de transportlaag en de applicatielaag. Voorbeelden die aan de orde komen zijn onder meer het Internet, Internet via de kabel, en draadloze netwerken. Aandacht wordt ook besteed aan beveiligen van netwerken. Hoorcollege. Tanenbaum, A.S., Computer Networks 4th edition. Prentice-Hall, 2003. Schriftelijk. 2I, 2IMM • Inleiding Computersystemen OF • Pervasive Computing Actuele informatie over het vak is te vinden op: http://www.cs.vu.nl/~steen/courses/cn.html
subject code lecturer credits period content
Data Mining Techniques 400108 dr. W.J. Kowalczyk 6 4 and 5 The course will provide a survey of basic data mining techniques and their applications for solving real life problems. After a general introduction to Data Mining we will discuss some "classical" algorithms like Naive Bayes, Decision Trees, Association Rules, etc., and some recently discovered methods like boosting, Support Vector Machines, co-learning. In the second part of the course a number of most successful applications of data mining will be discussed: marketing, fraud detection, text and Web mining, bioinformatics. In addition to lectures there will be an extensive practical part, where students will experiment with various data mining algorithms and data sets. The grade for the course will be based on these practical assignments (i.e., there will be no final examination). form of tuition Lectures and compulsory practical work. literature Ian H. Witten, Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufman, 2000. Additionally, a collection of articles in electronic form. mode of assessment Computerpracticum.
Exam parts
17
entry requirements Vereist voor deelname aan het tentamen: Kansrekening en Statistiek of Algemene Statistiek. Aanbevolen: Machine Learning. target audience mBMI, mCS, mAI subject code lecturer credits period aim content
form of tuition literature mode of assessment entry requirements target audience remarks
subject code lecturer credits period content
form of tuition literature mode of assessment entry requirements target audience remarks subject code lecturer credits period aim
18
Design of Experiments and Analysis of Variance 400310 prof.dr. A.W. van der Vaart 2 2 Learn how to design experiments and analyse the results by ANOVA. Not only in theory, but also in practice using a statistical package. In order to draw sound conclusions from an experiment or survey it is necessary that the study is well designed. In this course a few well known designs (completely randomized, randomized block etc.) and the associated analyses of variance are discussed. Classes. Lecture notes and slides that can be found via http://www.math.vu.nl/sto/onderwijs/doeanova/ Exercises, final project with oral examination. Descriptive statistics (comparable to third year course "toegepaste statistiek") mIS, mCS Homework consists of computer exercises, to be solved using the statistical package R (http://www.r-project.org/). Classes are in English. Design of Multi-Agent Systems 400054 dr. M. Hoogendoorn 6 1 This course discusses the design techniques of knowledge-based systems that consist of various intelligent agents and centers around the notion of compositional architecture. The design method used is DESIRE. A number of examples of agent models and generic task models are treated. In the associated practical work in spring, hands on experience is gained in the design of compositional multi-agent and knowledge systems using DESIRE tools. Combination of lectures and practical assignments. Reader. On the basis of the homework assignments, practical assignments and a written exam. Kennissystemen (400126) and Logische taal en redeneermethoden (400043). 3AI, 3I, mCS More information can be found on Blackboard. Distributed Algorithms 400211 prof.dr. W.J. Fokkink 6 4 and 5 To obtain a good understanding of concurrency concepts and a large range
Artificial Intelligence (MSc)
of distributed algorithms. content Snapshots, traversal algorithms, termination detection, routing algorithms, deadlock-free packet switching, leader election, minimal spanning trees, anonymous networks, fault tolerance, failure detection, synchronization, mutual exclusion, garbage collection, scheduling. form of tuition Lectures and exercise classes. literature • Gerard Tel, Introduction to Distributed Algorithms (2nd edition). Cambridge University Press, 2000. • Hagit Attiya and Jennifer Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics (chapter 4). McGraw-Hill, 1998. • Jane Liu, Real-Time Systems. Prentice Hall, 2000. mode of assessment Written examen (plus a home exercise sheet that can provide up to 0,5 bonus point). target audience mCS, mPDCS subject code lecturer credits period aim
mode of assessment entry requirements target audience remarks
Distributed Systems 400130 prof.dr.ir. M.R. van Steen 6 2 After taking this course, the student will have gained insight in the design and implementation of modern distributed systems, and notably the trade-offs that need to be considered between making design decisions. We discuss the issues concerning the development of middleware systems for large-scale computer networks. Principles that are discussed include architecture, processes, communication, naming, synchronization, consistency and replication, fault tolerance, and security. These principles are further explained by means of different paradigms applied to distributed systems: object-based systems, distributed file systems (NFS), Web-based systems, and coordination-based systems (publish/subscribe systems). Explicit attention is paid to the practical feasibility and scalability of various solutions. For this reason, experimental (research) systems as well as commercially available systems are discussed. Lectures. Tanenbaum, A.S., Steen, M. van, Distributed Systems,Principles and Paradigms 2nd edition. Prentice-Hall, 2007. Written exam. Computer Networks (Computernetwerken, code 400016). mCS, mPDCS More information, slides and relevant literature, can be found in Blackboard.
subject code co-ordinator lecturer credits period content
Dynamic Energy Budgets 470503 prof.dr. S.A.L.M. Kooijman prof.dr. S.A.L.M. Kooijman 6 february- october 2009 A quantitative theory for processes of energy uptake and use by organisms is
content
form of tuition literature
Exam parts
19
form of tuition literature mode of assessment target audience remarks subject code lecturers credits period aim
content
form of tuition literature mode of assessment entry requirements target audience naam code coördinator docenten studiepunten periode doel
20
discussed. For more information see http://www.bio.vu.nl/thb/deb/course/deb. Tele-course, form of tuition to be discussed with the course co-ordinator. See http://www.bio.vu.nl/thb/deb/course/deb Software package DEBtool will be used to exercise the practical application of the DEB theory. Master and PhD students in natural sciences & mathematics. For more information see http://www.bio.vu.nl/thb/deb/course/deb E-Business Innovation 400110 dr.ing. J. Gordijn; drs. E. Schulten 7 1 and 2 To understand and systematically analyze a business model for an innovative e-business idea. To develop and present an e-business plan with the goal to attract venture capital. We will introduce a methodology called e3value for understanding and analyzing business models for networked value constellations. Additionally, we discuss how to write a business plan for venture capitalists. Combination of lectures, topical workshops and project. Reader. On the basis of an e-business project, workshops and a written exam. Advance knowledge equivalent to Bedrijfsmodellering en requirements engineering (400010) and Software Engineering (400071) is recommended. 3IK, mIS, mCS, mBMI Evolutionaire genetica 470053 dr. J.M. Kooter dr. H. Schat; dr. J.M. Kooter; dr. D. Roelofs 6 01.06.2009-26.06.2009 Verwerven van kennis en inzicht in : • dynamische karakter van genetisch materiaal en genetische variatie • oorzaken genetische variatie op nucleotide, gen, en chromosoom-niveau • genoomevolutie bij pro- en eukaryoten • vergelijkende genomics • evolutionaire gevolgen van sex • ecologische en moleculaire oorzaken van soortvorming • horizontale DNA overdracht • gebruik van genomische databanken bij evolutiestudies • modellen van de moleculaire oorsprong van leven op aarde • reconstructie van fylogenetische bomen met behulp van het computerprogramma PAUP • verschillende vormen van selectie en theoretische onderbouwing • manieren waarbij genetische variatie wordt gebruikt om oorzaken van stochastische en deterministische processen af te leiden • toepassing van wiskundige regels die bestaan voor het gedrag van allelen van één of twee loci in ideale populaties, en voor genen met een
Artificial Intelligence (MSc)
kwantitatief effect de relatie tussen ziekte en evolutie • moleculaire evolutie van pathogenen (bacterien, virussen, protozoa) Niveau 2: verdieping De cursus behandelt: • Genetische concepten die de basis vormen voor het begrijpen van de evolutietheorie, waaronder moleculaire evolutie, ontstaan van nieuwe genen en functies, genoom organisatie, vergelijkende genomics, soortvorming, humane genoom evolutie, relatie ontwikkeling en evolutie, en hypothesen over het ontstaan van `leven', • Theoretische principes van de populatie genetica, waaronder verschillende vormen van selectie, quantitatieve genetica, drift, en hun toepassingen bij het bestuderen van variatie en evolutie in natuurlijke populaties. • Fylogenetische reconstructies op basis van DNA sequenties met behulp van een cladistisch computerprogramma • Fylogeografie • Hoorcolleges (40 uur) • Werkcolleges (verplicht, 20 uur) • Literatuurbespreking (verplicht, 9 uur) • Computer Practicum (verplicht, 9 uur) • Zelfstudie • Ondersteuning via Blackboard • Studieboek: 'Evolutionary Analysis', Scott Freeman and Jon C. Herron, Fourth Edition, 2007, Pearson, Prentice Hall • Syllabus met Onderzoeks- en Reviewartikelen over onderwerpen die in het boek niet worden behandeld Schriftelijk tentamen (0.8) en een literatuurbespreking (0.2). Beide moeten voldoende zijn. Keuzevak voor derdejaars bachelorstudenten Biologie en Bio-medische Wetenschappen. Genetica, Evolutie van de mens of Evolutiebiologie uit het eerste jaar. De cursus wordt gegeven door de afdelingen Genetica, Ecologie en Fysiologie van planten, en Dierecologie. •
inhoud
werkwijze
literatuur
toetsing doelgroep voorkennis opmerkingen
subject code lecturer credits period aim
Evolutionary Computing 400111 prof.dr. A.E. Eiben 6 1 and 2 To learn about computational methods based on Darwinian principles of evolution. To illustrate the usage of such methods as problem solvers and as simulation, respectively modelling tools.To gain hands-on experience in performing experiments. content The course is treating various algorithms based on the Darwinian evolution theory. Driven by natural selection (survival of the fittest), an evolution process is being emulated and solutions for a given problem are being "bred". During this course all "dialects" within evolutionary computing are treated (genetic algorithms, evolutiestrategieën, evolutionary programming, genetic programming, and classifier systems). Applications in optimisation,
Exam parts
21
form of tuition literature
mode of assessment target audience naam code coördinator docenten studiepunten periode doel
inhoud
werkwijze literatuur toetsing
22
constraint handling and machine learning are discussed. Specific subjects handled include: various genetic structures (representations), selection techniques, sexual and asexual genetic operators, (self-)adaptivity. If time permits, subjects in Artificial Life and Artificial Societies, and Evolutionary Art will be handled. Hands-on-experience is gained by a compulsory pogramming assignment. Oral lectures and compulsory pogramming assignment. Eiben, A.E., Smith, J.E., Introduction to Evolutionary Computing. Springer, 2003 ISBN 3-540-40184-9. Slides available from http://www.cs.vu.nl/~gusz/ecbook/ecbook.html. Written exam and pogramming assignment (weighted average). mBMI, 3AI, mAI, mCS, mPDCS Gezondheidscommunicatie 470087 dr. J.E.W. Broerse dr M. Adriaanse; Gastdocenten; dr. E.W.M.L. de Vet; dr. J.E.W. Broerse 6 01.06.2009-26.06.2009 • Inzicht krijgen in de centrale begrippen rond het communiceren van gezondheidsboodschappen naar de hele samenleving of specifieke doelgroepen • In staat zijn een planningsmodel toe te passen op een concreet voorbeeld en de valkuilen te onderkennen in de planning van gezondheidscommunicatie. • In staat zijn het belang van de analyse van gezondheidsproblemen voor de planning van gezondheidscommunicatie te onderkennen, op te kunnen stellen en de uitkomsten te interpreteren. • In staat zijn de gereedschappen van de voorlichter en de daarbij passende literatuur te beschrijven en toe te passen op een concreet voorbeeld. • In staat zijn de uitkomsten van een gedrags- en omgevingsfactorenanalyse van een gezondheidsprobleem te interpreteren en te verwerken in een plan van aanpak middels gezondheidscommunicatie. Niveau 2: Verdieping In deze cursus worden de definities, concepten en theorieën rondom gezondheidscommunicatie en gedrag uiteengezet, alsook een aantal specifieke vormen van (gezondheids)communicatie (persuasief, informatief en educatief), doelgroepen en kanalen (media; zoals TV, posters, etc.). Naast het bieden van een theoretisch kader is deze cursus gericht op de praktische toepasbaarheid. In het kader van een specifiek gezondheidsprobleem maak je met twee/drie medestudenten een probleemanalyse, definieer je de doelgroep, maak je een gedrags- en omgevingsfactorenanalyse en bedenk je (op basis van de voorgaande analyses) een communicatiestrategie. Hoorcolleges, werkcolleges, (groeps)opdrachten en zelfstudie Syllabus en aanvullende literatuur bij de colleges • Beoordeling van de opdracht (drie deelopdrachten plus een presentatie): 40 procent van het eindcijfer. • Schriftelijk tentamen (multiple choice en open vragen): 60 procent van het eindcijfer.
Artificial Intelligence (MSc)
Voor zowel de opdracht, als het tentamen dient een voldoende behaald te worden! doelgroep Keuze voor derdejaars studenten BSc Algemene Gezondheidswetenschappen, derdejaars studenten BSc Gezondheid en Leven, en masterstudenten in 1 van de bètaopleidingen in de C-specialisatie (wetenschapscommunicatie). De cursus wordt ten zeerste aanbevolen voor bachelorstudenten die de masterspecialisatie Preventie en gezondheid willen gaan volgen. opmerkingen Aanwezigheidsplicht: iedere student moet bij de opdracht minimaal eenmaal presenteren en mag maximaal eenmaal afwezig zijn bij de werkcolleges. Maximaal 90 deelnemers. subject code credits period lecturer aim
content
form of tuition literature mode of assessment remarks
Human Information Processing (Informatieverwerking) 815048 6 5 and 6 dr. S.A. Los At the end of this course students should be capable of: • outlining some major theories and controversies in human information processing, in particular relating to the concepts of processing stages, the central bottleneck, and executive control; • specifying major methodological approaches to these controversies; • deriving experimental predictions from research hypotheses and theories; • interpreting results from research in terms of theoretical constructs; • discussing interrelations among different theories in human information processing. One or two research articles are covered during each lecture. The emphasis will be on (1) distinguishing the research hypotheses and underlying assumptions; (2) the experimental approach to test the hypotheses and (3) how the data bear on the different hypotheses. Lectures A series of journal articles to be specified at the first lecture. Open-ended written examination. Basic knowledge of experimental methods is assumed.
subject code lecturers credits period aim
Information Retrieval 400435 dr L. Aroyo; dr. K.S. Schlobach; dr. V. Malaise 6 2 The aim of this course is to introduce the basic concepts of Information Retrieval, and to give students the knowledge to adopt and apply existing Information Retrieval tools for practical applications. content Information Retrieval is the discipline of providing access to information stored in textual documents within a large collection. In the course, we introduce the basic concepts of Information Retrieval, including representation of documents, retrieval models and algorithms for clustering and classification. form of tuition 2 hours lecture, and 2 hours practical sessions per week, in a period of 7 weeks, plus a significant time for practical work.
Exam parts
23
mode of assessment 3 practical assignments. entry requirements Programming skills will be an advantage. target audience Master AI, in particular the specialization "Knowledge Technology and Intelligent Internet Applications", and the Master "Information Science". naam code studiepunten periode docent doel inhoud
werkwijze literatuur toetsing doelgroep
Inleiding besliskunde 400029 6 1 en 2 prof.dr. H.C. Tijms Kennis en inzicht hebben in het opstellen van OR-modellen en hun oplossingsmethoden. In deze inleiding zal het accent liggen op het opstellen van wiskundige modellen voor diverse optimaliseringsproblemen. Daarnaast worden de basisideeën besproken van de wiskundige technieken waarmee deze modellen worden doorgerekend. In het college is het gebruik van educatieve software voor het oplossen van de wiskundige optimaliseringsproblemen geïntegreerd. De volgende onderwerpen komen aan de orde: • lineaire programmering (modelformuleringen, simplex algoritme, schaduwprijzen, gevoeligheidsanalyse); • netwerkanalyse (kortste-pad algoritme, minumum-opspannende boom, Steiner probleem); • geheeltallige en combinatorische optimalisering (modelformuleringen, 01 variabelen, branch-en -bound methode, heuristieken); • sequentiele beslissingsproblemen (dynamische optimalisering); • vooraadtheorie (de EOQ-formule, Silver-Meal heuristiek). Hoorcollege: 2 uur per week; practicum: 2 uur per week. Tijms, H.C., Inleiding in de Operationele Analyse tweede druk. Utrecht: Epsilon, 2004. Via twee deeltentamens aan het einde van periode 1 en periode 2. 1BWI, 1W
naam Inleiding wijsgerige antropologie code 150005 docent dr. L.D. Derksen (kamer 13A-40, tel. (020) 59 86684, e-mail
[email protected]) studiepunten 6 periode 5 doel Dit college is bedoeld als een eerste oriëntatie in wijsgerige theorieën over de mens en als een introductie tot theoretische benaderingen van de wijsgerige antropologie. Op dit college krijg je inzicht in de lichaam-geestproblematiek door teksten te lezen op het gebied van de hedendaagse philosophy of mind. Je maakt kennis met de ideeën van vooraanstaande auteurs op dit gebied en met actuele discussies over dit onderwerp. Ook oefen je vaardigheden, zoals het geven van een inleiding op een tekst tijdens een college, het opzoeken van achtergrondinformatie, het formuleren van filosofische vragen, en het beargumenteren van een eigen standpunt over kwesties die worden besproken. inhoud Het boek Theories of Mind is een verzameling van klassieke artikelen op het
24
Artificial Intelligence (MSc)
gebied van philosophy of mind. Auteurs die aan de orde komen zijn o.a. Descartes, Ryle, Fodor, Smart, Turing, Churchland, Dennett, Searle en Nagel. Het boek begint met een uiteenzetting van het Cartesiaans dualisme en voorbeelden van kritiek daarop. Vervolgens worden visies op de verhouding tussen hersenen en geest besproken. Daarnaast is er een uiteenzetting over de mogelijkheden van artificiële intelligentie. Tot slot wordt de vraag besproken naar de aard van het bewustzijn en de menselijke identiteit. literatuur • Maureen Eckert, red., Theories of Mind. An Introductory Reader. New York, Rowman and Littlefield, 2006. toetsing schriftelijke tentamen. subject code lecturers credits period aim
content
form of tuition literature mode of assessment entry requirements
target audience remarks
subject code lecturer credits period
Intelligent Interactive Distributed Systems 400152 prof.dr. F.M.T. Brazier; dr. T.B. Quillinan 8 2 and 3 The aim of this course is twofold. The first aim is to acquire knowledge and insight in conceptual design of knowledge intensive systems in multi-agent environments. The second aim is to acquire skills in the following areas: analysing and modelling complex domains and complex tasks in general;analysing and modelling multi-agent environments in particular, analysis of recent relevant literature; writing reports; presenting results. In this course the main focus is on analysing, modelling and implementing realistic, interactive, intelligent, distributed systems. A realistic example domain involving trading agents is explored in the course and (mostly) implemented. A combination of lectures, meetings and practical work. To be announced during the course (notably articles). On the basis of exercises. The courses Distributed Systems (400130) and Business Modelling and Requirements Engineering (400010) are recommended for Computer Science students. The courses Design of Multi-agent systems (400054) and Behavioural Dynamics (400113) aanbevolen are recommended for Artificial Intelligence students. mCS, mAI Attendance of lectures/meetings is obligatory; pre-registration is obligatory for this course. At the discretion of the lecturers, a selected number of students can participate in the international Trading Agent Competition for an additional 7 credits (code 400450). This competition takes place in the months following the regular Intelligent Interactive Distributed Systems course. Intelligent Web Applications 400153 dr. R.M. Siebes 8 1 and 2
Exam parts
25
aim How to intelligently utilize huge, rich and shared web resources and services taking into account heterogeneity of sources, user preferences and mobility. content The World-Wide Web today is a huge network of information resources which was built in order to broadcast information for human users. Consequently, most of the information on the Web is designed to be suitable for human consumption: The structuring principles are weak, many different kinds of information co-exist, and most of the information is represented as free text. With the increasing size of the web and the availability of new technologies such as mobile applications or smart devices, there is a strong need for making the information on the World Wide Web accessible to computer programs which search, filter, convert, interpret, and summarize the information for the benefit of the user. The Semantic Web is a synonym for a World Wide Web whose accessibility is similar to a deductive database where programs can perform well-defined operations on well-defined data or even derive new information from existing data. This course addresses methods to create and use such a Semantic Web. It extends and complements the "Web-based Knowledge Representation" course by. I. deepening the understanding of the formal foundations of knowledge representation and reasoning on the web A) Semantics of web languages B) Reasoning in Semantic Web LanguagesII. investigating typical application scenarios concerned with the use of distributed and heterogeneous information on the web C) Information Extraction D) Information Integration E) Information Access form of tuition Intensive lectures (in English), 2 times per week in the first 3 weeks. Per week there is a short assignment about the topic discussed as preparation for the large assignment where you make your own web application. literature Set of research papers. entry requirements Web-based Knowledge representation (required). Knowledge Based Systems (preferred). target audience mAI subject code coördinator lecturers credits period aim
26
Interactive Communication 470562 drs. J.F.H. Kupper drs. J.F.H. Kupper; prof.dr. C.J. Hamelink; drs. B.J. Regeer 3 13.10.2008-24.10.2008 • To acquire insight into the need for different ways of (professional) communication • To understand the dilemmas and constraints, which have been identified for interactive communication • To establish and put into practice a framework for analyzing interactive communication • To practice skills in interactive communication
Artificial Intelligence (MSc)
content Changes in society have resulted in a growing need for (more) interactive communication. Within this course we analyze the change from Public Relations as a one way stream (such as Postbus 51 commercials) to interactive communication (such as debates, conversations) at three levels. First of all, we assess the changes which have occurred within the societal context which reduced the success of the one-way stream. What does the transformation of the industrial society towards the network society mean for communication strategies? And, what limitations are faced by interactive communication at the macro-level (such as lock-in, resilience, institutional tradition). Secondly, what does this mean for communication instruments? For example, what is the difference between one-way and two-way communication? How do you recognize the difference between a genuine open dialogue and a debate between different points of view? Thirdly, what are the constraints of interactive communication at the individual level? How can you recognize these within conversations and debates? Assessment of the relations and connections between the different levels forms an essential part of the course. Students will gain insight into the relevant theoretical concepts underlying the need for interactive communication. form of tuition Lecturers, self study, workshops, training workshops and individual assignments. literature Reader mode of assessment Assessment is based on individual assignments, a group assignment and active participation. All assignments need to be passed. target audience Optional course for Master students Management, Policy Analysis and Entrepreneurship in health and life sciences (MPA), Science communication and Societal differentiation of the Health, Life & Natural Sciences. remarks Attendance of workshops and training workshops is compulsory. For information:
[email protected] naam code coördinator lecturers studiepunten aim
Interpersoonlijke communicatie 471007 drs. I. Pauw drs. I. Pauw; D.T.A. Wols 3 Development of: • insight in interaction processes/ how communication takes place in groups; • skills for communicating in groups effectively, especially in management roles. content This course is concerned with gaining insight in interaction patterns that take place in a group. Your own contribution to the communication as a member of a group and your possibilities to fulfill a "leader¿s role" are discussed. We work with the Interpersonal Teacher¿s Behavior Model, which is used in the secondary teacher training program but which is also applicable in other situations. Effects of the `leader¿s` behavior on that of group members are analyzed. Also, `effective¿ behavior will be trained. form of tuition Seminars and workshops during which theory will be analysed with the help of video images and practice through active training; identifying interaction patterns; training/rehearsing of communication skills. literature Reader
Exam parts
27
mode of assessment On the basis of an assignment (e.g. via a video fragment), of which the results will be displayed in the portfolio. target audience Optional course in the C-differentiations (Science Communication) of most of the two year master programs of FALW and FEW. period 29.09.2008-10.10.2008 remarks Course is taught in Dutch. Maximum participants: 20 subject code co-ordinator lecturers credits period aim
content
form of tuition literature mode of assessment target audience
remarks subject code credits target audience remarks
subject code lecturers credits period content
28
Intracellular Networks 470622 dr. K. Krab dr. F.J. Bruggeman; prof.dr. H.V. Westerhoff; dr. K. Krab; prof.dr. J. Heringa; dr. J.L. Snoep 6 27.10.2008-21.11.2008 To train the students to analyse networks of cellular processes in terms of systems properties (System Biology). Integration of knowledge about individual processes and (spatial, temporal and organisational) structure of networks in biological systems. Enzyme kinetics; Metabolic and Hierarchical control Analysis; properties of metabolic and signalling networks. Analysis of quantitative kinetic models of such networks ('Silicon cells'). Lectures, self-study and computerpractical. Lecture notes (ca. 10 euro) Written exam and computer assignment. Masterstudents with a background in Biology, Medical Biology, Bioinformatics, Physics and Mathematics with an interest in the quantitative analysis of the behaviour of biological systems. Taught in English Introduction to Game Theory 400604 6 mAI This course is given at the UvA. For the description, please visit http://studiegids.uva.nl/web/uva/sgs/nl/c/1994.html Knowledge Management and Modeling 400125 dr. A.C.M. ten Teije; prof.dr. F.A.H. van Harmelen 6 1 and 2 Knowledge management is a relatively new discipline which has as its aim the efficiency improvement of the production factor "knowledge" and of the related business processes (knowledge creation, distribution, application and maintenance). The course "Knowledge Management and Modeling" is concerned with the organizational aspects of knowledge management, as well as the question how knowledge can be described with the support of modern information-modeling techniques. These knowledge models can be used to develop knowledge based systems. The notion of pattern-based knowledge modeling is a key issue in the knowledge management process.
Artificial Intelligence (MSc)
form of tuition literature
mode of assessment target audience
Students carry out a knowledge-management project in small project groups in a problem domain and organization of choice. Lectures, assignments, group project. Schreiber, Akkermans, Anjewierden, de Hoog, Shadbolt, van de Velde, Wielinga: Knowledge Engineering & Management. The MIT Press, Cambridge MA, 2000, ISBN 0-262-19300-0. Assignment, project reports. mIS, mAI
naam code docent studiepunten periode inhoud
Kwaliteitszorg van de informatievoorziening 400195 B. Derksen (hoofddocent. e-mail:
[email protected]) 5 1 en 2 Het vak beoogt: • de student bewust te maken van een veranderende gebruikersattitude wat betreft de informatievoorziening; • de student methodes te leren om structureel de kwaliteit van de informatievoorziening te onderzoeken en te verbeteren; • de student bekent te maken met de praktijksituatie. • de student te voorzien van de huidige best practices op informatievoorziening Steeds meer professionele organisaties die zich bezighouden met de informatievoorziening gaan over tot certificering van hun producten en hun dienstverleningsproces. De kwaliteitsbeoordeling neemt een steeds belangrijkere rol in voor de informatievoorziening. Evaluatie, assessment, kwaliteitsbeheersing, kwaliteitsborging,integrale kwaliteitszorg en verbetering van organisatie en processen zijn echter nog geen "levende" termen. Dit college beoogt daarin verandering aan te brengen. De leerstof wordt behandeld in 10 hoorcolleges waarin de volgende onderwerpen aan de orde komen: • kwaliteit en kwaliteitszorg; • kwaliteitsinspectie, kwaliteitsbeheersing, kwaliteitsborging en integrale kwaliteitszorg; • de infrastructuur van de informatievoorziening en de levenscyclus ervan; • de kwaliteit van de informatievoorziening; • kwaliteitszorg van de informatievoorziening; • verbeteren organisatie door kwaliteit van de informatievoorziening. Het accent van het vak ligt bij het in de praktijk toepassen van de in de colleges aangeleerde theorie, begrippen, principes en instrumenten. werkwijze De hoorcolleges worden gegeven aan de hand van verplichte literatuur bestaand uit het boek: "Modellen die werken, kwaliteit in bedrijf en informatievoorziening". De in de hoorcolleges verkregen kennis dient te worden aangescherpt en aangevuld door het bestuderen van de verplichte literatuur alsmede de opgaven in de literatuur. De opdrachtteams De studenten dienen zich te organiseren in opdrachtteams. Het aantal te vormen teams en het aantal studenten per team is afhankelijk van het aantal inschrijvingen voor het vak en wordt tijdens een van de colleges meegedeeld.
Exam parts
29
De teams dienen de volgende opdrachten uit te voeren: • het uitwerken van een aantal cases die tijdens de colleges worden aangereikt en het presenteren van de uitwerkingen • het uitvoeren van een opdracht na afloop van de hoorcolleges. toetsing De mondelinge toets De kennis van en het inzicht in de tijdens de colleges gepresenteerde en in de reader weergegeven stof, wordt tijdens een mondelinge toets geverifieerd. De toetsen vinden plaats op nog nader vast te stellen tijdstippen. De opdracht Ten tijde van de colleges dient door ieder team een opdracht te worden uitgevoerd. Dit kan een opdracht bij een externe organisatie (buiten de Universiteit) zijn, of een interne opdracht binnen de Universiteit. De docent maakt de opdrachten tijdens een van de colleges bekend. De teams dienen uiterlijk tijdens het zesde college aan de docent bekend te maken welke opdrachten zij kiezen. Hierbij geldt het principe "wie het eerst komt, het eerst maalt". Van iedere opdracht dient een verslag te worden gemaakt en een presentatie te worden verzorgd. De presentaties worden gegeven tijdens een "terugkomdag". In de mate van het mogelijke zijn de opdrachtgevers van de externe opdrachten bij de presentaties aanwezig. Het verslag dient uiterlijk een werkweek voorafgaand aan de presentatie bij de docent en, voor externe opdrachten, bij de externe opdrachtgever te zijn ingeleverd. Bij vragen, onduidelijkheden, problemen en dergelijke bij de uitvoering van de opdracht dient de teamleider contact op te nemen met de docent. Bij de eindpresentatie dient, waar mogelijk, gebruik te worden gemaakt van de theorie, de termen, de begrippen en de instrumenten uit de hoorcolleges en de verplichte literatuur. De eindpresentatie dient goed gedocumenteerd en op zichzelf leesbaar te zijn. De eindpresentatie mag niet langer dan dertig minuten duren (na verloop van dertig minuten zal de docent de presentatie afbreken). De voor het verslag en de presentatie te maken kosten zijn voor rekening van de studenten. doelgroep 3IMM, mIS opmerkingen Diverse gastsprekers uit het bedrijfsleven worden uitgenodigd. subject Literature Study code 400277 lecturer various lecturers (Students should consult their mentor to find a topic and a supervisor.) credits 6 period Variable aim Students will learn to: • conduct autonomously a literature study; • search and select bibliographic material that is relevant for the chosen topic; • give a presentation where they explain the research problem and present the state of the art. content The course consists of carrying out a literature study on a topic chosen in
30
Artificial Intelligence (MSc)
form of tuition mode of assessment target audience remarks subject code lecturer credits period aim content
form of tuition literature mode of assessment entry requirements target audience
agreement with a supervisor. Students select a topic of their interest that they particularly like, contact a person involved in the relevant research area and discuss with him/her the possibility to carry out a literature study under his/her supervision. Once agreed on the topic the study is carried out in two phases: • Students autonomously search, select and study relevant related bibliographic material (i.e. papers, reports, books etc.) • Give a written and/or oral presentation of the topic covered for an audience of computer scientists, for instance by giving a slide show. The exact form of presentation should be discussed and agreed upon with the supervisor. A clear indication of the used sources is an essential element of the presentation. Supervision by a faculty member. Written and/or oral presentation (in English), exact form to be agreed with the supervisor. mCS, mAI-TAI http://www.few.vu.nl/~kmitrok/literature_study2008.html Logical Verification 400115 dr. F. van Raamsdonk 6 1 and 2 Introduction to type theory and the proof-assistant Coq. A proof-assistant is used to check the correctness of a specification of a program or the proof of a theorem. The course is concerned with the proofassistant Coq which is based on typed lambda calculus. In the practical work, we learn to use Coq. One of the exercises is concerned with the correctness proof of the specification of a sorting algorithm, from which a functional program is extracted. In the course, we focus on the Curry-Howard-De Bruijn isomphism between proofs on the one hand and lambda-terms (which can be seen as functional programs) on the other hand. This is the basis of proof-assistants like Coq. We study various typed lambda calculi and the corresponding logics. This is a 13-weeks cours with 4 hours class every week: 2 hours theory and 2 hours practical work. Course notes. A written examination plus exercises. It is imperative to have a sufficient mark for the exercises. Inleiding logica (400119). mCS, mAI, mMath
subject code lecturer credits period aim
Machine Learning 400154 drs. E.W. Haasdijk 6 2 The course Machine Learning (ML) surveys methods of acquiring and/or modifying theories from observations. content Learning is one of the fundamental attributes of intelligence, and ML is
Exam parts
31
form of tuition literature mode of assessment target audience remarks
currently the most active area of research in AI. The main topics covered in the course are: • concept learning and the general-to-specific ordering • decision tree learning; • artificial neural networks; • evaluating hypotheses; • bayesian learning; • instance-based learning; • Genetic Algorithms; • learning sets of rules; • reinforcement learning. Lectures with final written examination. Tom Mitchell, Machine Learning. Mc Graw Hill, 1997 ISBN 0-07-042807-7. Written eximination. 3BWI, 2AI, mCS Students are required to sign up for this course at Blackboard and via TIS: https://tis.vu.nl/tis/menu
naam code studiepunten contacturen periode coördinator docenten doel
Management en Organisatie 1.1 60111030 3 18 (6 activerende werkvormen, 12 hoorcollege) 1 drs. G.P. Melker drs. G.P. Melker; drs. M.J. Visser • Het ontwikkelen van je theoretische kennis op het gebied van strategisch management, besluitvorming en maatschappelijk verantwoord ondernemen; • Het ontwikkelen van vaardigheden om relevante informatie te verzamelen en te analyseren met betrekking tot actuele vakrelevante cases; • Het ontwikkelen van je schriftelijke rapportagevaardigheden en je mondelinge presentatievaardigheden inhoud In dit vak staat het interne en externe functioneren van een bedrijf in de markt en de maatschappij centraal. De organisatie wordt gezien als een samenwerkingsverband van belanghebbenden gericht op het realiseren van specifieke organisatiedoelen (marktpositie, winst, maatschappelijke verantwoordelijkheid et cetera). Binnen het vak wordt ingegaan op strategisch management, strategieformulering, besluitvorming en denkrichtingen binnen het vakgebied van management en organisatie. Tijdens de activerende werkvormen word je in de gelegenheid gesteld om de aangereikte theorie toe te passen met behulp van actuele cases. Dit kunnen recente krantenartikelen zijn of andersoortige voorbeelden uit de praktijk. De activerende werkvormen hebben dan ook een hoog praktijkgehalte. werkwijze Hoorcolleges en activerende werkvormen. Tijdens de hoorcolleges worden de hoofdlijnen van de verplichte literatuur behandeld. Bij de activerende werkvormen staan de toepassing van de theorie en de voorbereiding op het tentamen centraal. literatuur • Keuning, D. & D.J. Eppink, Management & Organisatie. Theorie en Toepassing. 9e druk. Groningen/Houten: Wolters-Noordhoff, 2008.
32
Artificial Intelligence (MSc)
•
Keuning, D. & D.J. Eppink, Werkboek Management & Organisatie. 9e druk.Groningen/Houten: Wolters-Noordhoff, 2008. • Keuning, D., (2008). Management & Organisatie. 33 Cases. 9e druk.Groningen/Houten: Wolters-Noordhoff, 2008. • De overige literatuur wordt via de studiewijzer van periode 1.1 bekend gemaakt. toetsing schriftelijk tentamen Multiple choice vragen over de verplichte literatuur en de stof die tijdens de hoorcolleges is behandeld; kennis- en toepassingsgerichte multiple choice vragen. entreevoorwaarden Geen. De inhoud van het vak Management & Organisatie 1.1, 2.1 en 2.5 wijkt sterk af van de inhoud van het vak Management & Organisatie dat op het vwo wordt gedoceerd. Voorkennis van het vwo-vak Management & Organisatie is dan ook niet noodzakelijk. opmerkingen Tijdens de activerende werkvorm zullen de studenten werken aan een praktijkcase waarmee de studenten reeds een indruk krijgen op welke wijze de aangereikte leerstof kan worden toepast binnen organisaties. Ook in de perioden 2.1 en 2.5 zal het vak Management & Organisatie worden verzorgd. De complexiteit van de cases neemt naarmate de perioden vorderen steeds verder toe. Uiteindelijk ben je in staat om de verschillende inzichten en concepten op het gebied van management en organisatie te integreren en om de aangereikte theorie te vertalen in praktisch toepasbare oplossingen. Bij het oplossen van cases zal gebruik worden gemaakt van de 'casemethodiek-invijf-stappen'. subject code lecturer credits target audience remarks
Master Project AI for the Communication Variant 400538 various lecturers 21 mAI (specialization AI and Communication) This is the Master Project for the specialization AI and Communication. In this specialization there are two major projects, one in the Communication part and the other (this one) in the AI part. Therefore the number of credit points is only 21 for each project.
subject code credits period period aim
Master Project Artificial Intelligence 400285 30 4, 5 and 6 Variable. The Master programme in Artificial Intelligence is a scientific programme that aims to provide the student with the knowledge, experience and insights needed to autonomously carry out his/her professional duties. The programme is designed to prepare the student for further education as scientific researcher (Ph.D. studies) as well as to offer a solid basis for a career in business at an academic level. Moreover, the programme aims at educating the student as to acquire a practical understanding of the position of the field of Artificial Intelligence within a broad scientific, philosophic and social context. content Each Master AI programme is finished with a master project AI . This can
Exam parts
33
form of tuition
mode of assessment target audience remarks
be an individual project as well as a group project. Information about projects (incl. internships) can be found on the Internet pages of the AI divisions. Internships proposed by the student him/herself need approval in advance from a member of staff, who will also be involved with supervising the project. The size of the graduation projects is as such that with adequate foreknowledge and complete study, the project can be finished within 6 months. The student participates in the KIM (Kunstmatige Intelligentie Meeting). See blackboard KIM. The Master Project has always to be supervised by a staff member, in the case of an internship in cooperation with a supervisor in the company. Internships proposed by the student him/herself need approval in advance from a member of staff, who will cooperate with supervising the project. The final grade will be based on the quality of the research, the written thesis, the KIM presentations and the participation in the KIM. master AI (variants: KTIIA, CISO, TAI, Interdisplinary) For all rules, assessment criteria, contact persons, and many practical tips for your master project, see the KIM blackboard page (inclusive the "Manual for the Master Project AI").
subject code credits period aim
Master Thesis: Research Project Cognitive Science 815067 30 4, 5 and 6 To learn how to perform research and report about it. Projects involve basic research, applied research, research concerning modeling, or a combination of these. content Students participate in a research project concerning Cognitive Science. The Thesis can be done at the department of Cognitive Psychology (FPP), the department of Artificial Intelligence (FEW), an external research organization (for example TNO), a company, or another (foreign) university. Before starting, a written research plan should be submitted to the head of the department of Cognitive Psychology or the head of the department of Artificial Intelligence. Participation in a research project can only start after approval of the research plan. The research performed by the student forms the basis for the Thesis. The Master Thesis should be written in article style. Students will be supervised by a person from the academic staff of the department of Cognitive Psychology or the department of Artificial Intelligence. There will be at least one meeting a week between the student and the supervisor. mode of assessment The final grade for the Master Thesis will be based on the quality of both the research and the written thesis. Grading will be done by the direct supervisor and the head of the department. It is required that students present their research in the form of a talk during a research meeting. Students are also required to attend at least four research meetings at the department of Cognitive Psychology. It is finally required that students participate in the KIM meetings according to the rules as outlined on the web-site of the KIM meetings.
34
Artificial Intelligence (MSc)
subject code credits lecturer period aim
content
form of tuition literature mode of assessment subject code lecturer credits period aim content
form of tuition mode of assessment target audience remarks
Memory and Memory Disorders 815102 6 dr. R.J. Godijn 2 (in 08/09; not in 09/10) The course aims to give students an overview of memory at the cognitive and neurophysiological level, and to give students the background to interpret memory disorders in patients with brain damage. The course focuses on various approaches in the study of human memory and memory disorders. We will discuss working memory, encoding-retrieval interactions, interference and forgetting implicit memory, and the brain substrate of memory. We will also discuss clinical testing of memory, and memory loss after local brain damage, dementia, and other conditions. We will review a number of theoretical frameworks such as REM, neural networks, and ACT-R. 12 two-hour lectures and workshops, two oral presentations and a paper To be announced Exam, presentation, and term paper Mini Master Project AI 400428 dr. M. Hoogendoorn 6 Throughout the year Gaining deeper insight into a specific topic in AI. This course consists of a small project on a specific topic in AI, selected in agreement with your supervisor. The project may have various forms, such as a literature study, the design of a piece of software, or exploring a research question. The results of the project are described in a brief report. Individual project and written report. The end grade is based on both the project and the written report. mAI Depending on the interest of the student, a specific topic is selected and an individual supervisor is assigned.
subject code docent credits period aim
Multimedia Authoring 400440 dr. A. Eliens 6 1 The course gives a practical introduction to multimedia authoring, in particular the development of 3D web applications. content In the course an extensive introduction to the use of VRML (Virtual Reality Modeling Language) is given. Topics treated include the construction of 3D objects, positioning of objects in 3D space, material, light and animation. Also the use of images, video and sound to augment the users experience will be treated. Ample attention will be given to the programmatic interface to VRML, including prototypes and scripting, needed for the development of interactive applications. The assignments include a 3D product demo and an infotainment application.
Exam parts
35
form of tuition literature mode of assessment target audience remarks
subject code co-ordinator lecturers credits period aim
content
form of tuition literature mode of assessment entry requirements target audience remarks
36
lectures and practicum. Online syllabus. Practicum assignments. 2IK-minor MMC, mCS-MM and interested students. For course information, see www.cs.vu.nl/~eliens/mma For the course material, see www.cs.vu.nl/~eliens/web3d Museologie en buitenschoolse educatie 471026 drs. R.C. van Koten MSc drs. R.C. van Koten MSc; guest lecturers 6 24.11.2008-19.12.2008 • Gain insight in the role of museum exhibits in the field of science communication • Apply theoretical notions of science communication and science education to perform science communication research in museum settings • Apply qualitative and quantitative research methods to design/perform/report on research project in museum settings • Learning to advise on adjustments of extracurricular (teaching) materials and museum exhibits This course consists of lectures on the role of science museums/centers, zoos and natural history museums in science communication. You will get familiar with theories of science communication and informal science education in museum setting, introducing different educational methods as well as styles of communication, and different methods of research and evaluation of exhibitions. Guest speakers give insight into their profession as science communicators in museums and science centers, as researchers in the field of museology and as professionals in developing informal science learning programs. Excursions are an important part of this course as an introduction to the actual working field. Through several assignments you are encouraged to combine theory and practice. The assignments are developed in collaboration with four institutions for informal (science) learning, such as NEMO, Naturalis and Artis. Lectures, seminars, excursions, assignments and home-study Reader, provided at start of course Assignments (40%), presentation (10%), exam (50%) For all assignment, presentation and exam a pass-grade must be obtained Bachelor in any of the Beta Sciences Optional course in the C-differentiations (Science Communication) of most of the two year master programs of FALW and FEW Course is taught in Dutch (with the possible exception of foreign guest speakers). For information:
[email protected]
Artificial Intelligence (MSc)
subject code credits period lecturer aim content
form of tuition mode of assessment entry requirements
target audience remarks
subject code credits lecturer period aim
content
form of tuition literature mode of assessment
Network Programming 400052 9 4 and 5 dr.ir. G.E.O. Pierre Let the student get familiar with the development of network applications. The course discusses a number of programming facilities for the development of network applications. Attention is paid to designing and implementing applications with threads, sockets, RMI/RPC, CGI/BIN, servlets, PHP. In addition, attention is paid to security and modern enabling technologies like peer-to-peer systems. Lectures combined with lab assignments. Lab assignments plus an exam. • Introduction to Computersystems (400033); • knowledge of C • preferred: Computer Networks, Distributed Systems. mCS, mPDCS Registration for this course is compulsory via the class Web site, http://www.cs.vu.nl/~gpierre/courses/np/, two weeks prior to the start. Neural Models of Cognitive Processes 815051 6 dr. M. Meeter 2 (in 09/10; not in 08/09) Neural network models have become part of the fabric of cognitive science, and have been applied in many domains. In this course, we will concentrate on these applications, and on hands-on experience with the development of neural network models. The course will start with a general introduction, and a tutorial in a simulation environment. In the second part of the course, students will present published models, and be required to either extend a model or to do several exercises in the simulation environment. This work then has to be described in short papers. 22 hours lectures and discussion, 4 hours computer tutorial, one oral presentation, 30 hours group work, 10 hours activating work form. Syllabus, and a reader with recent papers. Grades are based on average of performance on a final exam, the oral presentation and the term paper.
subject code lecturer credits period aim
Neural Networks 400132 dr. W.J. Kowalczyk 6 1 Introduce the student to the most popular neural network models and their applications. content The course provides an introduction to the basic neural networks architectures and learning algorithms. The following main topics are covered: single layer perceptrons, LMS algorithm, multilayer perceptrons,
Exam parts
37
form of tuition literature mode of assessment target audience remarks
subject code lecturer credits period content
form of tuition literature mode of assessment entry requirements target audience subject code credits period lecturer content
form of tuition literature mode of assessment entry requirements
38
radial-basis function networks, support vector machines, self-organizing maps, discrete Hopfield model, brainstate- in-a-box model. Moreover, typical applications of neural networks are discussed. Oral lectures and compulsory programming assignments. To be announced later. Assignments and written examination. 3AI, 3I, 3BWI, mCS, mBMI • Lectures in English. • Course registration is compulsory and must be done on the first day of lecture directly with the lecturer. Ontology Engineering 400292 prof.dr. A.T. Schreiber 3 6 Ontologies are nowadays used in computer science a means to share common concepts between information systems, This course is focused on theory, methods, and tools for constructing and/or extending ontologies for this purpose. Teaching subjects typically center around engineering principles, e.g. for subtype hierarchies (backbone identification, viewpoints, dimensions, constraint specification), part-of structures (types of part-of relations, representation of part-of relations), and default knowledge. Also, the mapping and/or integration of different ontologies is discussed. The course contains examples of how ontologies are used in practice. The assignments focus on real-life examples of ontologies currently in use in web applications. Lectures, assignments. Reader. Assignments, self evaluation. Web-gebaseerde kennisrepresentatie (400083). mIS Perception 815047 6 5 dr. C.N.L. Olivers Introduction to the fundamental principles of perception. Physiological, psychophysical and cognitive approaches to visual, auditory and tactile perception are treated. Is perception purely a registration of the outside world? Which processes and representations underlie conscious and unconscious perception? What methods can we use to find out? Lectures, literature study Goldstein, E.B. (2006) Sensation and Perception. 7th Edition. London: Wadsworth. As well as a selection of articles (to be announced in class). Written exam and in-class assignments. No specific requirements
Artificial Intelligence (MSc)
naam code docent studiepunten periode inhoud
werkwijze literatuur
toetsing
doelgroep voorkennis opmerkingen
subject code lecturer credits period aim content
form of tuition literature mode of assessment
Project Software Engineering 400067 dr. P. Lago 8 5 en 6 Het doel van het SE project is de theorie opgedaan in het SE college toe te passen in een zo'n realistisch mogelijke praktijksituatie. Het project bestaat uit het construeren van een groot programma in teamverband volgens de RAD (Rapid Application Development) methode. Zoveel mogelijk aspecten van projectmatig werken en software engineering zullen hierbij aan de orde komen, waaronder het opstellen van een projectplan, requirements engineering, design, implementatie en testen, maar ook het samenwerken in een team. Het uitvoeren van een project in teamverband (4 à 5 personen) met 'progress report' presentaties van ongeveer 15 minuten. Vliet, H. van, Software Engineering, Principles and Practice, John Wiley. Third edition (2008). Martin Fowler, UML Distilled 3rd edition. Addison Wesley, 2003. Een team wordt beoordeeld op samenwerking (10%), kwaliteit van de documentatie (25%), kwaliteit van de opgeleverde producten (25%), de consistentie van de documentatie en het eindproduct (10%), projectpresentatie (10%) en een individuele evaluatie (20%). 2I, 2IMM, 2BWI, 3AI, 3IMM-BI, 3IMM-MMC Vereiste voorkennis: Software engineering (400071) Inschrijven voor dit vak is verplicht via Blackboard en via TIS https://tisvu.vu.nl/tis/menu tot 2 weken voor aanvang. Voor meer informatie zie Blackboard: http://bb.vu.nl. Protocol Validation 400117 prof.dr. W.J. Fokkink 6 5 and 6 Learning to use formal techniques for specification and validation of communication protocols. This course is concerned with specification and validation of protocols, using formal methods. The course is based on a specification language based on process algebra combined with abstract data types, called mCRL. This language and its toolset can be used for specification of parallel, communicating processes with data. Model checking is a method for expressing properties of concurrent finite-state systems, which can be checked automatically. Interesting properties of a specification are: "something bad will never happen" (safety), and "something good will eventually happen" (liveness). In the lab we will teach the use of a tool for automated verification of the required properties of a specification. Lectures with practical work. During the labs the mCRL-tool and a model checker will be used for validation of protocols discussed during lectures. Wan Fokkink, Modelling Distributed Systems, Springer 2007. Written exam, together with a homework assignment. The overall mark of the course is (H+2W)/3, where H is the mark for the homework assignment,
Exam parts
39
and W is the mark for the written exam. target audience mCS, mPDCS recommended Datastructuren background knowledge remarks Once every other year, not in spring 2009. naam code coördinator lecturers studiepunten aim
Qualitative and Quantitative Research Methods 470582 drs. F. Kupper drs. R.C. van Koten MSc; drs. F. Kupper; M.G.B.C. Bertens; guest lecturers 6 • Understanding the difference between beta- and gamma research • Hypothesis development on how to bring scientific knowledge to the public (understand science so to help society) and how to bring insights of the public back to science (understand society to help direct scientific questions) • To acquire further insights into various quantitative and qualitative research methods of data collection and analysis, such as interviews (structured, semi-structured and open), focus groups, surveys (postal/internet), structured questionnaires, participative research and experimental design • Know how to interpret quantitative and qualitative findings • Familiarity with univariate and multivariate analysis techniques as well as data mining and neural net analysis • To make an adequate research design for the investigation of a specific societal or communication problem with regard to science and a specific science problem with regard to communication and society content Contemporary societies increasingly face complex social problems related to science and technology, like climate change, HIV/ AIDS or the introduction of nanotechnology. Those complex social problems, for example the loss of biodiversity or the containment of infectious diseases, manifest themselves at different levels of society. By definition, they involve a variety of social actors: policy-makers, professionals, NGOs, industry, science and of course the public at large. Addressing these complex issues therefore demand for an interdisciplinary approach. This course offers an advanced introduction to various quantitative and qualitative research methods used in interdisciplinary research. You will acquire knowledge and skills to operate at the interface of your natural science discipline and society, thereby making a contribution to answering the complex social problems in these areas. You will acquire further insight and understanding of different quantitative methods, including surveys and structured questionnaires and qualitative research methods, including interviews (open semi-structured) and participatory methods such as focus group discussions. In addition, you deepen your knowledge on the design of interdisciplinary research to collect, analyse, and integrate information of a variety of actors that are involved in a societal dilemma. In the fourth week of this course you will apply the theoretical knowledge gained in the previous three weeks by designing your own study, which should include a selection of research methods. form of tuition Lectures, training workshops, self study
40
Artificial Intelligence (MSc)
literature Reader or Book (Details will be announced on blackboard) mode of assessment Based on a written exam, an individual assignment and active participation. All assignments need to be passed. target audience Compulsory course in the Masterprogramme Management, Policy Analysis and entrepreneurship for the health and life sciences (MPA) and compulsory course within the Science communication- and Societal differentiations of Health, Life and Natural Sciences Masters programmes. period 01.09.2008-26.09.2008 remarks Attendance of training workshops is compulsory. For further information please contact
[email protected] subject code lecturer credits period aim content
form of tuition
literature
mode of assessment entry requirements target audience remarks
Qualitative Research Methods for the Information Sciences 400290 prof.dr. J.M. Akkermans 3 3 This course helps prepare students who want to embark on their (Master) research. The course provides an overview and assessment of different scientific research methods, needed in a multi-disciplinary approach to Information Systems and how they function in an organizational context. Topics are: • developing the research questions you want to answer; • make a research design and planning your research; • research methods relevant for IS (e.g. interview, case study, action research, ethnography, survey, modelling, simulation, prototyping); • aspects of theory formation and validation; triangulation • how do you (and others) know that your research results are valid?; • research report writing. Workshop-like. In two consecutive (full) days we will not just discuss textbook material, but do several hands-on exercises and assignments in class. Furthermore, a critical review of existing IS Master theses has to be written. • Reader with recent articles • Pervez Ghauri and Kjell Gronhaug, Research Methods in Business Studies 3rd ed. Prentice Hall, Essex, UK, 2005. Written review essay, active workshop participation, and written examination. Bachelor-level IMM, I or AI mIS, mCS, mAI A useful reference point is the protocol that specifies the procedures and criteria for Master research in IS (see study guide).
subject code credits period aim
Review Paper 815104 6 3 To familiarize students with the literature concerning the topic of research of their Master Thesis Cognitive Neuropsychology. In addition, it is aimed that students learn to write a review paper under close supervision. content Depends on the topic of research during the Master Thesis
Exam parts
41
form of tuition Students will be individually monitored and instructed by their supervisor in writing a literature review. literature Depends on the topic of research during the Master Thesis mode of assessment Paper naam code co-ordinator lecturers studiepunten aim
content
form of tuition literature mode of assessment target audience
period remarks
42
Science and Communication 470587 prof.dr. C.J. Hamelink prof.dr. C.J. Hamelink; dr. J.E.W. Broerse; dr. K.T. Rebel; dr. I.R. Hellsten; drs. B.J. Regeer; guest lecturers 6 • To put practical knowledge of science communication (e.g. journalism, museology) in the theoretical context of science communication research; • To gain theoretical insight in the dynamic relationship between science and society; • To deepen knowledge of different models for science communication; • To acquire in-depth knowledge about how to assess the effectiveness of interactive policy processes; and • To learn about the most recent developments in science communication and in communication sciences in general. In the context of the changing dynamics within and between science and society, it becomes increasingly important to understand the types of communication processes at the core of several interfaces; communication between scientists from different disciplines, between different sciences and their stakeholders, and between science and the public. This module starts with a reflection on science and knowledge from different perspectives: Questions that will be addressed include: What is science? What does it mean to develop scientific knowledge? and How does the development of that knowledge relate to other social and cultural processes? With this reflection in mind, the course will cover the current state-of-the-art in science communication research (e.g. models of science communication) and in communication science in general, which will be applied to real-life examples from science journalism, new media and museum exhibitions. In addition, top scientists from different scientific disciplines will give lectures about their views on and experiences with science communication. Lectures and seminars on theory and practice of science communication. Book "The Golem: What you should know about science" and articles posted on blackboard. Assessment based on an individual essay assignment and group assignment. Both assignments need to be passed. Compulsory course for Master students in the C-specialisation (Science Communication) of the Masters Biomedical Sciences, Biology and any of the natural sciences Optional course for Master students Management, Policy Analysis and Entrepreneurship in health and life sciences (MPA), M-specialisation of the Masters Biomedical Sciences, Biology, and any of the natural sciences 05.01.2009-30.01.2009 Students in health, life and natural sciences who are not enrolled in the Cspecialisation have preferably taken one or more courses in (practical aspects of) science communication.
Artificial Intelligence (MSc)
For information and application:
[email protected] naam code docent studiepunten aim
content
form of tuition
literature mode of assessment
entry requirements target audience period remarks
Scientific Writing in English 400592 drs J.K.A. Meijer 3 The aim of this course is to provide the writing student with the essential linguistic means for producing English academic texts which are effective, idiomatically and stylistically appropriate and grammatically correct. The initial focus in the course lies on the form of scientific texts in the Exact science. You will be making considerable use of peer assessment: examining fellow students' written work and giving them feedback. This method provides useful insights into how a text might be improved. The process of providing someone else with feedback on their text is something that you will find very instructive. The course is focussed on self-tuition. The plenary sessions concentrate on the process of writing and the product of writing. Homework is part of the course. With each topic, participants work through a phased series of exercises that usually conclude with the requirement to write a short piece of text. The instructor will append extensive written remarks to this text. The reader `Writing a Scientific Article' can be obtained at the TaalcentrumVU in the Metropolitan (4th floor) . The costs are 15 euro. There will be no examination. However, students will receive their credits only when they have participated in the classes and also when they have handed in all of the assignments. Students will receive a 'pass' when they have finished the course. Bachelor Exact Sciences mAI, mBMI, mCh, mDDS, mMath, mMNS, mPhys Various dates around the year, see timetable masters Taught in English
subject code credits period lecturer aim
Seminar Attention (Seminar Attention) 815100 6 5 and 6 prof.dr. J.L. Theeuwes To learn how to interpret and analyze theories and findings on attention and eye-movements. Learn how to set up experiments. content The format of the seminar will be a discussion of one or two target articles, and student presentations, each week. Target articles for each week will be "classic" articles representing early and/or important studies on a specific topic or recent new papers in attention and eye movements. For the presentations, each student has to present the main findings of the target article for that week and is required to find a recent paper on the topic covered by the target article. Students have to prepare a 20 minute oral presentation in Microsoft Powerpoint. The rest of the class will be spent discussing the target articles and their relationship to the presented papers. Each student will give two presentations. The presentation will determine 50% of the course grade for each student. The target papers will be available on the course website and accessible via blackboard.
Exam parts
43
form of tuition literature mode of assessment
remarks subject code credits period lecturers aim content
form of tuition literature mode of assessment entry requirements subject code lecturer credits period aim
content
form of tuition literature mode of assessment
44
One week after the last class, each student will submit a final paper (up to 20 pages, 12 pt. font, double spaced) on one of the topics covered in class. The paper will consist of a brief review of (at least) 6 research papers (including those already covered on that topic in class) and a proposal for a new experiment. The paper will be worth 50%. Lectures and practical assignments Articles Student presentation and writing a paper. Students are required to be present during all meetings. Penalty for being absent is 5% each time a student is absent. The course Attention (Dr. W. van Zoest; BA3) is required to enroll. Seminar Cognitive Neuroscience 815098 6 4 dr. D.J. Heslenfeld; dr. C.N.L. Olivers To extend students' knowledge in the field of cognitive and clinical neuroscience. Over the last two decennia, scientific research in the field of cognitive neuroscience has led to fundamental new insights in the relation between brain function and behavior. Research is ongoing, and in many cases, the latest insights have not yet traversed their ways down into the regular textbooks. This seminar offers students the possibility to discuss state of the art research. The latest insights into topics such as working memory, multisensory perception, and the mirror neuron system will be covered. The seminar will also cover important questions regarding legal and ethical aspects of cognitive and clinical neuroscience research. Lectures, literature study, oral presentations and discussions. Research papers; to be announced. Oral presentation, contribution to discussion, and a review paper. Cognitive Neuroscience and Neuropsychology Software Architecture 400170 prof.dr. J.C. van Vliet 6 2 and 3 Get acquainted with the field of software and information architecture. Understand the drivers behind architectural decisions. Be able to develop and reason about an architecture of a non-trivial system. Students work in groups to develop an architecture for a fictitious system. They have to develop different representations (called views) of the architecture. These different representations emphasize different concerns of people that have a stake in the system. Each group will also be asked to assess ("test") the architecture of another group for certain quality attributes. Group work with a number of assignments Len Bass et al, Software Architecture in Practice second edition. AddisonWesley, 2003. Written reports of the assignments, presentation, exam.
Artificial Intelligence (MSc)
entry requirements Software Engineering. target audience mCS, mIS remarks Students are required to sign up for this course at Blackboard and via TIS (https://tisvu.v.unl/tis/menu) at least 2 weeks before the course starts. For details, see the Blackboard system http://bb.vu.nl. subject code docent credits period content
form of tuition literature mode of assessment target audience
Special Topics Cognitive Science 400560 dr. T. Bosse 9 1, 2, 3, 4, 5 and 6 The aim of this course is to eliminate specific deficiencies in the areas of Artificial Intelligence and Cognitive Psychology. Each student will take part in an individually developed course consisting of a range of topics covering the basics of Artificial Intelligence, Cognitive Psychology, or both, depending on the specific deficiencies present. In order to determine the individual content of the course program, students are required to make an appointment with the course coordinator. The individually tailored course program will contain (a subset of) the following elements: principles of programming, propositional and predicate logic, knowledge-based systems, multi-agent systems, cognitive neuroscience and neuropsychology, and principles of (experimental) research design. Although most of these elements address basic principles of Artificial Intelligence or Cognitive Psychology, the pace and the difficulty of the program will be at Master level. Lectures, self study, practical work Dependent on individual Individual assignments mAI (specialization Cognitive Science)
subject code lecturer credits period aim
Statistical Data Analysis 400073 prof.dr. M.C.M. de Gunst 6 1, 2 and 3 The course introduces the students to several widely used statistical models and methods, and the students are taught how to apply these tools to real data while using the statistical software package R. content The following subjects are covered: • introduction to the statistical package R; • summarizing data; • investigating the distribution of data; • Q-Q plots; • robust methods; • non-parametric methods; • bootstrap; • two-sample problems; • contingency tables; • regression analysis. form of tuition Lectures, exercises with computer, discussion of exercises.
Exam parts
45
literature mode of assessment entry requirements target audience remarks
subject code credits period lecturer aim
content
form of tuition literature mode of assessment naam code docent studiepunten periode doel
Lecture notes and R manual. Via weekly homework assignments and extended final assignment. Algemene Statistiek (400004) or Algemene Statistiek voor BWI (400218) 3W, mMath, 3BWI Please note: Admission is limited; enrollment via TIS, https://tis.vu.nl/tis/menu , is compulsory. The statistical package R can be downloaded for free from: http://www.r-project.org/. Thinking and Deciding (Denken en Beslissen) 815049 6 2 dr. M.R. Nieuwenstein Explaining and providing understanding of theories, research methods and practical aspects about human judgment, rational thinking, dilemmas, choices and planning. What is "rational" thinking? What keeps us from it? How can we improve our thinking and decision processes? How do we reason and choose in uncertain (risk) situations? What is the influence of (moral) beliefs and emotions? Lectures Baron, J. (2000) Thinking and Deciding (3rd ed.). New York: Cambridge University Press. Written exam
doelgroep
Voortgezette logica 400410 dr. R.D.A. Hendriks 4 4 De modale logica werd al kort geintroduceerd in het vak Inleiding Logica. Doel van dit college is de verdere verdieping van inzicht en vaardigheden in de modale logica, met het oog op toepassingen in Informatica en Kunstmatige Intelligentie. De modale logica bestaat in verschillende gedaantes, bijvoorbeeld tijdslogica, kennislogica, dynamische logica, deontische logica, en al deze vormen hebben hun eigen specifieke toepassingen. Maar het theoretisch kader is steeds hetzelfde: Kripke-modellen met mogelijke werelden en toegankelijksheidsrelaties. Bij een specifieke vorm van modale logica, bijvoorbeeld kennislogica, horen dan wel specifieke eigenschappen van de toegankelijkheidsrelaties. Een belangrijk technisch hulpmiddel bij de bestudering van een modale logica is bisimulatie tussen Kripke-modellen. In de dynamische logica slaan de modaliteiten op het gedrag van programma's in een programmeertaal voor het samenstellen van atomaire acties. 2 uur per week hoorcollege en 2 uur per week werkcollege. Collegedictaat. Schriftelijk tentamen (plus facultatief twee collecties inleveropgaven waarmee 0,5 bonus punt kan worden verdiend). 3I, 3AI, mAI, mCS (ook geschikt als keuzevak Wiskunde)
46
Artificial Intelligence (MSc)
inhoud
werkwijze literatuur toetsing
voorkennis Inleiding Logica (400119) subject code co-ordinator lecturers credits period aim
content
form of tuition
literature mode of assessment
target audience remarks
Wetenschapsjournalistiek (science journalism) 471014 dr. K.T. Rebel dr. K.T. Rebel; drs L. Bonaparte; dr. H. van Maanen 6 27.10.2008-21.11.2008 • Gaining insight in popularization of the beta sciences in print and digital media; • Learning how to write popular science articles for newspapers, magazines and websites; • Learning how to write specific genres like interviews, book reviews and opinion articles. This course consists of lectures about practical and theoretical aspects of science journalism. Topics are the role of science journalism in constructing relations between science and society, images of science in the press, ethical aspects of science journalism and communication barriers between scientists and journalists. Guest speakers give insight into their profession as science journalists, working for news-papers, magazines, internet or broadcasting media. Moreover, you receive training in all aspects of writing popular science articles, such as data collection (interviewing), writing techniques, target groups and genres. Lectures and seminars on theory and practice of science journalism and writing skill training. Considerable time is set aside for writing popular science articles. The assignments are assessed by lecturers and fellow students. Donkers, H. & Willems, J. (2002). Journalistiek schrijven. Bussum: Coutinho (2nd edition). Assessment is based on the last assignment (possibly adjusted on the basis of the other assignments): a popular scientific article for a newspaper or magazine. Optional course in the C-differentiations (Science Communication) of most of the two year master programs of FALW and FEW Course is taught in Dutch. For more information:
[email protected]
Exam parts
47