Inhoud
Biogas productie Uit afvalwater van de chemische industrie
1. Introductie anaerobe afvalwaterzuivering 2. Technieken voor anaerobe afvalwaterzuivering 3. Nieuwe ontwikkelingen 4. Voorbeelden uit de chemische industrie
26/11/2010
Technology development
2
Wat is anaerobe afvalwaterzuivering? 1 Afvalwaterzuivering in afwezigheid van zuurstof
Introductie anaerobe afvalwaterzuivering
Met behulp van anaerobe bacterien / archae worden organische componenten (CZV/COD) gereduceerd tot methaangas Anaerobe afvalwaterzuivering is energie-neutraal, of zelfs netto energie productie
1
Anaeroob versus Aeroob
Geschiedenis anaerobe afvalwaterzuivering
BODCOD 100 kg Ai r (O ) to Aerobic
45% Carbon Dioxide
BOD 100(25kg COD C – 35 C) to Anaerobic O
2
50% Biomass
Eén van eerste toepassingen anaerobe technologie:
CH4 26 - 30 Nm3 CO2 5 - 12 Nm3
Heat loss
2-10 kg COD
O
‘Sewer gas destructor lamp’, brandt op methaangas gevormd in riool Gepattenteerd in 1895 door Joseph Edmund Webb Veelvulding toegepast in UK
75% Biogas (75% Methane)
Rond 1930 eerste wetenschappelijke onderzoek naar ‘anaerobe afvalwaterzuivering’ Sindsdien eerste municipale slibvergisters in bedrijf
5% Biomass
Aeration (100 kWh)
10-20 kg COD
Sludge, 30-60 kg
Sludge, 5 kg 1 kg COD removed ≅ 0.35 Nm3 CH4 or 3.8 kWh
Vier stappen in anaerobe degradatie
Geschiedenis anaerobe afvalwaterzuivering Jaren ‘70: ontwikkeling anaerobe korrelslib technologie door professor Gatze Lettinga, Universiteit Wageningen Biomassa groeit in korrels, zodoende kunnen ze in reactor blijven Eerste industriële anaerobe korrelslib reactor bij CSM, Breda
1976: 200 m3
1978: 800 m3
1973: 30 m3
26/11/2010
8
7
2
Optimale temperatuur / pH
Aantal anaerobe reactoren wereldwijd
Temperature range anaerobic treatment
26/11/2010
Minimum temperature
Optimum temperature
Maximum temperature
Psychrophylic
5
15
20
Mesophylic
15
37
42
Thermophylic 40
60
70
9
26/11/2010
10
Anaerobie in verschillende industriën 2 Other, 2% Pulp & Paper, 8% Pharmaceutical, 1% Beverage, 6% Food, 39%
Technieken voor anaerobe afvalwaterzuivering
Breweries, 23%
Fermentation, 13%
Chemical, 8%
3
Continuous Stirred Tank Reactor (compleet gemixed)
Anaerobe processen
Completely mixed
Physical retention
Immobilised biomass
Lange retentietijd: 20-30 dagen Lage volumetrische belasting: 2-5 kg COD/m3/d Gesuspendeerde biomassa SRT = HRT Typische toepassing:
Expanded bed / blanket
biogas influent
• Afvalwater/slurrie met hoog gehalte aan (biodegradeerbare) zwevende stof Mestvergister in • Afvalwater/slurrie met veel vet Warmenhuizen • Vergisting van actief slib • Vergisting van mest, etc.
effluent
26/11/2010
Contactproces Anaerobe equivalent van actief slib systeem Gesuspendeerde biomassa Terugvoer van slib naar reactor ontkoppeling HRT & SRT Scheiding slib en effluent in bezinker, DAF, TPS, centrifuge, etc.
Vergister bij McCain
13
Fixed bed technologie Biomassa groeit op dragermateriaal (zand, plastic deeltjes, etc.) Ontkoppeling HRT & SRT Belasting tot 10 kg COD/m3/d Vaak problemen met verstopping
biogas effluent
biofilm
influent
26/11/2010
support (pumice)
16
4
Korrelslibtechnologie
UASB
Technologie gebaseerd op biomassa die goed bezinkt door groei in korrels / vlokken Ontkoppeling HRT & SRT Meest bekende systemen:
Ontwikkeld in jaren ’70 Driefasenscheider bovenin reactor Belasting tot 15 kg COD/m3/d Met name geschikt voor verwijdering van opgeloste COD uit afvalwater
• UASB – Upflow Anaerobic Sludge Bed • EGSB – Expanded Granular Sludge Bed
26/11/2010
17
26/11/2010
18
Typisch flow diagram UASB / EGSB
EGSB Ontwikkeld in de jaren ’80 Belasting tot 30 kg COD/m3/d Hogere reactor kleiner oppervlak Met name geschikt voor verwijdering opgeloste COD uit afvalwater
caustic acid
Flare
N P
Biogas Scrubber
FeCl3 + micro
biogas to factory
heat
raw wastewater
Pretreatment
Buffer Tank
Conditioning Tank
Biobed® EGSB
anaerobic effluent
Biomass Storage Tank
26/11/2010
19
26/11/2010
20
5
Waterhergebruik – Unilever Marmite 3
Nieuwe ontwikkelingen
26/11/2010
Energiefabriek – Diageo Triumph
22
Anaerobe MBR Biomass Boiler
Biogas Boiler
Draff Dewatering Distillery
Biogas
Pot Ale Centrifuge Wash Waters High-rate anaerobic plant
Membrane bio-reactor
Reuse and/or Discharge
Spent Lees Copper removal
6
Anaerobic MBR
AnMBR for Dairy - US
Application • Suitable for high strength biodegradable organic industrial wastewater
Successfully started in August 2007 on cottage cheese whey and wash water
Membranes
Expanded to full scale operation in October 2009
• Crossflow ultra-filtration membranes
Design parameters
• Low energy consumption and cleaning frequency
• Flow: 190 m3/d
Key benefits
• COD: 60,000 mg/L
• Biomass cannot be washed out
System performance
• No granular biomass requirement
• COD < 200 mg/L
• COD removal rates > 99%
• TSS < 1mg/L
Anaerobic treatment in chemical industry 4
Voorbeelden uit de chemische industrie
Selection of Biothane references
in chemical industry
Industry
Country
Product
Industry
Country
DSM Chemicals
Netherlands
Phenol
Hoechst
Netherlands DMT
Castagna Univel
Italy
Shell
Netherlands
MS/PO
Sam Yang co
Korea
PET
Ciba Geigy
Korea
Dying
Eastman Chemicals
Singapore
OXO
Orchid chemicals
India
Pharmaceutical
Ciba CKD Biochem
India
Pharmaceutical
Baek Hwa
Korea
Alcohols
Petrocel
Mexico
PTA/DMT
Eastman
Argentine
PET
Gist brocades
Europe
Pharmaceutical
Caldic
Netherlands
Formaldehyde / methanol
Copenor
Brazil
Formaldehyde
VPI
Greece
Borsod Chem DuPont
Netherlands
InfreServe Höchst
Product Solvent recovery
Pharmaceutical
PET
Alembic Chemicals
India
TDI
SASA
Turkey
DMT
Delrin
Rotopas
Turkey
Solvent recovery
7
Caldic Europoort (NL)
Caldic Europoort
Full-scale plant Wastewater characteristics Caldic Europoort
Production of formaldehyde and derivates from methanol Discharge wastewater to surface water (CZV < 200 ppm) Feasibility study: • Biological treatment lowest capex and opex. • Combination anaerobic - aerobic lowest opex
Design
Actual
Flow
m3/d
144
120
COD
mg/l
20,000
40,000
Formaldehy de
mg/l
5000
10,000
Methanol
mg/l
10,000
20,000
Laboratory study to anaerobic treatment: • CH2O at entrance Anaerobic Reactor must be < 500 ppm • CH2O raw waste water is 5000 ppm, so high recirculation / mixing needed
Full-scale design Biobed® EGSB system followed by low loaded activated sludge plant (Carrousel®)
Caldic Europoort
DuPont Nederland DuPontsiteDordrecht Site Dordrecht
Comparison lab test, design and actual
Comparison lab test, design and actual - Results
92.0
Doubling of the production of Delrin® Waste water containing formaldehyde, acetic acid, formic acid, methanol and octanol Existing aerobic post treatment is too small No space available High sludge handling costs Design stages anaerobic treatment plant
88.0
• Laboratory tests
Biobed reactor
Lab test
Design
Actual
Volume load
kg TCOD/m3/d
10 – 15
10
17
TCOD reduction
%
90 - 95
90
> 98
Efficiency (%)
100.0 96.0
84.0 80.0 1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17
Time (weeks) Biobed Total COD efficiency
Analysis of the raw waste water Toxicity Test Batch Biodegradability Test Continuous Laboratory Research
• Design full-scale installation
8
DuPont Nederland
DuPont Nederland
Conclusions laboratory tests
Conclusions laboratory tests
Raw wastewater analysis
Continuous test
• Formaldehyde and octanol are potential toxic compounds • Formaldehyde < 500 ppm biodegradable, otherwise toxic • Octanol unknown, toxicity test required
• Adaptation to octanol after 6 weeks • Octanol degradation during steady-state 80 90% • Peaks in octanol till 600 ppm are allowed • COD efficiency > 90% during the entire experiment • Steady state load 13 - 15 g COD/l.d, peak till 19 g COD/l.d • Biobed® EGSB very suitable for treatment of this type of waste water
Toxicity test • Activity of anaerobic biomass inhibited by octanol • At octanol > 338 ppm no activity observed
Batch biodegradability test • SCOD removal > 90 % • Within 70 h SCOD < 200 mg/l • Anaerobic biomass is not inhibited by low concentrations of octanol present in the raw waste water
DuPont Nederland Full scale installation
DuPont Nederland Efficiency Octanol & Formaldehyde + COD removal
COD efficiency (%)
100 80 60 40 20 0 1
2
3
4
5
6
7
8
9
7
8
9
Time (weeks) Octanol
Wastewater characteristics Peak
Flow
720
840
COD load
kg/d
5400
8000
Formal dehyde
mg/l
3000
5000
67
350
T(S)COD efficiency (%)
100
Average m3/d
Octanol mg/l
Formaldehyde
80 60 40 20 0 1
2
3
4
5
Time (weeks)
TCOD removal
6
SCOD removal
9
Biothane in PTA industry
PTA production scheme
15 references worldwide From laboratory to full scale…
PTA: Purified Terephtalic acid (para-phtalic acid) Two steps: 1. 2.
26/11/2010
Crude TA (CTA) production from PX (para-xylene) TA purificiation (PTA)
37
Anaerobic treatment of PTA wastewater
Results laboratory test with PTA wastewater Biobed EGSB Continuous Laboratory Test COD removal efficiencies
Main components wastewater: 100 COOH
COOH
25 para-phthalic acid degradation: ~100 %
COOH
90
COOH
ortho and para degradation starts
80 COOH Para Terephthalic acid
Ortho phthalic acid
Mw 166; COD 1.44 g/g
Mw 166; COD 1.44 g/g Mw 166; COD 1.44 g/g Mw 122; COD 1.97 g/g
COOH
Iso phthalic acid
Benzoic acid
COOH
COOH CH3COOH
COOH
CH3
Tri mellitic acid
P-Toluic acid
Acetic acid
Mw 210; COD 1.14 g/g
Mw 136; COD 2.12 g/g
Mw 60; COD 1.07 g/g
Time required to reach 50% degradation in batch mode Compound
Days
Benzoic acid
4-10
Orthophthalic acid
16-49
Iso-phtalic acid
20
70 benzoate : 100 % conv.
60
15
50 40
10
30 20
Terephtalic acid 44-61
Adaptation required to phthalic acid isomers:
Removal efficiency (%)
COOH
load kg COD / m3 d
COOH
5 TCOD removal SCOD removal load SCOD
10
74-156 0 0
50
100
150
200
0 250
10
Vragen?
26/11/2010
41
11